Cientista em destaque: entrevista com Daniel Mario Ugarte.

O prof. Daniel Ugarte em uma de suas duas atividades favoritas: a culinária. A outra é a pesquisa experimental.
O prof. Daniel Ugarte em uma de suas duas atividades favoritas: a culinária. A outra é a pesquisa experimental.

Daniel Mario Ugarte nasceu em 23 de março de 1963 em Cosquín, uma pequena cidade nas serras da província de Córdoba (Argentina). Cresceu num ambiente familiar de muito estímulo à curiosidade, o aprendizado e a experimentação. Depois de cursar o ensino fundamental e médio nessa cidade, fez a graduação em Física na capital da província, na Universidad Nacional de Córdoba, a mais antiga do país vizinho (fundada em 1613). Após a graduação, fez um estágio em microscopia eletrônica de transmissão na Université Paris-Sud, na França, onde acabou ficando para realizar o doutorado em temas de nanociência (embora, naquele momento, o prefixo “nano” ainda não fosse amplamente utilizado). Ugarte obteve o diploma de doutor em Física em 1990. Mudou-se, então, para a Suíça, onde realizou um estágio de pós-doutorado que durou cerca de três anos na École Polytechnique Fédérale de Lausanne (EPFL). Ali continuou fazendo nanociência e nanotecnologia e obteve resultados de grande impacto acadêmico, notoriamente as “nanocebolas de fulereno”, que lhe renderam, aos 29 anos de idade, seu primeiro artigo na revista Nature, assinado apenas por ele e destacado na capa da edição. Esse paper, que hoje conta com mais de 2.000 citações, seria o primeiro de seis artigos publicados por Ugarte nas duas principais revistas científicas do mundo (a Science e a Nature), entre dezenas de publicações em periódicos científicos especializados, também de altíssimo impacto, como Nature Nanotechnology, Nano Letters, Physical Review Letters, entre outros.

Em 1993, por motivos pessoais, Ugarte foi morar no Brasil, e começou a trabalhar com a equipe que estava iniciando a construção do Laboratório Nacional de Luz Síncrotron (LNLS) no local atual, na cidade de Campinas (SP). Foi nesse contexto que ele pôde tornar realidade a sua ideia de construir um laboratório de microscopia eletrônica realmente aberto à toda a comunidade científica, sem esquecer os estudantes, que também cumprisse o papel de formar pesquisadores capazes de utilizar os equipamentos com habilidade. O Laboratório de Microscopia Eletrônica iniciou suas atividades em 1999, dirigido pelo cientista cordobés, e foi a semente do atual Laboratório Nacional de Nanotecnologia (LNNano). Entre 1994 e 1998, Ugarte atuou também como professor visitante na EPFL. Em 2004, o cientista deixou o LNLS para assumir o cargo de professor associado no Instituto de Física Gleb Wataghin (IFGW), da Universidade Estadual de Campinas (UNICAMP). Desde 2007, ele é professor titular dessa instituição. Além disso, de 2004 a 2007, o professor Ugarte coordenou uma rede de pesquisa em nanomateriais, a NANOMAT, que incluía 23 instituições e 150 pesquisadores.

Ao longo de sua carreira científica, Daniel Ugarte proferiu mais de 100 palestras convidadas em eventos científicos internacionais e recebeu vários prêmios prestigiosos por suas contribuições acadêmicas excepcionais, como o prêmio universitário da Fondation Latsis Internationale (Suíça, 1994), o John Simon Guggenheim Fellowship (EUA, 2002), o Prêmio Scopus Brasil da Elsevier e a CAPES (Brasil, 2008) e o prêmio de Física de The World Academy of Sciences, TWAS (Itália, 2018). Em 2012, Ugarte foi eleito membro da Academia Brasileira de Ciências (ABC). Além disso, vários estudantes orientados por ele receberam prêmios por suas teses de doutorado, outorgados pela Presidência da República (Prêmio Marechal do ar Casimiro Montenegro Filho), pela CAPES, pela Sociedade Brasileira de Física (SBF) e pelo IFGW – UNICAMP.

Daniel Ugarte é autor de mais de 100 artigos publicados em periódicos internacionais com revisão por pares. De acordo com o Google Scholar, sua produção acadêmica recebeu mais de 16.600 citações e seu índice h é de 43.

Veja a nossa entrevista com este sócio fundador da SBPMat e saiba mais sobre a sua história de vida, suas principais descobertas, suas críticas a algumas tendências no modo de se fazer ciência e sua mensagem aos pesquisadores mais jovens.

Boletim da SBPMat: – Gostaríamos de saber como/ por que você se tornou um cientista. Quando surgiu em você o desejo de ser cientista?

Daniel Ugarte: – Nasci na Argentina, com a informação genética típica daquele país: mãe de origem italiana, e pai de origem espanhola (basca, para ser preciso), mas tentando ser inglês (adoro rugby). Acho que o exemplo de curiosidade, trabalho e interesses variados de meus pais teve influência majoritária nas minhas escolhas. Nasci e cresci numa cidade no meio das montanhas/serras na Argentina (cidade de Cosquín, com aproximadamente 10.000 habitantes, na província de Córdoba). Minha mãe era professora do ensino fundamental e sempre tentava, com recursos financeiros muito escassos, obter livros para seguir estudando e melhorar suas aulas (naquela época não tinha internet); nós líamos em família esses novos textos de história, dinossauros etc. Meu pai, mesmo tendo frequentado a escola somente até os 12 anos, sempre foi muito curioso e ativo. Fazia de tudo como amador e autodidata; muito inquieto, era ator, pintor, músico, consertava de tudo, fazia chaves etc. A curiosidade e o espírito de criança ficaram sempre com ele: toda coisa nova, ele queria desmontar para ver como funcionava. Se tivesse que definir sua profissão, eu diria que ele fazia cartazes publicitários. Na oficina dele, todos os equipamentos foram construídos por ele mesmo. Naquela sala de bagunça constante, eu brincava furando ferros, soldando fios, cortando madeira, martelando coisas. Tínhamos poucos luxos, nenhum brinquedo caro, mas sempre havia livros, e eu fazia coisas muito incomuns (supervisionado por meus pais) aos olhos das outras crianças, tais como aeromodelos, rádios de galena, um telescópio etc. Com minha mãe, cozinhávamos sempre receitas novas (nhoques, bolos, alfajores, doces, etc.); aos 10 anos, todo domingo ao meio-dia, eu preparava o churrasco da família. Esses experimentos de química e calor foram muito instrutivos (e saborosos), sabores e aromas que tento ainda hoje reproduzir com precisão. Finalmente, para completar, tive a sorte de ter certa facilidade com Lógica e Matemática, a qual ficou em evidência quando fui para a escola. Tenho que agradecer muito aos professores de Ciência e Matemática que se esforçaram para manter minha motivação naquela cidadezinha e que eu pudesse crescer e fazer evoluir esse talento incipiente. Acho que com essa infância, o sonho de fazer ciência e trabalhar num laboratório (ou numa cozinha) fazendo descobertas e construir instrumentos maravilhosos é a consequência mais natural do mundo (devo esclarecer que fora do laboratório meu hobby principal é cozinhar).

Boletim da SBPMat: – Conte, brevemente, o que o levou a atuar no campo dos nanossistemas.

Daniel Ugarte: – Na verdade cheguei ao mundo “nano” pelas mãos da microscopia eletrônica. Na Universidad Nacional de Córdoba cursei Física, muito mais interessado no perfil experimental e no trabalho de laboratório utilizando as mãos. No curso, você deve fazer uma dissertação final para obter seu diploma. Entre as várias opções do Instituto de Física, preferi fazer um projeto associado à microscopia eletrônica de varredura e espectroscopia de raios X. Uma escolha pragmática visando ter mais opções de emprego após a minha graduação. Naquele momento, tive sorte, surgiu uma oportunidade de ir à França fazer um estágio em microscopia eletrônica de transmissão, e, após chegar lá (Laboratoire de Physique des Solides, Université Paris-Sud, Orsay), fui convidado a fazer uma tese de doutorado para estudar a excitação de plásmons de superfície em partículas pequenas (em inglês da época eram “small particles”, não “nanoparticles” como é hoje). O termo “nano” não existia ainda, e a “plasmônica” era somente uma curiosidade (hoje representa um dos temas de nanociência mais ativos). Uma vez concluída a minha tese, pude conseguir um pós-doutorado em Suíça, num dos primeiros institutos que concentrava suas pesquisas nas propriedades novas que surgiam ao diminuir o tamanho das partículas (Institut de Physique Experimentale, École Polytechnique Féderale de Lausanne). Resumindo, comecei nos embriões nano e sempre continuei estudando sistemas pequenos com técnicas de alta resolução espacial associadas à microscopia eletrônica de transmissão. A resolução atômica ou nanométrica desta técnica é imprescindível para a pesquisa básica ou tecnológica em nanossistemas, e os caros microscópios se tornaram símbolos para exibir a riqueza de cada programa “nano”.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições científicas/ tecnológicas à área de Materiais e por que as considera mais relevantes? 

Daniel Ugarte: – As nanoestruturas de carbono (fulerenos, nanotubos, grafeno) representam um exemplo típico de nanomateriais com propriedades novas. Considerando datas, os fulerenos foram descobertos em 1986, o sólido de fulerenos em 1990, os nanotubos em 1991. Trabalhando na Suíça em 1992, observei acidentalmente que, irradiando materiais de carbono com o feixe de elétrons de um microscópio eletrônico de transmissão, tudo se transformava em “cebolas de fulereno” (esferas concêntricas de grafite, como uma boneca russa). Este experimento gerou um novo membro para a recentemente descoberta família dos fulerenos, e o trabalho teve uma incrível repercussão a nível mundial. No entanto, o interessante foi que esse não era meu projeto de pós-doutorado, o qual era uma pesquisa mais focada no estudo da difração eletrônica de nanopartículas metálicas. Em Lausanne tínhamos um laboratório de microscopia completo e com todos os equipamentos de fronteira. E notei que ninguém os usava de noite; então, decidir ir lá brincar… fazer experimentos exploratórios, inocentes, alternativos e, sem querer, apareceram as cebolas…. Mas quando falei pela primeira vez dos resultados ninguém acreditou; um revisor da prestigiosa revista Physical Review Letters falou que meus dados eram tão ridículos como os da fusão fria (tema altamente controverso naquele momento); foi um insulto do pior nível. Mas eu continuei defendendo meu trabalho, eu obtinha os mesmos resultados uma e outra vez, e era a verdade. Eu continuei apresentando o resultado nos congressos; sobrevivi a muitos comentários violentos e humilhantes. Para fazer coisas um pouco fora do paradigma é preciso ter “couro duro”. Finalmente, com o apoio inesperado e espontâneo de Sir Harry Kroto (que recebeu o Prêmio Nobel de Química em 1996), que não me conhecia nem nunca tinha falado comigo, meu artigo foi publicado na revista Nature. Eu tinha menos de 30 anos, era muito inocente, e fiquei muito surpreso com o enorme interesse da mídia, pois dava reportagens para muitos países, entre eles Japão, Alemanha etc. Sentia como se o mundo estivesse caindo sobre a minha cabeça. Com experimentos “naifs” (despretensiosos) e fora de contexto, feitos à noite, com instrumentos avançados, eu tinha criado opções de trabalho que batiam na minha porta. Porém, nesse momento, para surpresa de meus colegas franceses e suíços, tomo um caminho alternativo, e em 1993 opto por vir viver no Brasil por razões pessoais e familiares.

Poucos anos depois, estávamos, numa tarde de sábado de 1995, no laboratório em Lausanne, fazendo propostas de ideias ousadas (“brain storming”) com meu amigo Walt de Heer (um cientista incrível considerando profundidade e criatividade). Decidimos testar uma que surgiu lá na hora: utilizar nanotubos de carbono (a ponta é bem fininha mesmo) para produzir uma fonte de elétrons. Juntamos uma prensa hidráulica, fita de teflon de tipo encanador, grades de microscopia, mica velha, umas coisas do laboratório (câmara de vácuo, osciloscópio etc.) e montamos uma coisa horrível, suja, grotesca, completamente improvisada e… funcionou!!!.  O resultado foi publicado na revista Science. Esse experimento criou uma nova área de pesquisa aplicada para os nanotubos de carbono que vários laboratórios industriais tentaram explorar; até hoje é uma área ativa de pesquisa. De novo, no meu caminho, outra proposta experimental inocente, mas criativa e descontraída (neste caso o resultado não foi acidental, mas planejado), que captou o interesse da comunidade tecnológica internacional.

No meu grupo no Brasil, decidi investir numa nova linha de pesquisa baseada num experimento irreverente proposto na Espanha por um pesquisador chamado Costa-Kramer (Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top, Surf. Sci. 1995). Se juntarmos dois pedacinhos de ouro e depois os separarmos, no fim se forma um fio muito fino (como com chiclete) que pode até ter um átomo de diâmetro. Medindo a corrente elétrica que atravessa esse fio durante a elongação, podemos estudar efeitos quânticos na condução elétrica por nanoestruturas. Em Campinas, meu estudante Varlei Rodrigues (que depois recebera o Premio SBF de Melhor tese de Doutorado em Física em 2003) construiu um instrumento especificamente desenhado para realizar esse estudo com alta precisão em condições de ultra alto vácuo (UHV). Posteriormente pudemos fazer imagens de microscopia eletrônica do arranjo atômico dos fios gerados por elongação mecânica e também cálculos teóricos em colaboração com o grupo de Douglas Galvão. A partir dessas informações pudemos compreender em detalhe as nossas medidas experimentais; a partir desses resultados fui convidado a proferir quase uma centena de palestras em conferencias internacionais. Considero que esses resultados foram muito importantes do ponto de vista brasileiro, pois toda a pesquisa foi integralmente feita no país: as ideias, os experimentos avançados, a construção de instrumentação científica especifica, os cálculos teóricos e a compreensão. Além do impacto científico, a pesquisa sobre nanofios metálicos representa uma realização importante, pois nos permitiu mostrar, pelo exemplo, que estudos de nanociência experimental competitiva, podem, sim, ser feitos no país, combinando trabalho com originalidade e um certo grau de risco.

Falar de resultados alimenta nosso ego (o pequeno argentininho que todos levamos dentro…); outro aspecto de nossa contribuição para a sociedade vem quando nosso esforço é dedicado ao crescimento da comunidade, em particular para elevar o nível da ciência do país. Neste sentido, gostaria de lembrar um dos trabalhos mais reconfortantes de minha carreira: a idealização e criação de um laboratório multiusuário de microscopia eletrônica em Campinas. Esse projeto contou com o apoio constante e incondicional dos diretores do LNLS na época (Cylon da Silva, Aldo Craievich e Ricardo Rodrigues). Finalmente, os microscópios foram adquiridos com recursos (muitos recursos!!!) da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). Desde a ideia inicial, trabalhei para que o laboratório fosse aberto e disponível aos pesquisadores brasileiros (não nas intenções, mas na realidade) e que também tivesse formação de recursos humanos como um foco de suas atividades. Contrariando a opinião geral da comunidade, no laboratório de microscopia todas as observações eram realizadas pelos próprios alunos de graduação ou pós-graduação envolvidos nos projetos, após um processo de treinamento. Muitos estudantes aprenderam a trabalhar, e os instrumentos nem quebravam, mas tivemos que nos dar o tempo de ensinar os pesquisadores interessados. Este modo de operação tinha como alvo evitar o sistema feudal (“senhor dono” de instrumentos) ou aplicação de sicofantismo. Fiquei nesse laboratório até 2009. Esse laboratório cresceu e se transformou no que hoje é chamado Laboratório Nacional de Nanotecnologia (LNNano).

Boletim da SBPMat: –  Você possui uma quantidade fora do comum de artigos publicados em revistas de altíssimo impacto (Science, Nature, PRL …), principalmente no contexto de países em desenvolvimento. A quais fatores e competências você atribui esta característica da sua produção científica?

Daniel Ugarte: – Na pergunta anterior tentei dar vários exemplos de alguns momentos importantes de minha atividade científica. Tem contribuição do volume de trabalho, muito estudo, bem como a coragem de assumir riscos para fazer experimentos ousados e originais. Mas tem uma coisa que sempre tento ensinar aos meus estudantes: se nós fizermos um projeto, ele deve descascar um abacaxi e trazer uma contribuição relevante (se der certo…). Se alguma publicação for gerada, tem que contribuir com conhecimento novo, não de mentirinha, mas de verdade. Não vamos escolher somente temas de pesquisa que gerem resultado rápido; provavelmente o nosso estudo vai demorar, teremos que entender e aprofundar em muita coisa nova. Até podemos precisar desenvolver ferramentas/instrumentos/software para responder a pergunta científica. E eles perguntam: vai dar certo? Eu digo, não sei, se eu soubesse que vai dar certo não teria emoção, mas posso garantir que você vai crescer muito e obter uma sólida formação. Por exemplo, no tema de nanofios de ouro tivemos que responder comentários (de um competidor) sobre o que acontecia com a elongação mecânica a baixa temperatura. Para isso, precisávamos realizar um experimento extremamente desafiador e tentar observar a deformação mecânica de nanofio in situ dentro do microscópio a baixa temperatura com resolução atômica utilizando um porta-amostra em nitrogênio líquido. O estudante que topou o projeto (Maureen Lagos, que depois ganhou o prêmio CAPES de Tese em 2012) me perguntou: Vai ser difícil? O que você pensa? Minha resposta foi: Acho que não vai dar certo, mas para responder isso à comunidade devemos testar para confirmar se funciona ou não, e também até onde é possível observar; “bola pra frente”, vai, tenta fazer o melhor possível e boa sorte (vai precisar de muita…). Para minha surpresa, ele conseguiu as medidas, muito difíceis e demoradas; esses estudos feitos aqui no Brasil recebem até hoje (10 anos depois) muitos elogios e reconhecimento na comunidade científica.

Outro aspecto, fora o risco ou ousadia, é a qualidade; todo estudante ou colega que trabalhou comigo sabe que sempre fazemos o melhor possível, não tem “mais ou menos”. Só o melhor é aceito, ou, então, tem que fazer o experimento de novo até obter a mais alta qualidade. Alguns alunos me detestam, mas recentemente um antigo aluno da UNICAMP (hoje professor nos Estados Unidos) publicou um artigo na revista Nature, e me enviou uma mensagem agradecendo, pois hoje ele dá um enorme valor àquilo que aprendeu sobre puxar seus limites, nessa convivência comigo. Puxar a qualidade total do conteúdo do estudo, nos experimentos – que são a base em nosso grupo -, no estudo teórico, na interpretação, na modelagem etc. Como em todas as profissões, nós construímos nossa reputação ao longo dos anos, e ela pode ser prestigiosa ou não. Sempre foi um orgulho para meu grupo que nossos colegas e competidores recebem nossos trabalhos com atenção, acreditando que fizemos nosso melhor para cada resultado publicado (mas nem sempre concordam com nossas conclusões/interpretações… como todo mundo temos muitos artigos rejeitados).

Quando formei parte do comitê que analisa projetos no CNPq, fiquei surpreso pelo número de pesquisadores brasileiros que publicam mais de, digamos, 50 artigos por ano, mesmo alguns tendo altos cargos administrativos ou gestão em instituições de ensino ou pesquisa do Brasil (funções que requerem esforço concentrado as 24 horas do dia). Considerando minha capacidade de fazer pesquisa, acho totalmente impossível pensar em fazer quase uma publicação por semana!!! E isso se ficasse no laboratório o dia todo com os estudantes. Neste ponto gostaria de retornar ao conceito de qualidade, considerando o número e a contribuição científica de artigos gerados por um grupo ou pesquisador. Podemos assumir que segue uma distribuição estatística com forma de gaussiana descrita por dois parâmetros com uma média e uma largura (notas de 1 a 10). Conheço pesquisadores com produção um pouco incoerente, capazes de fazer o melhor (trabalho nota 10), e ao mesmo tempo, o pior (alguns trabalhos merecem nota muito baixa, digamos 1-2). Seja um grupo hipotético no qual a média de contribuição ao conhecimento por publicação é boa/muito boa (média 6 ou 7), e são geradas várias dezenas de publicações. Estatisticamente você deve publicar, entre essas dezenas, algum artigo com conteúdo de alta qualidade (lado superior da distribuição e longe da média) que obterá reconhecimento na comunidade (eventualmente, com sorte, publicado numa revista de alto impacto). Mas se você faz 100 publicações por ano e nenhuma atinge uma certa relevância na sua área de atuação, o nosso modelo estatístico simples indica que a contribuição média de seus trabalhos deve ser moderada. Além disso, também pode ser moderada a largura da distribuição; nesta situação, sua produção/trabalho é coerente, numa faixa estreita de nível de qualidade. As causas podem ser variadas; em alguns casos, a justificativa/explicação não precisa de longos discursos, é razoável associar contribuição moderada a, por exemplo, a juventude do pesquisador, infraestrutura deficiente ou financiamento limitado. O ponto crítico é quando o problema está na raiz, e as causas da qualidade moderada estão associadas à pesquisa dirigida para perguntas/alvos científicos/técnicos de menor importância e baixo risco. O que esperar de um ambiente, onde tanto as agências financiadoras como também os próprios pesquisadores (não é só culpa das agências) aceitam que essa séria deficiência pode ser compensada plenamente pelo número de publicações? O resultado será que os números crescerão, mas o impacto diminuirá.

Tira cômica do cartunista argentino Quino enviada pelo prof. Ugarte para ilustrar algumas de suas críticas a determinado modo de se fazer ciência.
Tira cômica do cartunista argentino Quino enviada pelo prof. Ugarte para ilustrar algumas de suas críticas a determinado modo de se fazer ciência.

Talvez eu seja irresponsável, teimoso (as raízes bascas ajudam), mas meu trabalho ao longo dos anos seguiu certos padrões. Prefiro fazer um prato de alta gastronomia (as vezes meio queimado), do que fazer centenas de pratos de arroz e feijão. Prefiro fazer menos coisas e não ter numerosas publicações irrelevantes envolvendo trabalho que não incluiu risco nenhum (também tenho desses trabalhos), e assim ter tempo de me atualizar, me desafiar, estudar e ver coisas fora de meu principal interesse. Assim tenho a oportunidade para novas ideias, inocentes, irresponsáveis, que com sorte vão dar certo. É importante, primeiro, ter claro que coisa nova/diferente vamos fazer em nossa pesquisa; se não tem nada novo/arriscado, como vai ser a contribuição à geração de conhecimento? Na realidade, essa linha de pensamento não é muito popular se olhamos em detalhe a maior parte dos projetos financiados na comunidade brasileira (no entanto, muitos discursos e planejamentos a definem como essencial). Ao contrario, a viabilidade é muitas vezes mais importante que a relevância e a originalidade. Nem falar de outros temas que dificultam o aumento da relevância da pesquisa em nanociência no Brasil, tais como física experimental, instrumentação científica, multidisciplinaridade, onde o contraste entre discurso e realidade dá enorme tristeza. Como na gastronomia, prefiro o “slow food”, um bom prato, bom vinho e tempo para desfrutar. Devemos nos rebelar contra a “fast science” (projetos short-term), pois isso está levando à uma ciência superficial (shallow-knowledge).

É triste ver a evolução do Brasil, os números crescem, o impacto diminui… Muitos podem ver positivamente a publicação em revistas de alto impacto, mas nem todos concordam. Vou dar um exemplo. Decidi estudar alguns temas novos onde considero que existem oportunidades de coisas muito originais e interessantes. Para fazer perguntas mais profundas, é preciso entender. Aprender toma tempo… Assim, meu relatório de atividades teve problemas para ser aprovado por baixa produtividade: não atingi a média.  Nunca tive muita diplomacia nem habilidades políticas, portanto, juntando toda minha revolta, e sendo argentino e basco ao mesmo tempo, pergunto-me: será que sou terrivelmente ineficiente e devo me aposentar, o que no mínimo me permite manter meu espírito, minha liberdade e forma de trabalho intacta? Existem muitos discursos sobre como estimular pesquisa de ponta e formar pesquisadores; acho que meu jeito de contribuir é trabalhar “a mi maneira” e transmitir um exemplo para quem o considere válido.

Não posso esquecer de agradecer o sistema de Edital Universal do CNPq, onde sei que sempre posso enviar ideias malucas, e o sistema de revisão respeita minha história e confia em minha “irresponsabilidade”. É pouco dinheiro (se for comparado com os padrões internacionais), mas ganho muita liberdade !!!, e isso é essencial para ser criativo!!!

Boletim da SBPMat: – Agora convidamos você a deixar uma mensagem para os leitores que estão iniciando suas carreiras científicas.

Daniel Ugarte: – O trabalho científico requer ser sonhador e ter muita paixão, enorme esforço no estudo e no trabalho. Temos que poder associar conhecimento, originalidade, infraestrutura, habilidade técnica etc. Acho muito importante demonstrar a jovens que é possível sonhar e fazer pesquisa de ponta no Brasil. O meio científico pode ser muito agressivo, mas devemos ter claro que o mérito é o parâmetro mais importante, e que, apesar de o ambiente de pesquisa ser extremamente competitivo, é essencial desenvolver nossas atividades mantendo as qualidades humanas, profissionalismo e ética.

Ao longo de uma carreira científica devemos enfrentar essas muitas situações diferentes. Minha vida acadêmica no Brasil teve muitas etapas, algumas foram resplandecentes, com trabalho, desafios, produtividade e com estudantes excelentes e motivados (o laboratório era o paraíso). Mas não posso deixar de pensar em outras etapas muito tristes, decepcionantes… associadas às mediocracias locais. No entanto, as pedras lançadas em nosso caminho foram completamente superadas por nosso trabalho, nossos resultados e nossa ética. Sempre, sempre, o mérito e a competência vão ganhar no jogo da ciência.

Artigo em destaque: Flocos de alumínio para produção de nanotubos de carbono.

O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: High-yield synthesis of bundles of double- and triple-walled carbono nanotubes on aluminum flakes. Thiago H.R. da Cunha, Sergio de Oliveira, Icaro L. Martins, Viviany Geraldo, Douglas Miquita, Sergio L.M. Ramos, Rodrigo G. Lacerda, Luiz O. Ladeira, Andre S. Ferlauto. Carbon 133(2018) 53-61.

Flocos de alumínio para produção de nanotubos de carbono

Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono obtidos por meio do método da equipe do CTNano.
Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono obtidos por meio do método da equipe do CTNano.

Uma equipe de cientistas de instituições mineiras fez uma promissora contribuição à produção de nanotubos de carbono. Esses cilindros ocos cujas paredes de carbono têm apenas 1 átomo de espessura já fazem parte de alguns produtos (baterias, materiais automotivos, filtros de água), mas sua produção industrial ainda é incipiente e precisa de soluções para baixar custos e aumentar a eficiência, entre outros desafios.

Os pesquisadores brasileiros introduziram uma novidade em uma das etapas da técnica mais consolidada para a produção em massa de nanotubos, a deposição química a vapor (CVD, na sigla em inglês). Dessa maneira, a equipe conseguiu produzir feixes de nanotubos de duas e três paredes (algo similar a dois ou três cilindros ocos, um dentro do outro). Finos, compridos e de alta pureza, os nanotubos apresentaram diâmetros de 3 a 8 nanometros, comprimentos até 50 mil vezes maiores que seu diâmetro (de 150 a 300 micrometros) e mais 90 % de carbono na sua composição.

“A principal contribuição deste trabalho é a apresentação uma rota escalável e de baixo-custo para síntese de feixes de nanotubos de carbono com grande área superficial (625 m2/g) e razão de aspecto (50000:1)”, diz Thiago Henrique Rodrigues da Cunha, pesquisador da frente de síntese do Centro de Tecnologia em Nanomateriais (CTNano) da Universidade Federal de Minas Gerais (UFGM) e autor correspondente do artigo deste trabalho, que foi recentemente publicado no periódico Carbon (fator de impacto= 6,337).

O método, além de gerar nanotubos de boa qualidade, permite produzir quantidades relativamente grandes desse material usando quantidades relativamente baixas de matérias-primas. “Mesmo utilizando sistemas pequenos, é possível a obtenção de nanotubos de carbono em escala de quilograma/dia”, diz o pesquisador. Como os nanotubos obtidos apresentaram uma relação entre área superficial e massa muito grande (mais de 625 metros quadrados pesam apenas um grama), a produção dos nanotubos por este método poderia alcançar alguns milhões de metros quadrados por dia.

Com os nanotubos obtidos e um tipo de álcool, a equipe científica preparou uma pasta, a qual distribuiu sobre um papel de filtro, formando um filme que foi separado do papel quando a pasta secou. O filme, de cor preta, apresentou 40 micrometros de espessura e ficou flexível e dobrável. Agregados macroscópicos de nanotubos de carbono como este são usualmente chamados de buckypapers.

À esquerda, filme de nanotubos de carbono (buckypaper) produzido pela equipe. À direita, aviãozinho confeccionado com esse buckypaper.
À esquerda, filme de nanotubos de carbono (buckypaper) produzido pela equipe. À direita, aviãozinho confeccionado com esse buckypaper.

“Os buckpapers produzidos a partir destes nanotubos apresentaram grande área superficial e boa condutividade elétrica, o que os torna particularmente interessantes na confecção de eletrodos para baterias e supercapacitores”, afirma Thiago da Cunha, que acrescenta que a equipe do CTNano já está trabalhando para usar os buckypapers nesses dispositivos armazenadores de energia. Uma patente sobre o processo foi depositada no final de 2017. “Nossa intenção é apresentar esta tecnologia para potenciais parceiros a fim de converte-la em um produto de alto valor agregado”, revela Cunha.

O segredo do processo

Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono que cresceram a partir de ambos os lados de um floco de alumínio.
Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono que cresceram a partir de ambos os lados de um floco de alumínio.

Os processos de produção de nanotubos por CVD ocorrem dentro de um forno tubular no qual se insere gás contendo carbono e nanopartículas catalisadoras. Submetido a altas temperaturas, o gás se decompõe, e os átomos de carbono se depositam em cima e em volta das nanopartículas, formando tubos (os nanotubos). As nanopartículas podem ser preparadas no mesmo forno usado para o crescimento dos nanotubos.

É justamente na preparação das nanopartículas catalisadoras que reside o segredo do método desenvolvido pela equipe mineira. Em grandes linhas, trata-se de preparar um pó contendo ferro (Fe) e cobalto (Co) sobre flocos de alumínio (material que nunca antes tinha sido mencionado na literatura científica como suporte para o crescimento de nanopartículas). A mistura é então submetida a temperaturas de 350 a 650 °C durante 4 horas, numa atmosfera similar ao ar que respiramos. Esse processo, conhecido como calcinação, produz nanopartículas de óxidos de ferro e/ou cobalto. Depois, as nanopartículas catalisadoras, ainda sobre os flocos de alumínio, são introduzidas no forno de CVD, cuja temperatura interna é levada a 730 °C. Nesse momento, é introduzido o gás etileno (C2H4), o qual aporta o carbono para que os nanotubos cresçam perpendicularmente aos flocos de alumínio.

Os cientistas puderam observar uma interessante vantagem de se usar esse novo suporte. Durante a calcinação, forma-se, na superfície do alumínio, uma fina camada de óxido de alumínio que encapsula as nanopartículas e impede que elas se aglomerem ou espalhem. Além disso, na etapa seguinte do processo, o óxido de alumínio atua como matriz dos nanotubos, conduzindo seu crescimento na forma de feixes alinhados.

Para testar se a temperatura de calcinação das nanopartículas influiria em seu desempenho como catalisadoras, a equipe do CTNano fez alguns experimentos. A conclusão foi que a calcinação a temperaturas de 500 a 550 °C produz mais nanopartículas de óxido misto (contendo tanto ferro quanto cobalto, de fórmula CoFe2O4) e gera melhores resultados na produção de nanotubos, tanto do ponto de vista quantitativo (rendimento) quanto qualitativo (diâmetro dos nanotubos).

“Ao contrário de outros métodos descritos na literatura que geralmente apresentam baixo rendimento e que dependem de técnicas relativamente caras (evaporação, sputtering) para confecção do catalisador, descrevemos neste artigo um método simples para produzir um catalisador em forma de pó, que pode ser utilizado para produção contínua de nanotubos de poucas paredes através da técnica de deposição química de vapor (CVD)”, resume Thiago da Cunha.

CTNnano

O trabalho recebeu financiamento da fundação mineira de apoio à pesquisa (Fapemig), da agência federal CNPq e da empresa Petrobrás. O trabalho foi realizado no CTNano, com exceção das imagens de microscopia, feitas no Centro de Microscopia da UFMG.

O CTNano surgiu em 2010 a partir da motivação para desenvolver produtos, processos e serviços utilizando nanotubos de carbono e grafeno, com o objetivo de suprir demandas industriais em consonância com a formação de recursos humanos qualificados. As pesquisas desenvolvidas no CTNano já originaram 26 patentes e contribuíram para a formação de mais de 200 pesquisadores na área. De acordo com Thiago da Cunha, o CTNano inaugurará, ainda em 2018, sua sede própria com aproximadamente 3.000 m² de área, localizada no Parque Tecnológico de Belo Horizonte (BH-TEC).

image description
Autores do paper, ligados à UFMG, com exceção de Viviany Geraldo, que é docente da Universidade Federal de Itajubá (UNIFEI).

 

Artigo em destaque: Linha de algodão condutora para costurar eletrônicos vestíveis.

O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. Ravi M. A. P. Lima, Jose Jarib Alcaraz-Espinoza , Fernando A. G. da Silva, Jr., and Helinando P. de Oliveira. ACS Appl. Mater. Interfaces, 2018, 10 (16), pp 13783–13795. DOI: 10.1021/acsami.8b04695

Linha de algodão condutora para costurar eletrônicos vestíveis

Esta imagem de microscopia eletrônica de varredura (MEV) amplifica uma das “linhas eletrônicas” desenvolvidas neste trabalho, composta por algodão revestido com nanotubos de carbono e com polipirrol obtido por polimerização interfacial.
Esta imagem de microscopia eletrônica de varredura (MEV) amplifica uma das linhas condutoras desenvolvidas neste trabalho.

A “velha conhecida” linha de costura, universalmente usada, por exemplo, para pregar botões, foi recentemente transformada por uma equipe científica brasileira em um material condutor de eletricidade e multifuncional. De fato, os usos desta nova linha de costurar vão muito além da costura. Ela funciona muito bem como mini aquecedor elétrico, como componente de supercapacitores (dispositivos que armazenam e liberam energia, similares às baterias) e como agente bactericida. Além disso, a linha é flexível e confortável ao toque, e conserva suas propriedades eletrônicas mesmo depois de lavada, torcida, enrolada ou dobrada repetidas vezes.

Com essas características, a fibra pode cumprir um papel importante na eletrônica vestível –  o conjunto de dispositivos eletrônicos planejados para serem usados sobre o corpo humano, incorporados a roupas ou acessórios.

“Como a linha é um elemento básico para a concepção de têxteis, imaginamos que qualquer produto vestível possa fazer uso desta tecnologia”, diz Helinando Pequeno de Oliveira, professor da Universidade Federal do Vale de São Francisco (Univasf) e líder da equipe científica que desenvolveu a linha condutora e bactericida. Junto a outros três autores, todos ligados à Univasf, Oliveira assina um artigo sobre o assunto, que foi recentemente publicado no periódico científico ACS Applied Materials and Interfaces (fator de impacto= 7,504).

A fibra condutora e bactericida de Oliveira e seus colaboradores é feita de um material compósito, formado por linhas de algodão de 0,5 mm de diâmetro, revestidas com nanotubos de carbono e polipirrol. O material resultante apresenta, além de alta condutividade elétrica, boa atividade eletroquímica – característica necessária para que possa ser usado em supercapacitores.

Para fabricar a fibra condutora, a equipe da Univasf desenvolveu um processo bastante simples, formado por duas etapas principais. Na primeira etapa, pedaços de linha de algodão são submergidos em uma tinta de nanotubos de carbono quimicamente modificados de modo a aumentar sua interação com o algodão. Como resultado, a linha fica revestida por uma rede contínua de nanotubos interconectados.

A segunda etapa é destinada a revestir as fibras com um segundo material: o polipirrol. Para isso, inicialmente, prepara-se uma solução formada pelo composto pirrol e o solvente hexano, na qual se submergem as fibras revestidas com nanotubos. Em seguida, verte-se, em cima desta preparação, uma outra solução, formada por água e alguns compostos que acabarão se incorporando em quantidades muito pequenas à composição química do polipirrol num processo chamado “dopagem” do material. Na interface entre ambas as soluções, as quais não se misturam, ocorre então a união das pequenas moléculas de pirrol, resultando na formação de macromoléculas de polipirrol que se depositam na superfície das fibras. Este processo, no qual um polímero se forma na interface entre duas soluções, é chamado de “polimerização interfacial”. “Dado o bom nível de dopagem do polipirrol (otimizado para esta síntese) e a sua forte interação com os nanotubos funcionalizados, as fibras resultantes apresentam ótimas propriedades elétricas”, diz o professor Oliveira.

A equipe científica também produziu algumas variantes dessa linha de costurar condutora. Por exemplo, uma fibra sem nanotubos de carbono e outra fibra cujo revestimento de polipirrol foi produzido por meio de uma polimerização não interfacial. Entretanto, as linhas com nanotubos de carbono e polimerização interfacial mostraram o melhor desempenho elétrico e eletroquímico.

Aquecedores e supercapacitores em fibras de algodão

Primeira e segunda geração de protótipos do supercapacitor baseado nas linhas de costurar condutoras.
Primeira e segunda geração de protótipos do supercapacitor baseado nas linhas de costurar condutoras.

“A alta condutividade elétrica (em conjunto com a boa porosidade do material) fez do material um ótimo protótipo para aplicação em eletrodos de supercapacitores”, diz Oliveira. “Estas propriedades também viabilizaram o seu uso como aquecedor elétrico com tensões de operação bem baixas (da ordem de poucos volts). Junto a estas aplicações, se soma o potencial antibacteriano da matriz”, completa.

Além de testarem o desempenho da fibra condutora e bactericida de forma isolada no laboratório, Oliveira e seus colaboradores desenvolveram uma prova de conceito. “Usamos uma agulha para costurar a linha em uma luva”, conta o professor. “Com isso poderíamos monitorar a temperatura que a mão, vestindo esta luva, atingiria quando conectássemos o dispositivo a uma fonte de alimentação”, explica.

O sistema de aquecimento testado na luva pode ser adaptado a diversos contextos, como por exemplo uma versão ambulatória da termoterapia (aquecimento terapêutico de regiões do corpo, que é frequentemente utilizado em sessões de fisioterapia), com a vantagem adicional da ação antibacteriana. Essa propriedade é particularmente interessante em materiais que são usados em contato com a pele, já que, dessa maneira, evitam doenças e odores. No caso do polipirrol, a ação ocorre quando o material atrai eletrostaticamente as bactérias e promove o rompimento de sua parede celular, inibindo a sua proliferação.

Aquecimento local (em graus centígrados) proporcionado pela linha condutora costurada ao dedo indicador da luva, depois de aplicar uma tensão elétrica de 12 V.
Aquecimento local (em graus centígrados) proporcionado pela linha condutora costurada ao dedo indicador da luva, depois de aplicar uma tensão elétrica de 12 V.

Um possível produto vestível baseado na linha de costurar condutora é um casaco térmico. Ele poderia ser alimentado por meio de uma célula solar incorporada ao casaco, ou por meio de dispositivos triboelétricos, que colheriam a energia gerada pelo movimento do usuário do casaco. A energia resultante seria armazenada em um supercapacitor feito com a fibra condutora. Costurado ao casaco, o supercapacitor forneceria eletricidade ao aquecedor quando necessário.

Mais um exemplo é o da camiseta armazenadora de energia, na qual o grupo do professor Oliveira está trabalhando atualmente com o objetivo de gerar um produto comercializável. “No momento estamos otimizando a confecção de supercapacitores em peças de tecidos à base de algodão e lycra, como forma a conectá-los diretamente a geradores de energia portáteis, viabilizando assim o desenvolvimento de camisetas armazenadoras de energia”, revela Oliveira.

Ciência e tecnologia desenvolvida no sertão nordestino

O trabalho reportado no artigo da ACS Appl. Mater. Interfaces e seus desdobramentos foram totalmente realizados no Instituto de Pesquisa em Ciência dos Materiais da Univasf, no campus do município de Juazeiro, localizado ao norte do estado da Bahia.  A Univasf, que possui seis campi distribuídos no interior dos estados da Bahia, Pernambuco e Piauí, foi criada em 2002 e inaugurada em 2004. No mesmo ano, Oliveira tornou-se professor da instituição.

O desenvolvimento das linhas de algodão condutoras nasceu de uma linha de pesquisa sobre eletrônicos e dispositivos flexíveis, criada em 2016. Em 2017, a ideia virou tema do trabalho de mestrado de Ravi Moreno Araujo Pinheiro Lima, com orientação do professor Helinando Oliveira, dentro do Programa de Pós-Graduação em Ciência dos Materiais na Univasf – Juazeiro, criado em 2007. O pós-doc José Jarib Alcaraz Espinoza, que estava otimizando sínteses de polímeros condutores para supercapacitores, adaptou uma metodologia à polimerização interfacial em algodão. Com isso, os pesquisadores perceberam que as linhas condutoras funcionavam como bons eletrodos de supercapacitores, e fabricaram esses dispositivos. Ao mesmo tempo, com a colaboração de Fernando da Silva Junior, doutorando do programa de pós-graduação institucional Rede Nordeste de Biotecnologia, a equipe testou a ação do material contra a bactéria Staphylococcus aureus, responsável por uma série de infecções de diversos graus de gravidade no ser humano.

“Estes resultados refletem o investimento do Brasil na interiorização de sua rede de instituições federais de ensino e pesquisa. Com isso, a migração do sertanejo rumo às grandes capitais na busca por conhecimento vem sendo reduzida. Agora há também mais ciência sendo produzida no sertão nordestino”, afirma o professor Oliveira. “No entanto, os recentes cortes em C&T têm lançado uma enorme nuvem de incerteza sobre o futuro da ciência no país (e em particular sobre estas jovens instituições). O governo brasileiro não tem o direito de jogar tantos sonhos no lixo. A ciência precisa superar mais esta crise”, completa o pesquisador.

Foto do grupo de pesquisa liderado pelo professor Oliveira no Instituto de Pesquisa em Ciência de Materiais. À direita, em azul, os autores do artigo.
Foto do grupo de pesquisa liderado pelo professor Oliveira no Instituto de Pesquisa em Ciência de Materiais. À direita, em azul, os autores do artigo.

Pós-doutorado em Polímeros no Centro de Tecnologia em Nanomateriais (CTNano).

Centro de Tecnologia em Nanomateriais – CTNano está selecionando 1 (um) pesquisador(a) em nível de Pós-Doutorado para atuar na frente de pesquisa em Polímeros. O(a) candidato(a) deve ter título de Doutor(a) em uma das seguintes áreas: Química / Engenharia Química / Física / Engenharia de Materiais;

Espera-se que o(a) candidato(a) tenha experiência em processamento/caracterização de termoplásticos e plásticos de engenharia (especialmente UHMWPE). É desejável conhecimento/experiência na operação de misturador interno (HAAKE). Também se espera que o(a) candidato(a) tenha dedicação exclusiva ao projeto e facilidade para trabalho em equipe interdisciplinar.

O(a) candidato(a) selecionado(a) atuará no desenvolvimento de nanocompósitos poliméricos aditivados com nanomateriais (grafeno, óxido de grafeno, nanotubos de carbono ou outros) para aplicações em sistemas de transporte de minérios. O plano de trabalho está inserido em um projeto de pesquisa com empresa da área de mineração.

O CTNano é referência nacional no desenvolvimento de aplicações utilizando nanomateriais de carbono em compósitos poliméricos, cimentícios, sensores e síntese de nanomateriais. Além disso, o CTNano dispõe de infraestrutura completa para a caracterização físico-química dos nanomateriais e nanocompósitos produzidos. Maiores informações sobre o Centro podem ser obtidas em: www.ctnano.com.br. O Centro está localizado no Parque Tecnológico de Belo Horizonte (BHTec), na cidade de Belo Horizonte – MG, e é uma iniciativa dos Departamentos de Física, Química, Microbiologia e da Escola de Engenharia da Universidade Federal de Minas Gerais.

A seleção será feita através da análise eliminatória dos CVs dos(as) candidatos(as). Os(as) aprovados(as) nesta etapa serão chamados(as) para entrevista. Interessados(as) devem enviar CV para: contato@ctnano.com.br com o assunto: “POSDOC Polímeros” até 01/05/2018. Os(as) selecionados(as) serão avisados(as), por email, de sua convocação para entrevista até 15/05/2018.

Entrevista com Pulickel Ajayan (professor da Rice University, EUA).

PulickelAjayan2Apesar de todo o conhecimento sobre nanotecnologia gerado nas últimas décadas, aplicar nanomateriais em produtos comerciais ainda pode ser uma tarefa difícil. No XVI Encontro da SBPMat, o professor Pulickel Ajayan, uma das referências mundiais em nanomateriais e nanoestruturas, vai lançar luz sobre esse problema.

Na palestra plenária que proferirá em Gramado na manhã de 14 de setembro, Ajayan discorrerá sobre alguns desafios inerentes à aplicação de nanomateriais (particularmente, os de duas dimensões) em sistemas e dispositivos, abordando questões relativas à síntese, caracterização e modificação desses materiais.

De fato, desde o início de sua carreira científica, Ajayan tem se destacado no desenvolvimento de nanomateriais com diversas funcionalidades, aplicáveis a segmentos como, por exemplo, o de armazenamento e conversão de energia, catálise, eletrônica de baixo consumo, nanomedicina e preservação do meio ambiente. Entre suas contribuições mais famosas, desenvolvidas junto à sua equipe e colaboradores, estão os nanotubos de carbono recheados com material fundido que funcionam como moldes de nanofios (1993); a nanoescova de nanotubos de carbono, destacada pelo Guinness World Records como a menor do mundo (2005); a bateria de papel, feita de celulose e nanotubos (2007); o tapete de nanotubos ultra escuro, que reflete apenas 0,045% de luz (2008); a esponja de nanotubos reutilizável capaz de absorver óleo disperso em águas (2012).

Professor e diretor do Departamento de Ciência de Materiais e Nanoengenharia da Rice University (EUA), Pulickel Madhavapanicker Ajayan é dono de excepcionais indicadores de produção científica (índice h de 144 e mais de 95 mil citações segundo o Google Scholar), construídos ao longo de 30 anos de pesquisa.

Pulickel Ajayan nasceu em 1962 na Índia, numa pequena cidade do estado de Kerala, localizado ao sul do país. Ali cursou o ensino primário. Realizou os estudos secundários na capital do estado, numa escola que despertou seu entusiasmo por aprender, sua curiosidade e seu interesse em ciência.

Em 1985, Ajayan formou-se em Engenharia Metalúrgica na Banaras Hindu University (BHU), localizada no nordeste da Índia e, em seguida, foi fazer um doutorado em Ciência e Engenharia de Materiais na Northwestern University (EUA). Nesse momento, começou a incursionar na nanotecnologia. Em 1989, defendeu sua tese sobre partículas de ouro muito pequenas que, alguns anos mais tarde, começariam a ser chamadas de “nanopartículas”.

Em 1990, mudou-se para o Japão para fazer um estágio de pós-doutorado no Laboratório de Pesquisa Fundamental da NEC Corporation, onde permaneceu até 1993 no grupo responsável por uma série de estudos seminais sobre os nanotubos de carbono – inclusive a própria “descoberta” desses nanomateriais, atribuída a Sumio Iijima em 1991. Durante seu pós-doc, Ajayan obteve importantes resultados sobre a síntese de nanotubos em grande escala e sobre o enchimento de nanotubos com outros materiais.

Do Japão, foi para a França, onde atuou como pesquisador do Laboratório de Física dos Sólidos da Université Paris-Sud durante dois anos e, em seguida, para a Alemanha, onde trabalhou durante um ano e meio no Max-Planck-Institut für Metallforschung. Em 1997, mudou-se aos Estados Unidos ao se tornar professor assistente do Rensselaer Polytechnic Institute (RPI), a mais antiga universidade de pesquisa tecnológica do país, localizada no estado de Nova Yorque. No RPI, ocupou a cadeira Henri Burlage de Engenharia e trabalhou no grupo de pesquisa em nanotecnologia.

Em 2007, saiu do RPI e uniu-se ao corpo docente do Departamento de Engenharia Mecânica e Ciência de Materiais da Rice University, ocupando a cadeira Benjamin M. and Mary Greenwood Anderson de Engenharia. Em 2014, assumiu também a coordenação do recém-criado Departamento de Ciência de Materiais e Nanoengenharia.

Atualmente, além de lecionar e liderar um grupo de pesquisa de cerca de 40 membros na Rice University, Ajayan viaja muito, seja para dividir seus conhecimentos sobre nanotecnologia (já proferiu mais de 350 palestras a convite e é professor convidado em universidades da China, Índia e Japão), quer para cuidar de suas colaborações científicas. Além disso, Ajayan tem atuado em conselhos de diversos periódicos de Materiais e Nanotecnologia, de startups e de conferências internacionais.

O cientista recebeu importantes prêmios de diversas entidades como a Royal Society of Chemistry (Reino Unido), Alexander von Humboldt Foundation (Alemanha), Materials Research Society (EUA), Microscopic Society of America (EUA) e a famosa revista de divulgação científica Scientific American, bem como distinções de numerosas universidades do mundo, inclusive o doutorado honoris causa pela Université Catholique de Louvain (Bélgica). É membro eleito da Royal Society of Chemistry (Reino Unido), American Association for the Advancement of Science (AAAS), as academias nacionais de ciências da Índia e México, entre outras sociedades científicas.

Segue uma breve entrevista com o cientista

Boletim da SBPMat: – Gostaríamos que você escolhesse algumas de suas contribuições à nanotecnologia, a descrevesse brevemente e compartilhasse a referência do artigo em que foi publicada. Por favor, escolha aquela que você considera que causou ou causará mais impacto na sociedade e aquela que lhe deu mais satisfação pessoal.

Pulickel Ajayan: – Várias de nossas descobertas têm impacto comercial e social. Nas últimas duas décadas, alguns dos destaques da pesquisa do nosso laboratório foram arranjos de nanotubos de carbono como absorventes de luz extremos (para termofotovoltaica), arranjos de nanotubos como fitas de gecko, fibras de nanotubos de carbono de alta condutividade, membranas de óxido de grafeno para filtração de água, nanomateriais de carbono para armazenamento de energia, nanocompósitos de polímeros leves, desenvolvimento de materiais bidimensionais para eletrônicos e sensores, pontos quânticos baseados em carbono para catálise, por exemplo, redução de CO2 etc.

Um dos trabalhos mais emocionantes para mim foi relacionado à conversão de cebolas de carbono em nanopartículas de diamante por irradiação de elétrons. Este trabalho foi feito em colaboração com o Prof. Florian Banhart, quando visitei como pós-doc o Max Planck Intitute for Metallforschung, em Stuttgart, em meados da década de 90. Este trabalho publicado na revista Nature mostrou a observação direta da transição do grafite à fase de diamante sem aplicação de nenhuma pressão externa.

Boletim da SBPMat: – Alguma de suas contribuições já foi transferida a um produto comercial? Comente brevemente.

Pulickel Ajayan: – Duas empresas startup (Paper Battery Co. e Big Delta Systems) saíram do nosso trabalho; ambas envolvem tecnologias não convencionais de armazenamento de energia.

Boletim da SBPMat: – Deixe um convite para sua palestra plenária.

Pulickel Ajayan: – A nanotecnologia é uma abordagem de mudança de paradigma sobre como vamos construir materiais do futuro. Está no cerne da fabricação de baixo para cima (bottom-up) e afetará várias áreas das tecnologias futuras. Nosso trabalho nas últimas duas décadas tem se concentrado na criação de materiais nanoestruturados com vários tipos de blocos de construção em nanoescala.

 

Mais Informações

No site da reunião do XVI B-MRS, clique na foto de Pulickel Ajayan e veja seu mini CV e o resumo de sua palestra plenária:http://sbpmat.org.br/16encontro/home/

Artigo em destaque: Nanotubos que se espiralam ao som de tango ou chorinho.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Defect-Free Carbon Nanotube Coils. Nitzan Shadmi, Anna Kremen, Yiftach Frenkel, Zachary J. Lapin, Leonardo D. Machado, Sergio B. Legoas, Ora Bitton, Katya Rechav, Ronit Popovitz-Biro, Douglas S. Galvão, Ado Jorio, Lukas Novotny, Beena Kalisky, and Ernesto Joselevich. Nano Lett., 2016, 16 (4), pp 2152–2158. DOI: 10.1021/acs.nanolett.5b03417.

Nanotubos que se espiralam ao som de tango ou chorinho

Entre as numerosas aplicações que se vislumbram para os nanotubos de carbono, constam alguns dispositivos nanoeletrônicos que aproveitariam a excelente capacidade de conduzir a eletricidade que os diminutos tubos de grafeno podem apresentar. Para que os nanotubos tenham um bom desempenho em algumas aplicações desse tipo, um dos formatos mais adequados seria o espiralado, formado por um nanotubo único, com suas duas pontas livres de modo a poder fazer contato com outros componentes dentro de um dispositivo. Além disso, para não perder condutividade, a bobina de nanotubo deveria apresentar baixa densidade de defeitos estruturais.

Contudo, na prática, conseguir que tubinhos de 1 nm de diâmetro se enrolem em espirais sem gerar imperfeições e deixando suas pontinhas separadas do feixe não é tarefa simples para o ser humano.

Capa da Nano Letters. Representação de uma espiral formada por um único nanotubo de carbono enrolado. Acima à direita, a inserção destaca, por meio de uma imagem de microscopia eletrônica de varredura, o corte transversal de uma espiral real obtida pela equipe de cientistas.

Num artigo publicado na prestigiada revista Nano Letters, destacado na capa da edição de abril deste ano, uma equipe de 14 cientistas reportou a formação de espirais de nanotubos, sem defeitos e com pontas livres, a partir de um mecanismo de enrolamento espontâneo de nanotubos de carbono de parede única. O trabalho foi liderado por pesquisadores do Weizmann Institute of Science (Israel) e contou com participação de quatro cientistas de universidades brasileiras (Unicamp, UFMG e Universidade Federal de Roraima), do ETH Zürich (Suíça) e da israelense Bar-Ilan University.

A equipe dispôs nanopartículas de ferro sobre substratos de dióxido de silício e acrescentou um gás contendo carbono – uma combinação conhecida por promover o crescimento de longos nanotubos de parede única, que podem chegar a mais de 100 micrometros de altura. Os nanotubos crescem como árvores, de forma perpendicular ao substrato.

Nessas condições, os cientistas geraram uma série de nanotubos de carbono nas amostras, sendo que alguns deles se apresentaram espontaneamente em formato de espiral. Os autores analisaram as espirais de nanotubos por meio de microscopia eletrônica de varredura e de transmissão e de microscopia de força atômica, obtendo informações como o diâmetro, altura e quantidade de voltas das espirais. Usando a técnica de espectroscopia Raman, os autores continuaram investigando as espirais de nanotubos e concluíram que a concentração de defeitos estruturais era muito baixa e que o diâmetro e quiralidade dos nanotubos eram os mesmos ao longo de toda a espiral. As análises por Raman foram parcialmente realizadas na Universidade Federal de Minas Gerais (UFMG) pelo professor Ado Jorio.

Para compreender o mecanismo de formação das espirais, a equipe apelou para simulações atomísticas de dinâmica molecular, que estudam os movimentos físicos de átomos e moléculas. Essas simulações foram dirigidas pelo professor Douglas Soares Galvão (Instituto de Física Gleb Wataghin- Unicamp) e realizadas pelo pós-doc Leonardo Dantas Machado, ex-orientando de Galvão, e pelo professor Sergio Benites Legoas (Universidade Federal de Roraima), ex-bolsista de pós-doutorado do grupo de Galvão. No IFGW – Unicamp, Douglas Galvão coordena um grupo de pesquisa especializado em simulação e modelagem computacional de propriedades de nanoestruturas, em especial envolvendo nanofios e nanotubos, que colabora frequentemente com grupos experimentais de diversos países. Por meio das simulações, o grupo consegue estudar, compreender e prever fenômenos que às vezes não conseguem ser diretamente visualizados ou experimentalmente acessados na escala de tempo em que ocorrem.

Em grandes linhas, as simulações realizadas mostraram que, depois de crescerem verticalmente, os nanotubos que tinham formado espirais começaram a se depositar de baixo para cima sobre o substrato formando uma primeira volta, como resultado da sua interação com o fluxo de gás de carbono e com o substrato. Depois desse passo inicial, os nanotubos continuaram a se depositar em formato de espiral, espontaneamente e com constância, completando até 74 voltas.

A equipe também investigou o desempenho das espirais como indutores (dispositivos espiralados ao longo dos quais passa corrente elétrica, gerando um campo magnético, também conhecidos como bobinas eletromagnéticas) – uma aplicação dos nanotubos que não tinha sido estudada até esse momento. As espirais de nanotubos do artigo da Nano Letters demonstraram que, apesar de altamente condutoras, não estão prontas ainda para serem usadas como indutores eficientes. Contudo, por meio da análise de seu comportamento elétrico e magnético, o artigo trouxe valiosas e novas informações que podem ser utilizadas no desenvolvimento de dispositivos indutores a partir de nanotubos.

Capa da Physical Review Letters destacou em 2013 outro artigo da equipe internacional de cientistas, liderada na ocasião por Galvão, sobre serpentinas de nanotubos de carbono.

De acordo com o professor Galvão, o trabalho publicado na Nano Letters é uma continuação de um projeto anterior sobre serpentinas de carbono, que envolveu seu grupo, o grupo de Israel, liderado por Ernesto Joselevich, e o professor Ado Jorio (UFMG). Esse primeiro trabalho também gerou um artigo destacado na capa de uma prestigiada revista, no caso, a Physical Review Letters (Dynamics of the Formation of Carbon Nanotube Serpentines, L. D. Machado, S. B. Legoas, J. S. Soares, N. Shadmi, A. Jorio, E. Joselevich, and D. S. Galvão, Phys. Rev. Lett. 110, 105502 – Published 8 March 2013).

A história da colaboração entre os brasileiros e o grupo de Israel, conta Galvão, começou em uma conferência na Espanha, na qual o brasileiro assistiu a uma apresentação de Joselevich sobre os nanotubos de carbono com formato de serpentina. “Eu achei o problema muito interessante”, diz Galvão. Por coincidência, os dois cientistas se encontraram novamente num evento brasileiro de física da matéria condensada e almoçaram juntos na companhia de Ado Jorio. Ali nasceu a colaboração. “Do ponto de vista de simulação, era um projeto bastante desafiador e difícil (além da necessidade de desenvolver novos protocolos especificamente para o problema, as simulações envolveram milhões de átomos), mas o Leonardo e o Legoas conseguiram resolver”, relata Galvão.

Além de consistentes do ponto de vista científico, as simulações ficaram interessantes do ponto de vista estético. A esse respeito, o professor Galvão compartilha uma anedota. “O Joselevich, que é argentino de nascimento, conhece bem o Brasil e a cultura brasileira. A primeira vez que ele viu as simulações das serpentinas, ele disse que se lembrou da música “Brasileirinho”. Nós fizemos umas versões dos vídeos incorporando o Brasileirinho como trilha musical e, em homenagem a ele, dentro da rivalidade Brasil-Argentina, outras com tangos. O Brasileirinho, ganha, claro”, brinca o professor.

Dois vídeos de nanotubos dançando e formando espirais podem ser acessados sem custo nas informações de apoio (supporting info) publicadas junto ao paper da Nano Lettershttp://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03417

Gente da comunidade: entrevista com Ado Jorio de Vasconcelos, que proferirá palestra plenária no XV Encontro da SBPMat.

Há 16 anos, nos Estados Unidos, o físico brasileiro Ado Jorio de Vasconcelos, em estágio de pós-doutorado no Massachusetts Institute of Technology (MIT) no grupo da professora Mildred Dresselhaus, encabeçava um trabalho que geraria o primeiro resultado bem-sucedido da aplicação da Óptica, mais precisamente da espectroscopia Raman, na caracterização individual de nanotubos de carbono – cujas paredes, vale lembrar, têm apenas 1 átomo de espessura e cujo diâmetro costuma ser de 1 nanometro. Uma olhada no site do MIT, na página da professora Mildred, que vem estudando nanoestruturas de carbono no MIT há mais de 50 anos, reforça a relevância do trabalho realizado junto ao brasileiro: 5 das 6 publicações selecionadas pela professora emérita têm coautoria dele.

Quando começou o pós-doc, Ado Jorio tinha 28 anos de idade e acabava de obter o diploma de doutor em Física pela Universidade Federal de Minas Gerais (UFMG), com uma tese sobre transições de fase em sistemas incomensuráveis, realizada com orientação do professor Marcos Assunção Pimenta. Antes disso, graduara-se em Física, também pela UFMG, depois de cursar 3 anos de Engenharia Elétrica.

Finalizado o pós-doutorado no MIT, Jorio voltou à UFMG ao ser aprovado em concurso público, tornando-se professor adjunto da universidade em 2002. De 2007 a 2009 ocupou um cargo no Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro) para realizar atividades relacionadas ao desenvolvimento da nanometrologia. Em 2010, tornou-se professor titular da UFMG e, no mesmo ano, assumiu, até 2012, a direção da Coordenadoria de Transferência e Inovação Tecnológica da universidade. Em 2013, esteve no ETH Zurich (Suíça) como professor visitante, realizando atividades docentes e de pesquisa. Em agosto deste ano, assumiu a direção da Pró-Reitoria de Pesquisa da UFMG.

Desde 2002, Jorio vem ampliando o tema de seu trabalho de pós-doutorado. O cientista mineiro tem realizado pesquisa em Óptica e desenvolvimento de instrumentação científica, visando ao estudo de nanoestruturas de carbono com aplicações muito diversas. Um exemplo dessa diversidade é um trabalho do qual Jorio participa, no qual técnicas do campo da Nanotecnologia são utilizadas para compreender detalhes da composição da “terra preta de índio”, um solo de altíssima fertilidade e capacidade de sequestrar carbono, encontrado em locais antigamente habitados por índios na Amazônia brasileira.

Atualmente, Jorio é dono de um dos índices H mais altos entre os cientistas do Brasil: 74, segundo o Google Scholar. Ele é também um dos pesquisadores mais citados no mundo, como atesta a inclusão de seu nome na mais recente lista internacional da Thomson Reuters, que destacou, dentre todos os artigos científicos indexados entre 2003 e 2013, o 1% de papers mais citados em cada área do conhecimento. Jorio é autor de mais de 180 artigos científicos e de 20 livros ou capítulos de livros, além de 8 pedidos de patente. De acordo com o Google Scholar, suas publicações reúnem mais de 30 mil citações.

Suas contribuições receberam uma série de reconhecimentos de prestigiadas entidades, como o Somiya Award da International Union of Materials Research Societies em 2009; o ICTP Prize do Abdus Salam International Centre for Theoretical Physics em 2011, e o Georg Forster Research Award da Humboldt Foundation em 2015, entre muitas outras distinções nacionais e internacionais.

No XV Encontro da SBPMat, Ado Jorio proferirá uma palestra plenária sobre um tema no qual é um dos principais especialistas do mundo, o uso de espectroscopia Raman para o estudo de nanoestruturas de carbono. O cientista brasileiro falará sobre a evolução que a técnica experimentou até chegar na escala nano. E promete revelar alguns truques que possibilitam o uso da luz, cujo comprimento de onda é de, no mínimo, centenas de nanometros, como sonda para investigar estruturas de apenas alguns nanometros.

Veja nossa entrevista com este membro da comunidade brasileira de pesquisa em Materiais e plenarista do nosso evento anual.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar na área de Materiais.

Ado Jorio: – O caminho foi tortuoso! Entrei na universidade para cursar engenharia elétrica. Na época tocava em uma banda de rock progressivo, e procurei iniciação científica na área de música. Fui orientado a conversar com um professor do departamento de física, que gostava de música, estudava acústica e materiais. Aí começou minha trajetória, que acabou na ciência dos materiais.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais.

Ado Jorio: – Diria que são duas principais. A primeira, na área de nanotubos de carbono, demonstrei que a óptica poderia ser levada ao nível de nanotubos isolados. Isso abriu um campo de pesquisas muito amplo, porque os nanotubos podem ser de vários tipos, dependendo do seu diâmetro e quiralidade. Antes deste trabalho, as pessoas estudavam nanotubos. Após este trabalho, as pessoas passaram a estudar tipos específicos de nanotubos. Seria equivalente a dizer que pesquisadores estudavam o átomo, e se deram conta de que existem diversos tipos de átomos. O artigo que foi marco desta descoberta foi o [PRL86, 1118 (2001)]. A segunda contribuição foi o avanço da óptica para o estudo de nanoestruturas de carbono, de forma mais ampla. Trabalhei em diversas frentes, desde a instrumentação científica, para medidas ópticas abaixo do limite de difração, até o estudo e caracterização de defeitos, abordagem de materiais de interesse em ciências do solo, biotecnologia, biomedicina. Algumas referências importantes são os livros “Raman Spectroscopy in Graphene Related Systems” e “Bioengineering Applications of Carbon Nanostructures”.

Boletim da SBPMat: –  Sempre convidamos os entrevistados desta seção do boletim a deixarem uma mensagem para os leitores que estão iniciando suas carreiras científicas. Muitos desses leitores provavelmente almejam conseguir um dia um índice H como o seu. O que você diria a eles?

Ado Jorio: – Faça um grande esforço para participar de conferências, e faça excelentes apresentações, sempre! A ciência é um debate e você tem que ser ouvido. Nunca repita uma mesma apresentação. Cada público pede um foco. É certo que este conselho depende de financiamento, mas desde o início da minha carreira, sempre gastei dinheiro do meu salário financiando minhas viagens, e ainda faço isso.

Boletim da SBPMat: – Deixe uma mensagem ou convite para sua palestra plenária aos leitores que participarão do XV Encontro da SBPMat.

Ado Jorio: – Depois de tudo o que foi dito acima, e considerando que título e resumo estarão disponíveis, só me resta já deixar aqui, de prontidão, meu agradecimento àqueles que me prestigiarem com sua presença. Será uma honra ter os colegas no auditório.

————–

Link para o resumo da plenária de Ado Jorio, intitulada “Innelastic light scattering in carbon nanostructures: from the micro to the nanoscale”: http://sbpmat.org.br/15encontro/speakers/abstracts/7.pdf

Artigo em destaque: Delivery de genes com nanomateriais funcionalizados.

Artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Functionalized nanomaterials: are they effective to perform gene delivery to difficult-to-transfect cells with no cytotoxicity? Tonelli, F.M.P. ; Lacerda, S. M. S. N.; Paiva, N. C. O.; Pacheco, F. G.; Scalzo Junior, S. R. A.; de Macedo, F. H. P.; Cruz, J. S.; Pinto, M. C. X.; Correa Junior, J. D.; Ladeira, L. O.; França, L. R.; Guatimosim, S.; Resende, R. R. Nanoscale, 2015,7, 18036-18043. DOI: 10.1039/C5NR04173B.

Delivery de genes com nanomateriais funcionalizados

Nanomateriais podem ser úteis em processos nos quais o ser humano introduz genes (segmentos de DNA) de maneira controlada em determinadas células. Esses processos são chamados de transfecções, e podem ter como objetivo a cura de uma doença provocada pela falta de um gene (terapia génica) ou a obtenção de organismos transgênicos, citando apenas alguns exemplos.

Em um estudo realizado no Brasil por uma equipe multidisciplinar, foi testada a eficiência de diversos nanomateriais para entregar genes a diferentes tipos de células de camundongos e de humanos, todas consideradas de difícil transfecção.

Resultados do trabalho foram recentemente publicados em forma de communication no periódico científico Nanoscale e foram objeto de pedidos de patente sobre usos afins submetidos ao INPI.

A pesquisa, que foi realizada em apenas 6 meses, contando desde o delineamento do projeto até a submissão do artigo, envolveu o trabalho de 13 cientistas da Universidade Federal de Minas Gerais (UFMG), que estavam organizados numa rede de pesquisa em Nanobiotecnologia iniciada em parceria com a FAPEMIG. “A multidisciplinaridade do grupo foi essencial para a realização do trabalho em curto intervalo de tempo e de maneira a ser aceito para publicação na Nanoscale”, conta Rodrigo Resende, professor do Departamento de Bioquímica e Imunologia da UFMG e autor correspondente do artigo publicado na Nanoscale.

Painel de fotos dos autores do artigo. Da esquerda para a direita e de cima para baixo: Fernanda Tonelli, Nicole Paiva, Mauro Xavier, Rodrigo Resende, Samyra Nassif, Luiz França, Sérgio Scalzo, Silvia Guatimosim, Flávia Pacheco, Luiz Ladeira, José Dias, Jader Cruz.

 A ideia que deu origem à pesquisa surgiu a partir da dissertação de Fernanda Maria Policarpo Tonelli, desenvolvida com orientação de Resende para a obtenção do diploma de mestre em Bioquímica e Imunologia. “O trabalho envolveu espermatogônias-tronco de tilápias (cultura primária), que são células de difícil transfecção”, relata o professor. “Ao tentar entregar genes de interesse a estas células, percebeu-se que esta era tarefa árdua”, conta. Quando a estudante conferiu que o uso de nanotubos de carbono de paredes múltiplas funcionalizados facilitou o processo, surgiu a ideia de verificar sistematicamente a capacidade de uma série de nanomateriais funcionalizados para entregar genes a células de difícil transfecção.

De fato, nanomateriais são interessantes candidatos a veículos de entrega de genes, não apenas pela variedade de tamanhos, formatos e propriedades que podem ser obtidos por meio da funcionalização e dos diversos métodos de síntese, mas também por oferecerem alta proteção ao gene que devem entregar. “Previnem a degradação do ácido nucleico durante o tráfego extra e intracelular”, diz Resende. “Além disso, dentre os nanomateriais, os nanobastões de ouro oferecem ainda uma característica muito útil ao gene delivery: a possibilidade de liberação fototérmica; ou seja, a liberação de genes pode ser induzida com incidência de luz no comprimento de onda correto sobre o nanocomplexo”, completa o professor.

Para realizar a pesquisa experimental que originou o artigo da Nanoscale, Resende e seus colaboradores procederam à fabricação de alguns nanomateriais. Assim, nanotubos de carbono, nanobastões de ouro, nanodiamantes e óxido de nanografeno foram sintetizados no Laboratório de Nanomateriais do Instituto de Ciências Exatas e no Laboratório de Sinalização Celular e Nanobiotecnologia da UFMG, enquanto nanocompósitos de fosfato foram produzidos no Laboratório de Interações Químico-biológicas e Reprodução Animal do Departamento de Morfologia da mesma universidade.

Na sequência, todos os nanomateriais foram funcionalizados; ou seja, grupos de átomos foram adicionados a suas superfícies de modo a conseguir determinadas propriedades químicas nos materiais. Essa parte da pesquisa, assim como quase todos os experimentos seguintes, foi realizada no Laboratório de Sinalização Celular e Nanobiotecnologia do Departamento de Bioquímica e Imunologia, e no Laboratório de Biologia Celular do Departamento de Morfologia, sempre na UFMG. A efetiva funcionalização dos nanomateriais foi confirmada por análises de espectroscopia no infravermelho próximo por transformada de Fourier (FI-NIR), realizadas no Centro de Desenvolvimento de Tecnologia Nuclear (CDNT), localizado no campus da UFMG. Graças à funcionalização, os nanomateriais grudaram ao DNA que continha o gene de interesse, formando nanocomplexos.

Então, células de difícil transfecção, de camundongos e de humanos, obtidas em laboratórios dos departamentos de Fisiologia e Farmacologia e de Bioquímica e Imunologia da UFMG, foram expostas aos nanocomplexos.

Finalmente, os cientistas observaram, para cada material e para cada tipo de célula estudada, se o gene de interesse tinha ingressado na célula e se estava realizando suas funções na nova morada.

Esquema das etapas principais do estudo. Os nanomateriais foram funcionalizados para associarem-se ao DNA plasmidial contendo o gene de interesse (neste caso o gene da proteína fluorescente ciano). As células de difícil transfecção foram então expostas aos nanocomplexos nanomaterial funcionalizado – DNA plasmidial, e observou-se a expressão de proteína fluorescente.

Os resultados publicados na Nanoscale mostram que, de modo geral, os nanomateriais são bons veículos de entrega de genes para células de difícil transfecção, igualando ou superando, em alguns casos, a capacidade de reagentes disponíveis no mercado. Detalhe: a síntese dos nanomateriais tem custo inferior à compra de alguns reagentes.

Além disso, os autores da communication conferiram a citotoxicidade de cada nanomaterial frente às diversas células estudadas, e puderam determinar as respectivas taxas de morte celular. Os cientistas concluíram que, em concentrações adequadas, os nanomateriais estudados têm baixa citotoxicidade.

Essas descobertas da equipe da UFMG já podem ser aplicadas em pesquisas que envolvem gene delivery. “Por exemplo, caso se deseje estudar a função de uma determinada proteína em cardiomiócitos e seja necessário se fazer a expressão dessa proteína nestas células, nanotubos de carbono de paredes múltiplas funcionalizados são uma opção mais eficiente que a lipofecção com o reagente comercial Lipofectamina 2000”, ilustra o professor.

“Quanto a aplicações um pouco mais distantes, também encontra-se uma possibilidade de adaptação da metodologia para viabilização de terapia gênica e também transgenia mediada por nanomateriais”, continua Resende, que comenta que seu grupo de pesquisa já está realizando estudos complementares in vitro e in vivo para desenvolver essas aplicações.

De acordo com Resende, outro desdobramento do artigo pode surgir perante a diferença de comportamento observada nas diferentes células frente a diferentes nanomateriais. “Isso oferece a possibilidade de desenvolver estudos a respeito de como os genes entregues são internalizados por cada célula e por qual razão há a diferença de eficiência observada em nosso estudo”, diz o professor.

A pesquisa foi financiada com recursos do CNPq, FAPEMIG, INCT de Nanomateriais de Carbono e Instituto Nanocell, uma entidade independente fundada pelo grupo de pesquisa do professor Rodrigo Resende para a promoção da ciência e educação.

Artigo em destaque: Vibrações de nanotubos manipulados.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:  Strain Discontinuity, Avalanche, and Memory in Carbon Nanotube Serpentine Systems. Muessnich, Lucas C. P. A. M.; Chacham, Helio; Soares, Jaqueline S.; Neto, Newton M.; Shadmi, Nitzan; Joselevich, Ernesto; Cancado, Luiz Gustavo; Jorio, Ado. Nano Lett. 2015, 15 (9), pp 5899–5904. DOI: 10.1021/acs.nanolett.5b01982

Vibrações de nanotubos manipulados.

Cientistas de instituições brasileiras, em colaboração com pesquisadores de Israel, “manipularam” nanotubos de carbono de 1 nm de diâmetro depositados em cima de superfícies de quartzo e analisaram as deformações e deslocamentos produzidos por essa nanointervenção. A equipe identificou alguns padrões de comportamento do sistema nanotubos – quartzo e formulou um modelo matemático aplicável a sistemas formados por materiais uni e bidimensionais sobre diversos substratos. Os resultados do trabalho foram recentemente publicados no prestigioso periódico científico Nano Letters.

Para realizar os experimentos, os pesquisadores brasileiros usaram amostras idealizadas e produzidas no Instituto Weizmann de Ciência (Israel), nas quais os nanotubos são serpentiformes (compostos por segmentos paralelos entre si conectados por curvas em forma de “U”). Essas amostras ofereceram aos cientistas uma desejável complexidade, propiciada tanto pelo formato dos nanotubos, quanto pelo caráter anisotrópico do quartzo, que faz com que a adesão dos nanotubos ao substrato não seja a mesma em todos os pontos.

Para “manipular” o sistema, os pesquisadores utilizaram a ponta de um microscópio de força atômica (AFM) construído no próprio laboratório, que permite mudar a posição de partículas nanométricas e até mesmo de átomos, e medir, in situ, o espectro óptico das nanoestruturas. Em cada amostra, a ponta era encostada em um ponto do substrato de quartzo e empurrada em direção ao nanotubo, para então proceder à análise óptica.

Antes e depois da nanomanipulação, os cientistas analisaram uma série de pontos dos nanotubos usando a técnica de espectroscopia Raman, que fornece informação sobre a frequência em que os átomos vibram na área que está sendo estudada. Mais precisamente, os pesquisadores focaram as atenções na frequência da chamada “banda G”, que é usada para inferir as medidas de deformação (strain) de um ponto analisado, desde que as mudanças na frequência da banda G são proporcionais às mudanças na deformação.

Dessa maneira, os cientistas puderam identificar e analisar diferentes comportamentos dos nanotubos frente à nanomanipulação, como, por exemplo, o desprendimento do substrato e o intenso deslocamento de um trecho completo de um nanotubo que recebera duas manipulações no mesmo ponto.

Além de realizarem o trabalho experimental, os autores do artigo da Nano Letters conseguiram condensar a complexidade dos comportamentos observados num modelo matemático (uma equação) capaz de explicá-los teoricamente e de predizer esses fenômenos em sistemas similares.  “O artigo propõe um modelo relativamente simples para descrever efeitos complexos da adesão de nanoestruturas em matrizes de suporte”, diz Ado Jório, professor do Departamento de Física da Universidade Federal de Minas Gerais (UFMG) que assina a letter como autor correspondente.

A pesquisa que deu origem ao artigo da Nano Letters foi desenvolvida dentro dos trabalhos de mestrado, doutorado e pós-doutorado de três dos autores da letter, no contexto da Rede Brasileira de Pesquisa e Instrumentação em NanoEspectroscopia Optica, um projeto financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e coordenado por Ado Jório. “Este é o resultado de um amplo projeto de instrumentação científica, para chegarmos ao nível de manipular nanoestruturas e medir, com precisão, o efeito deste processo na escala nanométrica”, diz Jorio.

A figura mostra um dos 34 nanotubos serpentiformes sobre substrato de quartzo cristalino estudados pelos autores do artigo. À esquerda de quem olha, o nanotubo antes da manipulação. À direita, na sequência, o mesmo nanotubo depois da intervenção, com a deformação consequente evidenciada. O segmento central do nanotubo, onde ocorreu a nanomanipulação, foi colorizado, os tons de cinza indicando a frequência da banda G naquele local. Finalmente, mais à direita, o gráfico que exibe a frequência de banda G medida por espectroscopia Raman em pontos sucessivos desse nanotubo (representação gráfica dos tons de cinza): os círculos pretos se referem ao nanotubo não manipulado e os de cor cinza, ao manipulado.

Oportunidade de bolsa de pós-doutorado no Centro de Tecnologia em Nanotubos de Carbono (CTNanotubos).

O Centro de Tecnologia em Nanotubos de Carbono (CTNanotubos) está realizando um processo de seleção para bolsista de pós-Doutorado na área de Caracterização. O foco do CTNanotubos é o desenvolvimento tecnológico – de produtos, processos e serviços – a partir dos naotubos de carbono, material de destacada importância estratégica para a competitividade de múltiplas indústrias. A visão do CTNanotubos é servir como plataforma para a contínua geração de sociedades empresárias, a partir da transferência de tecnologia.

Detalhes sobre o processo:

– Área de atuação: Caracterização
– Regime: Bolsista Pós-Doutorado
– Pré-requisito: Doutorado
– Valor da Bolsa: R$ 4.176,00
– Vigência: 36 meses

As técnicas a serem utilizadas inicialmente são:

– Espectroscopias ópticas (Raman, IR, UV-vis)
– Microscopia eletrônica de varredura (MEV)
– Microscopia de força atômica (AFM)
– Análise termogravimétrica (TGA)
– Difração de raios X

Procuramos por profissionais com doutoramento completo que possuam experiência prévia em pelo menos três das técnicas descritas acima (não necessariamente especialistas). As funções a serem exercidas pelo profissional são:

– Realização de ensaios e análises
– Confecção de relatórios
– Confecção de projetos de pesquisa
– Acompanhamento e atuação em em órgãos relacionados à padronização (ABNT, ISO, VAMAS, NANOREG, outros).
– Atuação junto ao INMETRO para processos de acreditação.

Os interessados devem enviar um email para cancado@fisica.ufmg.br, contendo uma breve carta de apresentação (máximo de duas páginas) e link para o CV Lattes. A data limite para a inscrição é 20/07/2015. Os candidatos pré-selecionados serão convidados para uma entrevista junto à Coordenação do CT-Nanotubos. Previsão de contratação para agosto/2015.