Cientista em destaque: entrevista com Fernando Galembeck, que proferirá a palestra memorial no XVII Encontro da SBPMat (reedição atualizada de entrevista de maio de 2015).


Fernando Galembeck.
Fernando Galembeck.

Em Fernando Galembeck, o interesse por pesquisa começou a se manifestar na adolescência, quando percebeu o valor econômico do conhecimento científico enquanto trabalhava na empresa do segmento farmacêutico do pai. Hoje, com 75 anos, Fernando Galembeck pode olhar para sua própria trajetória científica e contar muitas histórias de geração e aplicação de conhecimento.

Sócio fundador da SBPMat, Galembeck foi escolhido neste ano para proferir a Palestra Memorial Joaquim da Costa Ribeiro – distinção outorgada anualmente pela SBPMat a um pesquisador de trajetória destacada na área de Materiais. A honraria é também uma homenagem a Joaquim da Costa Ribeiro, pioneiro da pesquisa experimental em Materiais no Brasil. A palestra, intitulada “Materiais para um futuro melhor”, ocorrerá na abertura do XVII Encontro da SBPMat, no dia 16 de setembro deste ano, e abordará temas como necessidades, escassez e promessas na área de Materiais.

Galembeck gradou-se em Química em 1964 pela Universidade de São Paulo (USP). Após a graduação, permaneceu na USP trabalhando como instrutor (1965-1980) e, simultaneamente, fazendo o doutorado em Química (1965-1970), no qual desenvolveu uma pesquisa sobre dissociação de uma ligação metal-metal. Depois do doutorado, realizou estágios de pós-doutorado nos Estados Unidos, nas universidades do Colorado na cidade de Denver (1972-3) e da Califórnia na cidade de Davis (1974), trabalhando na área de Físico-Química de sistemas biológicos. Em 1976, de volta à USP, teve a oportunidade de criar um laboratório de coloides e superfícies no Instituto de Química, dentro de um acordo que envolveu o Instituto, a Unilever, a Academia Brasileira de Ciências e a Royal Society. A partir desse momento, Galembeck foi se envolvendo cada vez mais com o desenvolvimento de novos materiais, especialmente os poliméricos, e seus processos de fabricação.

Em 1980, ingressou como docente na Universidade Estadual de Campinas (Unicamp), onde se tornou professor titular em 1988, cargo no qual permaneceu até sua aposentadoria em 2011. Desde então, é professor colaborador da instituição. Na Unicamp, ocupou cargos de gestão, notadamente o de vice-reitor da universidade, além de diretor do Instituto de Química e coordenador do seu programa de pós-graduação. Em julho de 2011, assumiu a direção do recém-criado Laboratório Nacional de Nanotecnologia (LNNano), no Centro Nacional de Pesquisas em Energia e Materiais (CNPEM), permanecendo no cargo até 2015.

Ao longo de sua carreira, exerceu funções de direção ou coordenação na Academia Brasileira de Ciências (ABC), Ministério da Ciência, Tecnologia e Inovação (MCT), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Sociedade Brasileira de Química (SBQ), Sociedade Brasileira para o Progresso da Ciência (SBPC) e Sociedade Brasileira de Microscopia e Microanálise (SBMM), entre outras entidades.

Bolsista de produtividade de nível 1A no CNPq, Galembeck é autor de cerca de 279 artigos científicos publicados em periódicos com revisão por pares, os quais contam com mais de 3.700 citações, além de 35 patentes depositadas e mais de 20 livros e capítulos de livros. Orientou quase 80 trabalhos de mestrado e doutorado.

Fernando Galembeck recebeu numerosos prêmios e distinções, entre eles o Prêmio Anísio Teixeira, da CAPES, em 2011; o Telesio-Galilei Gold Metal 2011, da Telesio-Galilei Academy of Science (TGAS); o Prêmio Almirante Álvaro Alberto de Ciência e Tecnologia 2006, do CNPq e Fundação Conrado Wessel; o Troféu José Pelúcio Ferreira, da Finep, em 2006; a Grã-Cruz da Ordem Nacional do Mérito Científico, em 2000, e a Comenda Nacional do Mérito Científico, em 1995, ambos da Presidência da República. Também recebeu uma série de reconhecimentos de empresas e associações científicas e empresariais, como a CPFL, Petrobrás, Union Carbide do Brasil, Associação Brasileira dos Fabricantes de Tintas, Associação Brasileira da Indústria Química, Sindicato da Indústria de Produtos Químicos para fins Industriais do Estado do Rio de Janeiro, Associação Brasileira de Polímeros, Sociedade Brasileira de Química (que criou o Prêmio Fernando Galembeck de Inovação Tecnológica), Sindicato dos Engenheiros no Estado de São Paulo e da Electrostatic Society of America.

O cientista é fellow da TWAS (The World Academy of Sciences) desde 2010 e da Royal Society of Chemisty desde 2014.

Nesta entrevista, você poderá conhecer um pouco mais sobre este pesquisador brasileiro e o trabalho dele.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar em temas da área de Materiais.

Fernando Galembeck: – Meu interesse pela atividade de pesquisa começou na minha adolescência quando eu percebi a importância do conhecimento novo, da descoberta. Eu percebi isso quando trabalhava, depois das aulas, no laboratório farmacêutico do meu pai e eu via a importância que tinham os produtos mais novos, os mais recentes. Eu via também como pesava economicamente para o laboratório o fato de depender de matérias-primas importadas que não eram fabricadas no Brasil, e que no país não havia competência para produzir. Aí percebi o valor do conhecimento novo, a importância que tinha e o significado econômico e estratégico das descobertas.

Isso se incrementou quando eu fiz o curso de Química. Eu fui fazer o curso de Química porque um professor meu no colégio, Hermann Nabholz, sugeriu que eu procurasse uma carreira ligada à pesquisa. Ele deve ter percebido alguma inclinação, alguma tendência minha. E eu fiz o curso de Química na Faculdade de Filosofia, num ambiente em que a atividade de pesquisa era muito forte. Por causa disso eu resolvi fazer o doutorado na USP. Naquela época não havia ainda cursos de pós-graduação regulares no Brasil. O orientador com quem eu defendi a tese, o professor Pawel Krumholz, era um pesquisador muito bom e também tinha se destacado trabalhando em empresa. Ele foi diretor industrial da Orquima, uma empresa muito importante na época. Isso aumentou meu interesse por pesquisa.

Trabalhei em Química por alguns anos. Meu interesse por Materiais veio de uma situação curiosa. Eu estava praticamente me formando, nas férias do meu último ano da graduação. Estava num apartamento, depois do almoço, descansando. Lembro-me de ter olhado as paredes do apartamento e percebido que, com tudo que eu tinha aprendido no curso de Química, eu não tinha muito a dizer sobre as coisas que eu enxergava: a tinta, os revestimentos etc. Aquilo era Química, mas também eram Materiais, e naquela época não havia no curso de Química muito interesse por materiais. De fato, materiais se tornaram muito importantes em Química por causa dos plásticos e borrachas, principalmente, que nessa época ainda não tinham a importância que têm hoje. Estou falando de 1964, quando a petroquímica era praticamente inexistente, no Brasil

Bem, aí comecei a trabalhar em Físico-Química, depois trabalhei um pouco numa área mais voltada à Bioquímica, a Físico-Química Biológica, e, em 1976, recebi uma tarefa do Departamento na USP, que era a de instalar um laboratório de coloides e superfícies. Um dos primeiros projetos foi de modificação de superfície de plásticos, no caso, o teflon. E aí eu percebi que uma grande parte da Química de coloides e superfícies existia por causa de Materiais, porque ela se prestava para criar e desenvolver novos materiais. A partir daí eu fui me envolvendo cada vez mais com materiais, principalmente com polímeros, um pouco menos, com cerâmicos e, menos ainda, com metais.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais?

Fernando Galembeck: – Eu vou falar mais ou menos seguindo a história. Eu acho que o primeiro resultado importante na área de Materiais foi justamente uma técnica voltada à modificação de superfície de teflon, que é um material no qual é muito difícil alguma coisa grudar. Tanto que tem a expressão do “político teflon”, que é aquele em que nenhuma denúncia “gruda”. Só que, em determinadas situações, a gente quer conseguir adesão no teflon, para fazer algum equipamento. E por um caminho um pouco complicado, eu acabei percebendo que eu já sabia fazer uma modificação de teflon, mas que eu nunca tinha percebido que era importante. Eu conhecia o fenômeno; tinha observado ele durante meu trabalho de tese. Eu sabia que acontecia uma transformação do teflon. Mas foi quando estava visitando um laboratório da Unilever em 1976, conversando com um pesquisador, que eu percebi que havia gente se esforçando justamente para modificar a superfície do teflon e conseguir adesão. Aí, juntando o problema com a solução, logo que voltei ao Brasil tentei verificar se aquilo que eu tinha observado anteriormente realmente serviria, e deu certo. Isso deu origem à minha primeira publicação sozinho e a meu primeiro pedido de patente, numa época em que praticamente não se falava em patentes no Brasil, principalmente no ambiente universitário. Eu fiquei muito entusiasmado depois, quando fui procurado por empresas que tinham interesse em aproveitar aquilo que eu tinha feito; uma no próprio teflon, outra em outro polímero. Então eu me senti muito bem, porque tinha uma descoberta, tinha uma patente e tinha empresas que, pelo menos, queriam saber o que era para ver a possibilidade de utilizá-la. E mais uma coisa, logo depois da publicação do artigo eu recebi um convite para participar de um congresso nos Estados Unidos que abordava justamente a questão de modificação de superfícies. Superfícies de polímeros, de plásticos e borrachas passaram a ser um tema com o qual fiquei envolvido praticamente durante todo o resto da minha vida, até agora.

Eu vou mencionar um segundo fato, que até o momento não teve consequências do mesmo tipo. Eu descobri um método que permite fazer uma caracterização e uma separação de partículas muito pequenas. Foi um trabalho bastante interessante, que foi publicado, também gerou um depósito de patente, mas não teve uma consequência prática. Recentemente surgiram problemas ligados com nanopartículas, que é um assunto muito importante hoje em Materiais, e que representam uma possibilidade de aplicação daquilo que eu fiz há mais de 30 anos. O nome da técnica é osmossedimentação.

Em seguida veio um trabalho que fiz trabalhando em projetos junto com a Pirelli Cabos. Com essa história de superfícies e polímeros acho que eu tinha me tornado mais ou menos conhecido e fui procurado pela Pirelli, que me contratou como consultor em projetos que fiz na Unicamp. O resultado desses projetos que eu acho mais importante foi o desenvolvimento de um isolante para tensões elétricas muito altas. Esse não foi um trabalho só meu, mas sim de uma equipe bastante grande, da qual fiz parte. Tinha várias pessoas da Pirelli e várias na Unicamp. O resultado desse projeto foi que a Pirelli brasileira conseguiu ser contratada para fornecer os cabos de alta tensão do Eurotúnel, ainda nos anos 80. Eu acho que esse foi um caso bem importante que teve um produto e significou um resultado econômico importante. Aqui eu quero insistir que isso foi feito no Brasil, por uma equipe brasileira. A empresa não era brasileira, mas a equipe estava aqui.

Depois teve vários trabalhos feitos com nanopartículas, numa época em que a gente nem as chamava de nanopartículas; chamávamo-las de partículas finas ou simplesmente de partículas coloidais pequenas. O primeiro trabalho que eu publiquei sobre nanopartículas foi em 1978. Teve outras coisas feitas em seguida que, no fim, acabaram desaguando num trabalho sobre fosfato de alumínio, que deu origem a teses feitas no laboratório e publicações, e também foi licenciado por uma empresa do grupo Bunge, que explora, basicamente, fosfatos. O assunto começou em meu laboratório, ficou no laboratório por vários anos, depois uma empresa do grupo Bunge aqui no Brasil se interessou, passou a participar, nós colaboramos. Este se tornou um projeto bastante grande de desenvolvimento. A Bunge depois achou inviável tocar o projeto no Brasil e hoje está lá nos Estados Unidos. Eu acho uma pena que esteja lá, mas aí teve outras questões envolvidas, inclusive de desentendimento com a Unicamp, que é a titular das patentes. Recentemente, a empresa do grupo que trabalhava com esses fosfatos era a Amorphic Solutions, que oferecia o produto na Internet, para várias aplicações. Pelo que percebo, atualmente estão enfatizando o uso como material anticorrosivo para proteção de aço. Tenho informação recente de que a Bunge negociou os direitos sobre esses produtos com uma grande empresa do setor químico, mas não sei detalhes.

Mais ou menos na mesma época, num trabalho ligado também a nanopartículas, trabalhei no desenvolvimento de nanocompósitos de borracha natural com argilas. Isso foi licenciado por uma empresa brasileira chamada Orbys, que lançou um produto chamado Imbrik, que se mostrou vantajoso em rolos de borracha para fabricação de papel.

Outro caso de produto. Eu tinha feito um projeto com a Oxiteno, que fabrica matérias primas para látex, os tensoativos. Ela queria ter uma ideia de quanto se consegue mudar o látex mudando o tensoativo. Eu fiz um projeto com eles, que considero um dos mais interessantes daqueles em que estive envolvido. O resultado foi que percebemos que, mudando um pouco o tensoativo, nós mudávamos muito o látex. Esses látex são usados em tintas, adesivos, resinas. Então a gente via que tinham uma versatilidade enorme. Esse trabalho foi divulgado, foi publicado. Não deu patente porque foi um trabalho de entendimento. Entretanto, uma outra empresa, a Indústrias Químicas Taubaté (IQT) me procurou para fazer um látex catiônico, mas por um caminho novo. Látex catiônicos em geral são feitos com sais de amônio quaternários, os quais têm algumas restrições ambientais. A empresa queria uma alternativa que não tivesse essas restrições. No fim do projeto nós fizemos os látex catiônicos sem as restrições ambientais e a IQT colocou o produto no mercado.

Minha participação em um projeto da Marinha, de desenvolvimento de fibras de carbono, foi um grande desafio que me deu muita satisfação. Meu grupo participou sintetizando copolímeros de acrilonitrila, até a escala de dez litros. Os resultados foram transferidos para uma empresa que fez a produção em escala piloto, na antiga planta da Rhodia-Ster e Radicci, em São José dos Campos. O copolímero selecionado foi fiado e depois pirolisado, no Centro Tecnológico da Marinha, em São Paulo. Resultou uma fibra de carbono de alto desempenho, que foi usada na fabricação de centrífuga, usada em Aramar. O desafio era encontrar o copolímero que mostrasse bom desempenho nas etapas posteriores de produção da fibra, o que foi conseguido.

Teve outro caso, que também foi muito interessante, apesar de que acabou morrendo. Aqui no Brasil havia uma grande fabricante de polietileno tereftalato, o PET, que é usado para muitas coisas, inclusive para garrafas. Eles souberam do trabalho que eu tinha feito com nanocompósitos, aquele da Orbys que eu mencionei, e me procuraram querendo fazer nanocompósitos do PET. Nós tivemos que procurar escapar daquilo que já estava patenteado no exterior e conseguimos um caminho totalmente novo. A empresa chamava-se Rhodia-Ster, e foi vendida para uma outra empresa, italiana, chamada Mossi e Ghisolfi. A empresa se entusiasmou e acabou patenteando isso no Brasil, e, em seguida depois, no exterior. Numa certa altura, eles resolveram que iam tocar o trabalho internamente, e o fizeram durante alguns anos. Um dia o meu contato na empresa me telefonou para me dizer o seguinte: “Olha, nós estávamos trabalhando com duas tecnologias; uma era essa aí com a Unicamp e a outra, em outro país. As duas estão funcionando, mas agora a empresa chegou num ponto em que optou por completar o desenvolvimento de uma”. Quando se chega na fase final de um desenvolvimento de materiais, os custos dos projetos ficam muito altos. Tem que usar grandes quantidades de materiais, fazer muitos testes com clientes. Então, a empresa decidiu tocar uma das alternativas, que infelizmente não era aquela na qual eu tinha trabalhado. No fim das contas, foi um pouco frustrante, mas acho que foi interessante porque durante esse tempo todo, a empresa apostou bastante no caminho que a gente tinha iniciado aqui. Além disso, cada projeto desses significa recursos para o laboratório, significa dinheiro para contratar gente, empregos na Unicamp e na empresa, etc. Então, esses projetos acabam dando muitos benefícios, mesmo quando não chegam até o fim.

Agora, pulando alguns pedaços, vou chegar num resultado mais recente, do meu trabalho no CNPEM, onde estive até 2015. Um objetivo do CNPEM é o aproveitamento de materiais de fonte renovável para fazer materiais avançados. Tem toda uma filosofia por trás disso, relacionada ao esgotamento de recursos naturais, à sustentabilidade… Uma meta era fazer coisas novas com materiais derivados da biomassa, e o principal interesse está na celulose. Ela é o polímero mais abundante do mundo, mas é um polímero muito difícil de trabalhar. Você não consegue processar celulose como processa polietileno, por exemplo. Uma meta é plastificar a celulose; ou seja, trabalhar a celulose da forma mais parecida possível àquela que usamos para trabalhar com polímeros sintéticos. Um primeiro resultado dentro dessa ideia foi a criação de adesivos de celulose em que o único polímero é a própria celulose. Em seguida, já fora do CNPEM, obtivemos a esfoliação de grafite, o que gerou uma família de tintas, pastas e adesivos condutores, que são o objeto de um projeto PIPE recém-aprovado pela Fapesp.

Vários outros projetos foram feitos com empresas, em questões do interesse das empresas. Revestir uma coisa, colar outra, modificar um polímero para conseguir um certo resultado. Mas essas foram respostas a demandas das empresas, não foram pesquisas iniciadas no laboratório.

Boletim da SBPMat: – Deixe uma mensagem para nossos leitores que estão iniciando suas carreiras de cientistas.

Fernando Galembeck: – Em primeiro lugar, em qualquer carreira que a pessoa escolher, ela tem que ter uma dose de paixão. Não importa se a pessoa vai trabalhar no mercado financeiro, em saúde ou o que quer que ela vá fazer; antes de mais nada, o que manda é o gosto. A pessoa querer fazer uma carreira porque ela vai dar dinheiro, porque vai dar status… Eu acho que é ruim escolher assim. Se a pessoa fizer as coisas com gosto, com interesse, o dinheiro, o prestígio, o status virão, mas por outros caminhos. O objetivo é que a pessoa faça uma coisa que a deixe feliz, que se sinta bem fazendo o seu trabalho, que a deixe realizada. Isso vale não só para a carreira científica, mas para qualquer outra carreira também. Na científica, é fundamental.

Além disso, é preciso estar preparado para o trabalho duro. Não existe caminho fácil. Eu conheço pessoas jovens que procuram muito a grande sacada que vai lhes trazer sucesso com relativamente pouco trabalho. Bom, eu acho melhor não esperarem isso. Pode até acontecer, mas esperar isso é mais ou menos a mesma coisa do que esperar ganhar a Mega-Sena para ficar rico.

Eu já tenho 75 anos, conheci muita gente e vi muita coisa acontecer. Algo que me chama a atenção é o caso de jovens que pareciam muito promissores mas acabaram não dando muito certo. Francamente, eu penso que não é bom para um jovem dar muito certo muito cedo, porque eu tenho a impressão de que ele se acostuma com a ideia de que sempre vai dar certo. E o problema é que não tem nada, nem ninguém, nem nenhuma empresa que sempre dê muito certo. Sempre vai ter o momento do fracasso, o momento da frustação. Se a pessoa está preparada para isso, quando chega o momento, ela supera, enquanto outros são destruídos, não conseguem superar. Por isso tem que ter cuidado para não se iludir com o sucesso, achar que, porque deu certo uma vez, sempre dará certo. Tem que estar preparado para lutar.

Quando eu fiz faculdade, pensar em fazer pesquisa parecia uma coisa muito estranha, coisa de maluco. As pessoas não sabiam muito bem o que era isso nem por que uma pessoa iria fazer isso. Tinha gente que dizia que a pesquisa era como um sacerdócio. Eu trabalhei sempre com pesquisa, associada com ensino, associada com consultoria e, sem que eu nunca tenha procurado ficar rico, consegui ter uma situação econômica que eu acho muito confortável. Mas eu insisto, meu objetivo era fazer o desenvolvimento, fazer o material, não o dinheiro que eu iria ganhar. O dinheiro veio, ele vem. Então, eu sugiro que as pessoas focalizem o trabalho, os resultados e a contribuição que o trabalho delas pode dar para outras pessoas, para o ambiente, para a comunidade, para o país, para o conhecimento. O resto virá por acréscimo.

Resumindo, a minha mensagem é: trabalhem seriamente, dedicadamente e com paixão.

Finalmente, eu gostaria de dizer que acho que o trabalho de pesquisa, o trabalho de desenvolvimento ajuda muito a pessoa a crescer como pessoa. Ele afasta a pessoa de algumas ideias que não são muito proveitosas e a coloca dentro de atitudes que são importantes e realmente ajudam. Uma vez um estudante perguntou para Galileu: “Mestre, o que é o método? ”. A resposta de Galileu foi: “O método é a dúvida”. Eu acho que isso é muito importante em atividade de pesquisa, a qual, em Materiais, em particular, é especialmente interessante porque o resultado final é uma coisa que a gente pega na mão. Na atividade de pesquisa, a pessoa tem que estar o tempo todo se perguntando: “Eu estou pensando isto, mas será que estou pensando certo? ”, ou “Fulano escreveu aquilo, mas qual é a base do que ele escreveu? ”. Essa é uma atitude muito diferente da atitude dogmática, que é comum no domínio da política e da religião, e muito diferente da atitude da pessoa que tem que enganar, como o advogado do mafioso, do corrupto ou do traficante. O pesquisador tem que se comprometer com a verdade. Claro que também existem pessoas que se dizem pesquisadores e promovem a desinformação. Alguns anos atrás, falava-se de uma coisa chamada de “Bush science”, expressão que remete ao presidente Bush. “Bush science” eram os argumentos criados por pessoas que ganhavam dinheiro como cientistas e produziam argumentos para dar sustentação às políticas de Bush. Esse problema existe em ciência, e aí voltamos àquilo que falei no início. Uma pessoa não deve tornar-se cientista porque vai ganhar dinheiro, vai ter prestígio ou vai ser convidado para jantar com o presidente; ela tem que entrar nisto pelo interesse que ela tem pela própria ciência.


Para mais informações sobre este palestrante e a palestra plenária que ele proferirá no XVII Encontro da SBPMat/B-MRS Meeting, clique na foto do palestrante e no título da palestra: https://www.sbpmat.org.br/17encontro/home/

Artigo em destaque: Flocos de alumínio para produção de nanotubos de carbono.


O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: High-yield synthesis of bundles of double- and triple-walled carbono nanotubes on aluminum flakes. Thiago H.R. da Cunha, Sergio de Oliveira, Icaro L. Martins, Viviany Geraldo, Douglas Miquita, Sergio L.M. Ramos, Rodrigo G. Lacerda, Luiz O. Ladeira, Andre S. Ferlauto. Carbon 133(2018) 53-61.

Flocos de alumínio para produção de nanotubos de carbono

Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono obtidos por meio do método da equipe do CTNano.
Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono obtidos por meio do método da equipe do CTNano.

Uma equipe de cientistas de instituições mineiras fez uma promissora contribuição à produção de nanotubos de carbono. Esses cilindros ocos cujas paredes de carbono têm apenas 1 átomo de espessura já fazem parte de alguns produtos (baterias, materiais automotivos, filtros de água), mas sua produção industrial ainda é incipiente e precisa de soluções para baixar custos e aumentar a eficiência, entre outros desafios.

Os pesquisadores brasileiros introduziram uma novidade em uma das etapas da técnica mais consolidada para a produção em massa de nanotubos, a deposição química a vapor (CVD, na sigla em inglês). Dessa maneira, a equipe conseguiu produzir feixes de nanotubos de duas e três paredes (algo similar a dois ou três cilindros ocos, um dentro do outro). Finos, compridos e de alta pureza, os nanotubos apresentaram diâmetros de 3 a 8 nanometros, comprimentos até 50 mil vezes maiores que seu diâmetro (de 150 a 300 micrometros) e mais 90 % de carbono na sua composição.

“A principal contribuição deste trabalho é a apresentação uma rota escalável e de baixo-custo para síntese de feixes de nanotubos de carbono com grande área superficial (625 m2/g) e razão de aspecto (50000:1)”, diz Thiago Henrique Rodrigues da Cunha, pesquisador da frente de síntese do Centro de Tecnologia em Nanomateriais (CTNano) da Universidade Federal de Minas Gerais (UFGM) e autor correspondente do artigo deste trabalho, que foi recentemente publicado no periódico Carbon (fator de impacto= 6,337).

O método, além de gerar nanotubos de boa qualidade, permite produzir quantidades relativamente grandes desse material usando quantidades relativamente baixas de matérias-primas. “Mesmo utilizando sistemas pequenos, é possível a obtenção de nanotubos de carbono em escala de quilograma/dia”, diz o pesquisador. Como os nanotubos obtidos apresentaram uma relação entre área superficial e massa muito grande (mais de 625 metros quadrados pesam apenas um grama), a produção dos nanotubos por este método poderia alcançar alguns milhões de metros quadrados por dia.

Com os nanotubos obtidos e um tipo de álcool, a equipe científica preparou uma pasta, a qual distribuiu sobre um papel de filtro, formando um filme que foi separado do papel quando a pasta secou. O filme, de cor preta, apresentou 40 micrometros de espessura e ficou flexível e dobrável. Agregados macroscópicos de nanotubos de carbono como este são usualmente chamados de buckypapers.

À esquerda, filme de nanotubos de carbono (buckypaper) produzido pela equipe. À direita, aviãozinho confeccionado com esse buckypaper.
À esquerda, filme de nanotubos de carbono (buckypaper) produzido pela equipe. À direita, aviãozinho confeccionado com esse buckypaper.

“Os buckpapers produzidos a partir destes nanotubos apresentaram grande área superficial e boa condutividade elétrica, o que os torna particularmente interessantes na confecção de eletrodos para baterias e supercapacitores”, afirma Thiago da Cunha, que acrescenta que a equipe do CTNano já está trabalhando para usar os buckypapers nesses dispositivos armazenadores de energia. Uma patente sobre o processo foi depositada no final de 2017. “Nossa intenção é apresentar esta tecnologia para potenciais parceiros a fim de converte-la em um produto de alto valor agregado”, revela Cunha.

O segredo do processo

Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono que cresceram a partir de ambos os lados de um floco de alumínio.
Imagem de microscopia eletrônica de varredura de feixes de nanotubos de carbono que cresceram a partir de ambos os lados de um floco de alumínio.

Os processos de produção de nanotubos por CVD ocorrem dentro de um forno tubular no qual se insere gás contendo carbono e nanopartículas catalisadoras. Submetido a altas temperaturas, o gás se decompõe, e os átomos de carbono se depositam em cima e em volta das nanopartículas, formando tubos (os nanotubos). As nanopartículas podem ser preparadas no mesmo forno usado para o crescimento dos nanotubos.

É justamente na preparação das nanopartículas catalisadoras que reside o segredo do método desenvolvido pela equipe mineira. Em grandes linhas, trata-se de preparar um pó contendo ferro (Fe) e cobalto (Co) sobre flocos de alumínio (material que nunca antes tinha sido mencionado na literatura científica como suporte para o crescimento de nanopartículas). A mistura é então submetida a temperaturas de 350 a 650 °C durante 4 horas, numa atmosfera similar ao ar que respiramos. Esse processo, conhecido como calcinação, produz nanopartículas de óxidos de ferro e/ou cobalto. Depois, as nanopartículas catalisadoras, ainda sobre os flocos de alumínio, são introduzidas no forno de CVD, cuja temperatura interna é levada a 730 °C. Nesse momento, é introduzido o gás etileno (C2H4), o qual aporta o carbono para que os nanotubos cresçam perpendicularmente aos flocos de alumínio.

Os cientistas puderam observar uma interessante vantagem de se usar esse novo suporte. Durante a calcinação, forma-se, na superfície do alumínio, uma fina camada de óxido de alumínio que encapsula as nanopartículas e impede que elas se aglomerem ou espalhem. Além disso, na etapa seguinte do processo, o óxido de alumínio atua como matriz dos nanotubos, conduzindo seu crescimento na forma de feixes alinhados.

Para testar se a temperatura de calcinação das nanopartículas influiria em seu desempenho como catalisadoras, a equipe do CTNano fez alguns experimentos. A conclusão foi que a calcinação a temperaturas de 500 a 550 °C produz mais nanopartículas de óxido misto (contendo tanto ferro quanto cobalto, de fórmula CoFe2O4) e gera melhores resultados na produção de nanotubos, tanto do ponto de vista quantitativo (rendimento) quanto qualitativo (diâmetro dos nanotubos).

“Ao contrário de outros métodos descritos na literatura que geralmente apresentam baixo rendimento e que dependem de técnicas relativamente caras (evaporação, sputtering) para confecção do catalisador, descrevemos neste artigo um método simples para produzir um catalisador em forma de pó, que pode ser utilizado para produção contínua de nanotubos de poucas paredes através da técnica de deposição química de vapor (CVD)”, resume Thiago da Cunha.

CTNnano

O trabalho recebeu financiamento da fundação mineira de apoio à pesquisa (Fapemig), da agência federal CNPq e da empresa Petrobrás. O trabalho foi realizado no CTNano, com exceção das imagens de microscopia, feitas no Centro de Microscopia da UFMG.

O CTNano surgiu em 2010 a partir da motivação para desenvolver produtos, processos e serviços utilizando nanotubos de carbono e grafeno, com o objetivo de suprir demandas industriais em consonância com a formação de recursos humanos qualificados. As pesquisas desenvolvidas no CTNano já originaram 26 patentes e contribuíram para a formação de mais de 200 pesquisadores na área. De acordo com Thiago da Cunha, o CTNano inaugurará, ainda em 2018, sua sede própria com aproximadamente 3.000 m² de área, localizada no Parque Tecnológico de Belo Horizonte (BH-TEC).

image description
Autores do paper, ligados à UFMG, com exceção de Viviany Geraldo, que é docente da Universidade Federal de Itajubá (UNIFEI).

 

Artigo em destaque: Poliestireno, de poluidor a remediador ambiental.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Conversion of “Waste Plastic” into Photocatalytic Nanofoams for Environmental Remediation. Geovania C. de Assis, Euzébio Skovroinski, Valderi D. Leite, Marcelo O. Rodrigues, André Galembeck, Mary C.F. Alves, Julian Eastoe, and Rodrigo J. de Oliveira. ACS Appl. Mater. Interfaces, 2018, 10 (9), pp 8077–8085. DOI: 10.1021/acsami.7b19834.

Poliestireno, de poluidor a remediador ambiental

Uma equipe composta por sete pesquisadores do Brasil e um do Reino Unido desenvolveu um material duplamente positivo para o meio ambiente. Os cientistas utilizaram resíduos de poliestireno, que seriam potenciais poluidores ambientais, para produzir um material que funciona como remediador ambiental ao degradar compostos tóxicos presentes em corpos e cursos de água. Dessa maneira, a pesquisa faz uma contribuição a dois preocupantes problemas ambientais: por um lado, a presença de grandes quantidades de resíduos plásticos no planeta; por outro lado, a poluição ou contaminação de ecossistemas aquáticos com substâncias tóxicas.

A pesquisa foi reportada em artigo recentemente publicado no periódico Applied Materials & Interfaces (fator de impacto= 7,504).

Vale lembrar que o poliestireno é utilizado para fabricar copos e talheres descartáveis, potes de iogurte, pentes, cabides, caixas organizadoras e muitas outras utilidades, além de ser componente principal do conhecido isopor®. “Apresentamos uma alternativa de reutilização de um dos plásticos mais demandados pela sociedade”, diz o professor Rodrigo José de Oliveira, da Universidade Estadual da Paraíba (UEPB), autor correspondente do artigo.

Imagem MEV da nanoespuma.
Imagem MEV da nanoespuma.

O material desenvolvido pelo time científico consiste em uma matriz polimérica porosa impregnada de nanopartículas de dióxido de estanho (SnO2). Nesse material compósito, enquanto as nanopartículas são as principais responsáveis por degradarem as tintas por meio de um processo fotocatalítico, a matriz polimérica, que é produzida a partir dos rejeitos de poliestireno, cria um ambiente favorável à ação fotocatalítica e serve de suporte às nanopartículas, permitindo que sejam facilmente removidas das águas que estão sendo tratadas, e reutilizadas em novos processos de remediação ambiental.

O novo material compósito foi chamado pelos autores do artigo de “nanoespuma”. Apesar de terem alguns centímetros de diâmetro e poros de alguns micrometros, as espumas ganharam o prefixo “nano” porque suas propriedades fotocatalíticas decorrem da presença do dióxido de estanho em tamanho nanométrico (nanopartículas esféricas de cerca de 20 nm). “Nanomateriais são aqueles que apresentam novas propriedades em função de uma física distinta que surge nesta escala de tamanho”, lembra Oliveira.

Instrumentação utilizada para preparar as nanoespumas. A partir da esquerda: chapa de aquecimento para manter solução acima da temperatura de separação de fases, sistema de resfriamento Peltier e bomba de vácuo para remoção do solvente por sublimação.
Instrumentação utilizada para preparar as nanoespumas. A partir da esquerda: chapa de aquecimento para manter solução acima da temperatura de separação de fases, sistema de resfriamento Peltier e bomba de vácuo para remoção do solvente por sublimação.

Para obter as espumas compósitas, a equipe utilizou equipamentos de baixo custo e procedimentos baseados em propriedades físico-químicas muito conhecidas. O processo de preparação pode ser descrito, em grandes linhas, da seguinte forma. Num primeiro momento, pequenos pedaços de resíduos de poliestireno são dissolvidos em solvente ciclohexano, e as nanopartículas de dióxido de estanho, que neste caso foram fabricadas pela equipe, são adicionadas à solução. Essa parte do processo é realizada acima da chamada “temperatura teta (θ)” da solução de ciclohexano e poliestireno, que é de cerca de 36 °C, pois, abaixo dela, a solução sofre uma separação de fases. Num segundo momento, a preparação é levada por 10 minutos a uma temperatura de -10 °C. Como consequência dessa diminuição da temperatura, alguns fenômenos ocorrem. A solução separa-se em duas fases, uma rica em poliestireno e outra rica em ciclohexano, e o solvente congela. No final do processo de esfriamento, as fases ficam distribuídas de tal modo que formam uma estrutura de poliestireno com buracos recheados com ciclohexano congelado.  Para retirar o solvente das espumas, aplica-se um processo de liofilização, por meio do qual o ciclohexano acaba sublimando. Como resultado final, obtém-se o sólido poroso que os autores do artigo chamaram de nanoespumas.

“Demonstramos que um rejeito de poliestireno denso pode ser prontamente convertido em uma matriz polimérica porosa, desejável para confecção de novos materiais, ou seja, um fim nobre para uma poluição que tem mobilizado governos de países industrializados”, frisa o professor Oliveira.

box fotocataliseFinalmente, a equipe científica avaliou a eficiência do novo material como remediador ambiental, testando a capacidade das nanoespumas de degradarem um corante de aspecto magenta chamado rodamina B. Esse composto, que é usado como marcador nas áreas de saúde, pesquisa, agricultura e outras, é tóxico para o sistema reprodutivo e neurológico, e foi apontado em alguns estudos como agente cancerígeno.

As nanoespumas do professor Oliveira e seus colaboradores conseguiram degradar 98,2% da rodamina B – um resultado superior aos obtidos com nanopartículas fotocatalíticas fora da matriz de poliestireno. Além disso, as nanoespumas demonstraram um desempenho muito bom ao ser reutilizadas: degradaram mais de 96% da rodamina B nos quatro primeiros ciclos. “O uso de uma matriz é desejável pois facilita a recuperação final do fotocatalisador, uma vez que a espuma é facilmente retirada do meio com o uso de uma pinça metálica, além de aumentar a área superficial devido a uma maior dispersão do óxido na matriz”, diz Oliveira.

História do trabalho

Rodrigo de Oliveira estava cursando o doutorado quando teve a ideia, em 2011, de obter novos materiais catalíticos aproveitando a característica de algumas soluções de ter suas fases separadas por ação da temperatura (conhecida como “separação de fases termicamente induzida”, TIPS). Oliveira estava fazendo um estágio no exterior (o vulgarmente chamado “sanduíche de doutorado”) no grupo do professor Julian Eastoe, na University of Bristol. Nesse grupo, Oliveira tinha encontrado a dupla possibilidade de trabalhar com surfactantes, tema de sua pesquisa doutoral, e de melhorar seu domínio da língua inglesa. “Em Bristol, Julian me apresentou um trabalho publicado por ele décadas atrás sobre o uso de TIPS para estudar microemulsões e formação de espumas de carbonato de cálcio”, lembra Oliveira. Até o final do estágio, o então doutorando tinha desenvolvido uma espuma de surfactantes decorada com nanopartículas de ouro. Na Inglaterra, além de fazer esse trabalho em Bristol, Oliveira pôde fazer contato com um renomado grupo da Cardiff University dedicado à pesquisa em catálise, dirigido pelo professor Graham Hutchings. “A possibilidade de se obter novos materiais com fins catalíticos utilizando TIPS ficou na mente”, conta Oliveira.

Em 2012, Oliveira obteve o diploma de doutor em Química pela Universidade Federal de Pernambuco (UFPE). Pouco depois, ao passar em um concurso da UEPB, virou professor dessa instituição. O jovem pesquisador enxergou então a oportunidade de realizar aquela ideia gestada na Inglaterra. Para fazê-lo, ele deveria se aventurar numa nova linha de pesquisa, diferente daquelas nas quais tinha incursionado na graduação, mestrado e doutorado, mas ele já estava treinado nisso. De fato, na graduação, mestrado e doutorado em Química, todos cursados da UFPE e com orientação do professor André Galembeck, tinha abordado três temas de pesquisa bem diferentes. “André sempre foi aberto a propostas e ideias, inclusive aquelas que fugiam muito do histórico de pesquisa e atuação do grupo”, expressa Oliveira.

Coragem não faltava, mas Oliveira acabava de chegar na UEPB e não tinha infraestrutura disponível, nem os recursos financeiros necessários para montá-la. “De 2012 para cá nossa luta tem sido estabelecer um grupo de pesquisa em Físico-química de Materiais, e uma das linhas focadas é a utilização de TIPS para fazer materiais a partir de rejeito plástico”, diz ele. No caso das nanoespumas, o pesquisador conseguiu desenvolver o trabalho dentro da dissertação de mestrado de Geovânia Cordeiro de Assis, defendida em 2016 e orientada por Oliveira junto à professora Mary Cristina Ferreira Alves (co-orientadora).  Para o preparo das nanoespumas, a equipe utilizou equipamentos simples e baratos (“uma placa de refrigeração de 20 dólares comprada em site de importação da China e uma bomba de vácuo”). Para as caracterizações, que demandam equipamentos necessariamente mais custosos, Oliveira contou com a colaboração de colegas da UFPE, Universidade de Brasília e University of Bristol.

Outros materiais com aplicações ambientais deverão ser gerados na cidade paraibana de Campina Grande, mais precisamente no laboratório do professor Oliveira, aproveitando diversos tipos de plásticos, inclusive os de composição mais complexa como o isopor®, que é formado por poliestireno expandido e outros componentes químicos.  Além de desenvolver materiais para contribuir à remediação de ecossistemas, o grupo está utilizando-os para estudos mais fundamentais, que poderão gerar nanomateriais com estruturas sofisticadas.

“Infelizmente, nos deparamos constantemente com a falta de equipamentos de caracterização, e nos dias atuais nem os colaboradores com as melhores intenções têm mais recursos para nos ajudar como antes”, lamenta Oliveira. “Percebo que há recursos humanos de qualidade na nossa instituição; entretanto, mais investimentos em infraestrutura são fundamentais para manter a qualidade dos trabalhos, formação de recursos humanos e interiorização de ciência no estado da arte”, completa.

Autores principais do artigo. A partir da esquerda, Geovânia Cordeiro de Assis (atualmente doutoranda na UFAL), Mary Alves (docente permanente do PPGQ-UEPB), Julian Eastoe (professor da University of Bristol) e Rodrigo de Oliveira (coordenador do PPGQ-UEPB).
Autores principais do artigo. A partir da esquerda, Geovânia Cordeiro de Assis (atualmente doutoranda na UFAL), Mary Alves (docente permanente do PPGQ-UEPB), Julian Eastoe (professor da University of Bristol) e Rodrigo de Oliveira (coordenador do PPGQ-UEPB).

 

Gente da comunidade: entrevista com o cientista argentino Galo Soler Illia.


Galo Soler Illia.
Galo Soler Illia.

Quantas vocações científicas despertaram, e quantos acidentes domésticos provocaram, os jogos infantis de química experimental, que, até um tempo atrás, não seguiam todas as normas de segurança para brinquedos, hoje obrigatórias? O cientista argentino Galo Juan de Ávila Arturo Soler Illia pertence a esse grupo. Ele conta que seu interesse pela ciência se acendeu (literalmente) com um pequeno incêndio provocado por um jogo de laboratório de Química na casa de seus pais –  dois advogados, militantes da Unión Cívica Radical. Esse era o partido, aliás, do avô de Galo Soler Illia, o Presidente Arturo Umberto Illia, que governou a Argentina de 1963 a 1966, até sofrer um golpe de Estado.

Hoje, Galo Soler Illia pode ser considerado um dos pesquisadores mais conhecidos do país vizinho, tanto na comunidade científica (consta entre os 30 cientistas argentinos melhor posicionados no Google Scholar pelas citações a trabalhos de sua autoria, e já recebeu os principais prêmios nacionais de ciência) quanto entre o público leigo (no campo da Nanotecnologia, ele é um divulgador muito ativo e didático presente em todas as mídias, e costuma ser fonte de informações para os jornalistas argentinos).

Galo Soler Illia nasceu em Buenos Aires em 31 de maio de 1970. Fez seus estudos primários numa escola particular construtivista, o Colegio Bayard. Para cursar os estudos secundários ingressou, em 1983, ao Colegio Nacional de Buenos Aires, instituição pública dependente da Universidad de Buenos Aires (UBA), caracterizada, entre outras coisas, pela alta exigência nos estudos, a riqueza das atividades extracurriculares e uma infraestrutura superior à das outras escolas públicas. Em 1988, formou-se pelo colégio com uma especialização em Ciências. Tanto no ensino primário quanto no secundário teve oportunidade de fazer atividades em laboratórios de ciência.

Entre 1989, Soler Illia começou a cursar a graduação em Ciências Químicas na UBA. Durante a graduação, começou a lecionar no Departamento de Química Inorgânica, Analítica e Química Física da UBA e a fazer pesquisa em um grupo de Química de Materiais e também em um laboratório montado na casa de um amigo. Em 1993, ele obteve o diploma de licenciado em Química, tendo uma média nas avaliações das disciplinas de 9,13/ 10. Na Argentina, a licenciatura habilita o diplomado a realizar todo tipo de atividade profissional na área de formação, inclusive docência e atividades de pesquisa, e o prepara para um ingresso a um curso de doutorado sem passar pelo mestrado.

De 1994 a 1998, Soler Illia realizou o doutorado em Química, também na UBA, sob orientação do doutor em Química Miguel Angel Blesa. Através da pesquisa sobre nanopartículas de hidróxidos metálicos mistos, ele gerou conhecimento sobre o complexo mecanismo de formação de partículas, o qual lhe seria muito útil nas pesquisas que realizou como pós-doc e como pesquisador profissional, voltadas à síntese de materiais com alto controle de suas características. Concomitantemente ao doutorado, continuou lecionando, como assistente, na UBA.

Em 1999, foi morar na França, junto a sua esposa, a também química Astrid Grotewold, e permaneceram no país galo até o ano de 2002. Soler Illia fez um pós-doutorado na Université Pierre et Marie Curie (Paris), com supervisão do doutor Clément Sanchez, contando com uma bolsa com duração de 2 anos do CONICET, principal entidade argentina de apoio à ciência e tecnologia. No pós-doc, o argentino desenvolveu métodos para produzir materiais com porosidade altamente controlada. Desse período, resultaram os artigos de Soler Illia mais citados até o momento, com mais de 1.800 citações em um dos papers, segundo o Google Scholar. No final do período francês, Soler Illia também trabalhou em aplicações de filmes finos mesoporosos para o centro de pesquisa e desenvolvimento da empresa Saint Gobain.

Galo Soler Illia voltou à Argentina no início de 2003, num período em que o país saía de uma enorme instabilidade política que provocou a passagem de 5 pessoas diferentes pela Presidência da República em apenas 11 dias. Além disso, o país ainda estava sob os efeitos da grave crise econômica que tivera seu ápice em 2001. Entretanto, rapidamente, Soler Illia conseguiu ingressar à carreira de pesquisador do CONICET trabalhando na Comisión Nacional de Energia Atómica (CNEA) e, sem perder tempo, fundou o Grupo Química de Nanomateriales, que, até hoje, atua no projeto e obtenção de materiais nanoestruturados. Em 2004, o cientista se tornou, por concurso, professor da UBA, do departamento em que fizera seus estudos de grado e doutorado.

No início de 2015, Soler Illia se tornou diretor do Instituto de Nanosistemas (INS) da Universidad Nacional de San Martín, localizada na área metropolitana de Buenos Aires. O INS se define como um espaço de pesquisa, desenvolvimento e criação interdisciplinar em nanociência e nanotecnologia, cujo objetivo final é resolver problemas prioritários da indústria e da sociedade em geral. No instituto, Soler Illia conta com uma equipe científica multidisciplinar de 4 pesquisadores (mais 4 em 2017), 6 estudantes de pós-graduação e pós-docs e 1 técnico de laboratório, além de uma equipe de gestão formada por 6 profissionais.

Atualmente, além de diretor do INS, Galo Soler Illia é pesquisador principal do CONICET e professor associado da UBA. É membro de conselhos assessores na Fundación Argentina de Nanotecnología (FAN) e no Laboratório Nacional de Luz Síncrotron (Brasil), e membro do conselho editorial do Journal of Sol-Gel Science and Technology (Springer). Além disso, o cientista tem uma coluna de divulgação científica sobre Nanotecnologia no programa televisivo “Científicos Industria Argentina”, que vai ao ar uma vez por semana no canal público argentino. Finalmente, Soler Illia acaba de ser nomeado, neste mês de novembro, membro do Conselho Presidencial Argentina 2030, integrado por intelectuais de diversos campos para assessorar o presidente da Argentina, Mauricio Macri.

Soler Illia, cujo índice h é de 44, possui uma produção de mais de 120 artigos publicados em periódicos científicos internacionais, com cerca de 11 mil citações, segundo o Google Scholar. Já orientou 7 teses de doutorado concluídas e é autor de 2 livros de divulgação sobre nanotecnologia. Também é autor de 4 pedidos de patentes.

Seu trabalho foi reconhecido com uma série de prêmios à ciência, tecnologia, inovação e divulgação científica, entre eles os principais da Argentina, como o Prêmio Houssay 2006 e 2009, da secretaria e depois ministério de ciência e tecnologia argentino; o Prêmio KONEX 2013, da fundação homônima, e o Premio Innovar 2011 e 2016, do Ministerio de Ciencia, Tecnología e Innovação Productiva. Também recebeu distinções da Academia Nacional de Ciencias Exactas, da FAN, da Asociación Argentina de Investigacão Fisicoquímica, do CONICET, das empresa BGH e Dupont, entre outras entidades. Em maio deste ano, Galo Soler Illia foi designado acadêmico titular da Academia Nacional de Ciencias Exactas, Físicas y Naturales, passando a compor um seleto grupo de apenas 36 cientistas.

Segue uma entrevista com o cientista argentino.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar no campo dos materiais.

Galo Soler Illia: – Sempre gostei de Química. Comecei com 5 anos, quando ganhei um jogo de Química e, fazendo um experimento, queimei a mesa de jantar da casa dos meus país. Depois, em meus estudos de nível secundário fui um pouco “nerd”, dedicando-me a escrever software para as aulas de Física do meu colégio. Escrever código despertou em mim uma curiosidade por saber como funcionavam as coisas e como os problemas podiam ser resolvidos. Aprendi muitíssimo. Perto do final do ensino secundário, decidi estudar Química, pois achei que era um curso muito versátil e maravilhoso que tinha grandes possibilidades em muitos campos. Nessa época, eu estava muito interessado na Biotecnologia, que era uma área nova. Mas na época em que comecei meus estudos de graduação na Universidade de Buenos Aires (UBA), a área de Química de Materiais começava a surgir. Ainda aluno, comecei a lecionar como ajudante no Departamento de Química Inorgânica, Analítica e Química Física da Faculdade de Ciências Exatas e Naturais, inspirado pelo exemplo de professores jovens e entusiastas que estavam voltando do exterior e geravam uma atmosfera de trabalho e exigência. Junto a meus melhores amigos, instalamos um laboratório em um quarto no terraço da casa de um deles. Ali crescíamos cristais e planejávamos síntese de moléculas. Como passávamos o dia todo na universidade e tínhamos algum tempo libre, eu achei um lugar para trabalhar, sem receber bolsa nem salário, em um grupo de Química de Materiais que acabava de começar. Tudo foi muito rápido e, quase sem perceber, finalizei meus estudos de graduação e iniciei o doutorado, fabricando micropartículas para catalizadores. Foi uma época muito linda da minha vida, da qual conservo minha curiosidade inata, minha vontade de explorar e construir matéria e um maravilhoso grupo de amigos, que se tornaram destacados colegas disseminados pelo mundo todo.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais, considerando todos os aspectos da atividade científica?

Galo Soler Illia: – Sempre me interessou construir materiais, o trabalho do químico de unir átomo com átomo, de fabricar novas arquiteturas. Centrei-me em compreender os fenômenos fisicoquímicos que ocorrem na produção de um material. Quando a gente conhece e compreende esses processos, passa de simplesmente “preparar” um material a poder projetá-lo e sintetizá-lo, por mais complexo que seja. E a gente pode aproveitar as propriedades dos elementos químicos a seu favor para obter as propriedades que a gente deseja. Vou dar três exemplos. Na minha tese, estudei a precipitação e agregação de nanopartículas de hidróxidos metálicos mistos, precursores de catalisadores. Descobrimos um mundo muito interessante e pudemos contribuir na compreensão da complexidade por trás de um mecanismo dinâmico de formação de partículas: a influência dos efeitos estruturais no formato das partículas, a importância da coordenação dos metais na formação de uma fase mista, a evolução da carga superficial e seu efeito na estabilidade de um coloide e muito mais, que me serviu futuramente como base sólida para minha pesquisa. Tive a sorte de poder trabalhar com Miguel Blesa, Alberto Regazzoni y Roberto Candal, três excelentes Mestres que me guiaram, estimularam e corrigiram.

Na minha segunda etapa, trabalhei em Paris, no laboratório de Clément Sanchez, e, usando o que tinha aprendido, pude desenvolver métodos para produzir materiais com porosidade altamente controlada, conhecidos como materiais mesoporosos organizados. Novamente, interessei-me pelos mecanismos de formação do material, que são complexos, pois demandam o controle do crescimento de pequenas espécies inorgânicas e sua automontagem com micelas. É uma pequena sinfonia físico-química, que é necessário aprender a tocar. Tivemos que usar, desenvolver e combinar técnicas de caracterização muito variadas para poder compreender quais fenômenos estavam ocorrendo e como eles controlavam a formação e organização dos sistemas de poros, a estabilidade e cristalinidade dos materiais, que são, entre outras, as variáveis importantes no desempenho final desses sólidos.

Na minha terceira etapa, de volta à Argentina, estabeleci um grupo de pesquisa na Comisión Nacional de Energía Atómica, em Buenos Aires, e me dediquei a construir arquiteturas mais complexas, baseadas em tudo que tinha aprendido. Minhas melhores contribuições nesse sentido se referem ao uso das forças e interações na nanoescala para fabricar nanocompósitos muito variados com propriedades ópticas e catalíticas projetadas e surpreendentes. Tudo isso demandou a criação de novos laboratórios, a formação de recursos humanos e a transferência de ciência básica a tecnologias. Particularmente, nos últimos anos temos trabalhado com empresas e aspiramos a gerar nanotecnologia na Argentina, estendendo os conhecimentos do nosso laboratório à sociedade.

Boletim da SBPMat: – Conte-nos um pouquinho sobre sua interação com o Brasil. Você vem frequentemente ao país para colaborações, eventos, uso de labs, seminários? Tem trabalhos realizados com grupos do Brasil ou em laboratórios brasileiros?

Galo Soler Illia: – Retornei à Argentina em 2003 e, imediatamente, tive como referencia o que estava se gestando no Brasil. Desde aquela época, comecei a desenvolver projetos no Laboratório Nacional de Luz Síncrotron (LNLS), que é um farol para todos aqueles que trabalhamos em Materiais na América Latina. A interação com o pessoal do síncrotron foi muito importante para podermos caracterizar nossos materiais, e é impressionante ver como as instalações têm melhorado nestes anos. Faz poucos meses, tive a oportunidade de conhecer o prédio do Sirius, que é simplesmente impressionante, e será referência mundial. Também tive a oportunidade de conhecer diversas universidades proferindo cursos e colaborando na formação de graduandos e estudantes de pós-graduação. Além disso, geramos a Escola de Síntese de Materiais, que fazemos em Buenos Aires, e que terá sua oitava edição em 2017. Essa escola foi idealizada para gerar uma comunidade de cientistas latino-americanos com competências na síntese racional de materiais. Começamos com muitos estudantes brasileiros, graças ao apoio da Sociedade Argentino-Brasileira de Nanotecnologia, que depois, infelizmente, parou de funcionar. É muito belo ver como os estudantes de ambos os países trabalham juntos nos laboratórios e discutem e apresentam seus trabalhos em “portunhol”. A partir dessa escola, e com ajuda de vários colegas, estão surgindo redes de colaboração que, sem dúvida, vão nos proporcionar a base tecnológica para fazermos empreendimentos conjuntos de maior porte. Viajo várias vezes por ano ao Brasil e sempre admiro a força do país para impulsionar o desenvolvimento tecnológico local. Espero que, passados estes momentos de dificuldades, possamos continuar crescendo em conjunto.

Boletim da SBPMat: – Sempre convidamos os entrevistados desta seção do boletim a deixarem uma mensagem para os leitores que estão iniciando suas carreiras científicas. O que você diria a esses cientistas juniores?

Galo Soler Illia: – Olhando para atrás, posso fazer três recomendações aos jovens cientistas. Uma é que nunca percam sua imaginação e sua capacidade de se fazerem perguntas; a segunda é que trabalhem duro para encontrar as respostas, e a terceira é que aproveitem as surpresas. Às vezes, a gente está treinado para desenvolver um caminho e uma estratégia e a gente foca no rigor de demonstrar e formalizar o que a gente encontra. Porém, é essencial saber que esse caminho que a gente traça é cheio de cantinhos interessantes, e que, às vezes, um aspecto que não levávamos em consideração nos abre um panorama novo e inexplorado. Dizia Newton que a gente, enquanto científico, é às vezes como uma criança que na praia acha uma concha mais bonita do que outras e é feliz, mas, perante a gente, estende-se o enorme oceano da verdade. Meu conselho é: busquemos incessantemente nossas conchas, curtamos com elas e aproximemo-nos da compreensão das maravilhas do nosso universo. E tenhamos sempre em conta que desenvolver ciência em nosso continente é um belo desafio que vai agregar riqueza a nossos países e bem-estar a nossos irmãos.

Artigo em destaque. Nanopartículas super eficientes para catalisar a produção de hidrogênio, um combustível alternativo.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. Virgínia S. Souza, Jackson D. Scholten, Daniel E. Weibel, Dario Eberhardt, Daniel L. Baptista, Sérgio R. Teixeira and Jairton Dupont. J. Mater. Chem. A, 2016, 4, 7469-7475. DOI: 10.1039/C6TA02114J.

Nanopartículas super eficientes para catalisar a produção de hidrogênio, um combustível alternativo

Enquanto algumas unidades de carros que usam hidrogênio como combustível começam a ser comercializadas, cientistas de diversos lugares do mundo continuam trabalhando para encontrar as formas mais limpas, sustentáveis, seguras e econômicas de gerar e armazenar hidrogênio. De fato, apesar de ser o elemento mais abundante do universo e estar presente na água e em uma infinidade de outros compostos, o hidrogênio não pode ser encontrado em estado puro em nosso planeta, e precisa, portanto, ser obtido a partir de outros compostos.

Um dos melhores métodos, dos pontos de vista ecológico e econômico, para se produzir hidrogênio é o water splitting, que consiste na separação de moléculas de água em seus dois elementos primários, gerando os gases hidrogênio (H2) e oxigênio (O2). Essa divisão pode ser realizada utilizando a energia abundante da luz solar, a temperatura ambiente. Porém, para que, na prática, a luz consiga dividir uma molécula de água, é necessário contar com a ajuda de nanopartículas feitas de determinados materiais semicondutores que funcionam como catalisadores ou, mais precisamente, fotocatalisadores.

Em um estudo totalmente realizado no Brasil, uma equipe de cientistas desenvolveu um novo método, simples e eficiente, para fabricar nanopartículas de óxido de tântalo (Ta2O5) com ótimo desempenho como catalisadores na geração de hidrogênio. A pesquisa foi reportada em um artigo recentemente publicado no periódico Journal of Materials Chemistry A (fator de impacto: 8,262).

Fotos dos autores principais do artigo. Começando pela esquerda do leitor: a doutora Virgínia Souza, o professor Jackson Scholten e o professor Jairton Dupont.
Fotos dos autores principais do artigo. Começando pela esquerda do leitor: a doutora Virgínia Souza, o professor Jackson Scholten e o professor Jairton Dupont.

O trabalho foi desenvolvido com financiamento da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), dentro da pesquisa de doutorado de Virgínia Serra Souza no Instituto de Química da Universidade Federal do Rio Grande do Sul (IQ-UFRGS), sob orientação do professor Jairton Dupont.

“A ideia desta pesquisa surgiu quando buscávamos uma rota alternativa e eficiente para a síntese de nanopartículas de Ta2O5 e, então, após alguns experimentos, decidimos testar a possibilidade de utilizar líquidos iônicos como fontes e agentes estabilizantes dos nanomateriais”, conta o professor Jackson Damiani Scholten, um dos autores correspondentes do artigo e membro do grupo de pesquisa do IQ-UFRGS. Esse grupo tem ampla experiência no estudo e desenvolvimento de líquidos iônicos (sais que se apresentam em estado líquido a temperatura ambiente). Devido às suas propriedades físico-químicas, os líquidos iônicos podem ser usados durante a fabricação de nanopartículas como agentes estabilizantes, para manter as partículas na escala nanométrica.

Souza, Scholten e Dupont prepararam dois tipos de líquidos iônicos contendo tântalo e geraram as condições para que acontecesse a hidrólise (quebra de ligações químicas de um composto por efeito da adição de água). Os elementos resultantes da hidrólise, provenientes da água e do líquido iônico, se recombinaram formando as nanopartículas de óxido de tântalo.

A equipe pôde verificar que tinha produzido nanopartículas de óxido de tântalo de tamanho entre 1,5 e 22 nm, sendo que as menores tinham sido geradas a partir de um dos líquidos iônicos e as maiores, do outro. Com auxílio do professor Daniel E. Weibel, também do IQ-UFRGS, a composição superficial das nanopartículas foi estudada. Os cientistas propuseram que as nanopartículas obtidas eram híbridas: em volta do óxido de tântalo havia restos de líquido iônico.

Para ver como as nanopartículas se desempenhavam como catalisadores na separação de moléculas de água para geração de hidrogênio, a equipe realizou os testes fotocatalíticos em equipamentos do Instituto de Física da UFRGS, disponibilizados pelo professor Sérgio R. Teixeira. Os testes foram feitos numa solução contendo, além da água, etanol – composto que contribui ao aumento da taxa de produção de hidrogênio.

“Para nossa satisfação, as nanopartículas de Ta2O5 apresentaram um dos melhores resultados já publicados para a produção de H2 a partir de uma solução água/etanol”, lembra o professor Scholten. Esse resultado excepcional foi atribuído no artigo à presença de líquido iônico nas nanopartículas. “Acredita-se que o líquido iônico residual propicie a formação de uma região hidrofílica na superfície do Ta2O5 favorecendo a aproximação das moléculas polares (água e etanol)”, explica Scholten. Para terem mais certeza a respeito, os cientistas retiraram o líquido iônico das nanopartículas mediante um tratamento térmico e comprovaram que sua atividade fotocatalítica era muito baixa.

Em outra etapa da pesquisa, Dario Eberhardt, então professor da Universidade de Caxias do Sul (UCS), colaborou com a equipe na deposição de nanopartículas de platina de cerca de 1 nm na superfície das nanopartículas híbridas de óxido de tântalo pela técnica de sputtering, realizada no IF-UFRGS. O material foi caracterizado com o auxílio do professor Daniel L. Baptista, do IF-UFRGS. Com a adição da platina, o desempenho das nanopartículas de óxido de tântalo com líquido iônico nos testes fotocatalíticos foi ainda melhor.

Desta maneira, este trabalho desenvolvido na região Sul do Brasil apresentou um novo método de fabricação de catalisadores super eficientes para uso na produção de hidrogênio, um combustível alternativo promissor, a partir de água e etanol, dois recursos renováveis e abundantes.

figura NP para H2
Esta figura cedida pelos autores do artigo representa o processo de fabricação de nanopartículas de óxido de tântalo a partir da hidrólise de líquidos iônicos, seguida da deposição de nanopartículas de platina no primeiro material e, finalmente, a aplicação desse segundo material na obtenção de gás hidrogênio pelo processo de “water splitting”.

Artigo em destaque: Domando a reatividade de nanoligas.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Charge transfer effects on the chemical reactivity of PdxCu1−x nanoalloys. M. V. Castegnaro, A. Gorgeski, B. Balke, M. C. M. Alves and J. Morais. Nanoscale, 2016,8, 641-647. DOI: 10.1039/C5NR06685A.

Domando a reatividade de nanoligas

Quando, em 2009, o grupo do Laboratório de Espectroscopia de Elétrons (LEe-) da Universidade Federal do Rio Grande do Sul (UFRGS) decidiu começar a desenvolver “em casa” as nanopartículas metálicas que necessitava para seus estudos, deparou-se com alguns problemas. Muitos dos métodos de síntese reportados na literatura científica não forneciam os resultados esperados ao serem realizados no laboratório gaúcho.

Autores do trabalho. Da esquerda para direita e de cima para baixo: Marcus Vinicius Castegnaro, Andreia Gorgeski, dr. Benjamin Balke, professora Maria do Carmo Martins Alves e professor Jonder Morais.

Motivados fortemente pela curiosidade, como sempre, relata o professor Jonder Morais, pesquisador do LEe-, os membros do grupo conseguiram, depois de muita dedicação, desenvolver novas rotas de síntese que, além de reprodutíveis, são amigáveis com o meio ambiente, eficientes e de baixo custo. “Os primeiros artigos começaram a ser publicados em revistas internacionais em 2013, inicialmente com nanopartículas de paládio (Pd), platina (Pt) e prata (Ag) aplicadas à decomposição catalítica do óxido nítrico. Na sequência, publicamos alguns trabalhos focados em estudos in situ, que visam determinar os mecanismos de formação e crescimento de nanopartículas monometálicas. Recentemente começamos a relatar resultados obtidos com sistemas mais complexos, como as nanoligas de paládio e cobre (Pd-Cu)”, conta o professor Morais.

Nesse último grupo se inserem os resultados recentemente reportados em um artigo publicado na prestigiada revista Nanoscale, cujos autores principais são o professor Jonder Morais e Marcus Vinicius Castegnaro, estudante do curso de doutorado em Física da UFRGS orientado por Morais. A pesquisa englobou desde a produção dos nanomateriais até a sondagem de suas aplicações. “Foi fundamental contar com alunos dedicados, dispostos a enfrentar o desafio de preparar rigorosamente suas próprias amostras, e correlacionar as propriedades eletrônicas e estruturais para entender as propriedades finais em termos de reatividade química”, comenta Morais.

No trabalho publicado na Nanoscale, nanopartículas compostas por ligas de paládio e cobre foram produzidas aplicando um método simples, desenvolvido pela equipe do LEe-. Esse processo é realizado em condições amenas para o meio ambiente e a saúde (meio aquoso, temperatura e pressão ambiente, e uso de substâncias inócuas e baratas como o ácido ascórbico e o citrato de sódio). Várias amostras foram sintetizadas por essa rota, contendo três quantidades diferentes de átomos de paládio e cobre.

As nanopartículas sintetizadas passaram por uma série de análises realizadas na UFRGS, na cidade de Porto Alegre, viajaram a Campinas para outra série de análises em equipamentos do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) e atravessaram o oceano até a Universidade Johannes Gutenberg, na Alemanha, para realização de algumas medidas complementares. A partir da caracterização, os autores do estudo concluíram que as nanopartículas tinham um tamanho de, aproximadamente, 4 nm e eram altamente cristalinas, entre outras características. Além disso, por meio de experimentos realizados pela técnica de XANES in situ, a equipe de cientistas expôs as nanopartículas a monóxido de carbono (CO) a 450 °C e sondou a reatividade das nanoligas, ou seja, sua capacidade de reagirem quimicamente.

Depois de estudarem os resultados da caracterização, os autores do artigo puderam concluir que a composição da liga influi na capacidade das nanoligas de se reduzirem (ganharem elétrons) e de se oxidarem (perderem elétrons). De fato, quanto maior a quantidade de paládio, a redução ocorre com mais facilidade, e a oxidação, com mais dificuldade.

Esquema representativo da correlação entre a transferência parcial de carga entre os átomos de Pd e Cu (observada por XPS) e a reatividade frente à exposição a CO (sondada por XANES in situ) para as nanoligas Pdx¬Cu1-x. Observou-se que quanto maior a quantidade de Pd presente na nanoliga, maior é a reatividade da amostra frente à redução por CO, e maior é a resistência à oxidação dos átomos que a compõem.

“Os resultados publicados, obtidos pela associação de diversas técnicas experimentais, são relevantes para a compreensão da origem da alta reatividade catalítica de nanoligas de paládio e cobre (Pd-Cu), bem como para elucidar comportamentos similares apresentados por outros sistemas bimetálicos”, destaca Jonder Morais. “Principalmente, tais resultados podem ser utilizados no “design” de novos nanomateriais mais eficientes para diversas aplicações, como por exemplo, na indústria petroquímica, em células a combustível ou no controle da emissão de gases poluentes”, conclui.

Grande Prêmio Capes de Tese para vencedor do prêmio da área de Materiais.


Como Edroaldo está fazendo pós-doutorado nos Estados Unidos, foi representado na cerimônia por seu pai (a quinta pessoa a partir da esquerda). (Foto: Haydée Vieira – CCS/Capes)

O Grande Prêmio Capes de Tese 2015 no grupo de Engenharias, Ciências Exatas e da Terra e Multidisciplinar foi outorgado à tese de doutorado vencedora do Prêmio Capes de Tese 2015 na área de Materiais, intitulada “Interações nanopartícula-células e biomaterial-células induzem mudanças globais em programas de expressão de genes”. A tese foi defendida em 2014 por Edroaldo Lummertz da Rocha para obtenção de diploma de doutor pelo Programa de Pós-Graduação em Ciência e Engenharia de Materiais da Universidade Federal de Santa Catarina (UFSC). O prêmio foi entregue em cerimônia realizada no dia 10 de dezembro na sede da Capes, em Brasília.

O Grande Prêmio seleciona a melhor tese de cada uma das três grandes áreas de avaliação da Capes.  Para concorrer ao Grande Prêmio, os autores vencedores do Prêmio Capes de Tese devem apresentar à Capes uma vídeo-aula com duração de 20 a 30 minutos, destinada a estudantes de ensino médio, abordando o tema da tese de forma apropriada para o público-alvo.

Em seu vídeo, Edroaldo apresentou as contribuições de sua pesquisa de doutorado ao desenvolvimento de nanoestruturas que, introduzidas no corpo humano, podem ter efeitos terapêuticos contra o câncer e, ao mesmo tempo, geram menos efeitos colaterais do que os métodos mais utilizados atualmente (cirurgia, quimioterapia e radioterapia). Para apresentar essas contribuições, o vídeo explica conceitos como o de câncer e o de bionanotecnologia. O vídeo também aborda o desenvolvimento do software CellNet, do qual Edroaldo participou durante seu doutorado, que auxilia na investigação da transformação de células de um tipo em outro tipo (por exemplo, células-tronco em outras células ou células da pele em células do coração). Veja aqui a vídeo-aula preparada por Edroaldo e também os vídeos dos demais candidatos ao Grande Prêmio.

O Grande Prêmio Capes de Tese consiste em passagem aérea e diária para o autor e um dos orientadores da tese premiada para que compareçam à cerimônia de premiação; certificado de premiação ao orientador, coorientador(es) e ao programa em que foi defendida a tese; certificado de premiação e medalha para autor; auxílio equivalente a uma participação em congresso internacional para o orientador, no valor de R$ 6 mil; bolsa para realização de estágio pós-doutoral em instituição nacional de até cinco anos para o autor da tese, podendo converter um ano em estágio pós-doutoral fora do país em uma instituição de notória excelência na área de conhecimento do premiado; e U$ 15 mil para o premiado, concedidos pela Fundação Conrado Wessel.

Veja também a entrevista do Boletim da SBPMat com Edroaldo Lummertz da Rocha, publicada na edição 39.

Oportunidade de bolsas de pós-doutorado junto ao DIMARE/INPE.


O grupo DIMARE (Diamante e Materiais Relacionados) do Instituto Nacional de Pesquisas Espaciais (INPE– São José dos Campos) anuncia a disponibilidade de 2 (duas) bolsas de Pós-Doutorado Júnior (PDJ) do CNPq para início imediato, por um período de 12 (doze) meses, com possibilidade de prorrogação. Os bolsistas selecionados desenvolverão os seguintes projetos:

Projeto 1 – Incorporação de nano partículas no crescimento de filmes de DLC para aplicações Espaciais e Biológicas  (1 bolsa).

Projeto 2 – Estudo teórico-experimental da síntese de Diamante-CVD mono e policristalino visando aplicação em conversores termiônicos (1 bolsa).

Requisitos do candidato à bolsa PDJ

O candidato indicado para recebimento da bolsa de pós-doutorado júnior deverá atender aos seguintes requisitos:

a) possuir título de doutor há menos de 7 anos, quando da implementação da bolsa, no caso de proposta aprovada;

b) dedicar-se às atividades programadas;

c) não acumular a presente bolsa com bolsas concedidas por qualquer agência de fomento nacional;

Os interessados devem enviar um e-mail para o Prof. Vladimir Jesus Trava Airoldi (vladimir.airoldi@inpe.br) informando o link para o Currículo Lattes e em qual o projeto gostariam de trabalhar.

Artigo em destaque: Nanopartículas “verdes” para despoluir as águas.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: “Green” colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Alexandra A.P. Mansur, Herman S. Mansur, Fábio P. Ramanery, Luiz Carlos Oliveira, Patterson P. Souza. Applied Catalysis B: Environmental, 158–159 (2014), 269–279. DOI:10.1016/j.apcatb.2014.04.026.

Artigo de divulgação: Nanopartículas “verdes” para despoluir as águas.

Um grupo de pesquisadores de instituições de Minas Gerais desenvolveu nanopartículas triplamente “verdes”. Elas podem ser usadas na purificação de água, um dos grandes desafios globais do século XXI. Além disso, convivem em harmonia com o meio ambiente e com sistemas biológicos e, finalmente, são produzidas por meio de um processo ambientalmente correto.

“Conseguiu-se integrar propriedades e características raras em sistemas nanoestruturados, biocompatibilidade e compatibilidade ambiental, utilizando um processamento ‘verde’”, destaca o professor da Universidade Federal de Minas Gerais (UFMG) Herman Sander Mansur, um dos autores do trabalho.

As partículas desenvolvidas são formadas por “pontos quânticos” (nanocristais semicondutores fluorescentes) de sulfeto de zinco (ZnS) de cerca de 3,8 nm de tamanho, recobertos por “cascas” de quitosana – material abundante e de baixo custo, derivado do esqueleto externo de crustáceos como camarões, caranguejos e siris. O processo de síntese (fabricação) dessas partículas é realizado em apenas uma etapa e conduzido em meio aquoso, sem uso de substâncias tóxicas.

Num estudo realizado pela equipe de pesquisadores, as nanopartículas demonstraram capacidade de degradar pigmentos orgânicos contaminantes usualmente encontrados em águas, usando apenas luz, inclusive radiação solar direta.

“Os resultados foram muito promissores, uma vez que foi possível observar que o sistema produzido foi efetivo na fotodegradação dos contaminantes orgânicos presentes nas soluções aquosas avaliadas”, comenta Herman Mansur, que é o autor correspondente de um artigo sobre a pesquisa, recentemente publicado na revista Applied Catalysis B: Environmental (fator de impacto 6,007).

O trabalho também será objeto de um pedido de patente ao Instituto Nacional da Propriedade Industrial (INPI), cuja redação já foi iniciada pelos autores. “A etapa seguinte deverá ser a busca de potenciais interessados ou parceiros da iniciativa privada no sentido de viabilizar a comercialização futura como produto para o tratamento de águas poluídas por pigmentos orgânicos”, adianta Mansur.

Representação esquemática do sistema nanoestruturado produzido com núcleo de ZnS e casca de quitosana para fotodegradação de poluentes orgânicos em água.

A história do trabalho

Foi durante as discussões científicas que ocorriam nas reuniões mensais da Câmara de Ciências Exatas e dos Materiais da Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) que surgiu a ideia inicial desta pesquisa. De fato, tanto Herman Mansur, coordenador do Centro de Nanociências, Nanotecnologia e Inovação da UFGM, como Luiz Carlos de Oliveira, coordenador de um grupo de pesquisa em materiais avançados para catálise e fotocatálise na mesma universidade, foram membros desse comitê assessor entre fevereiro de 2010 e o mesmo mês de 2014. “A ideia principal foi utilizar a nanotecnologia para o desenvolvimento de soluções ambientais inovadoras para despoluição de água, como um bem cada vez mais escasso no mundo, seja em países desenvolvidos, emergentes ou com baixo desenvolvimento socioeconômico”, lembra Mansur.

Os professores elaboraram então um projeto que agregou a experiência dos dois grupos de pesquisa: a equipe do professor Mansur, dedicada há duas décadas ao desenvolvimento de nanomateriais e nanoestruturas através da síntese de pontos quânticos, e o grupo do professor Oliveira, que vem trabalhando na área de catálise química, na busca de soluções sustentáveis para o tratamento de resíduos industriais.

Desse trabalho inicial surgiu um primeiro artigo sobre nanopartículas com núcleo de sulfeto de cádmio (CdS) e casca de óxido de nióbio: L. C Oliveira et. al. One-pot Synthesis of CdS@Nb2O5 Core-Shell Nanostructures with Enhanced Photocatalytic Activity. Applied Catalysis. B, Environmental, v. 152:53, p. 403-412, 2014 (DOI:10.1016/j.apcatb.2014.01.025).

Na sequência, foi idealizada, projetada e desenvolvida pelo grupo a aplicação do conceito de “química verde” em todo o projeto, gerando as nanopartículas de sulfeto de zinco e quitosana e seu processo de síntese. Na fase seguinte, o trabalho incorporou também a colaboração do professor Patterson P. Souza, do Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), que realizou as análises de espectrometria de massas avaliando a degradação dos pigmentos orgânicos utilizados como modelos de espécies químicas poluidoras.

Prêmios para trabalhos em cerâmicas refratárias.


Pesquisas sobre cerâmicas refratárias realizadas no âmbito do Departamento de Engenharia de Materiais (DEMa) da UFSCar, no grupo coordenado pelo professor Victor C. Pandolfelli, foram contempladas com cinco prêmios durante 2012.

A mais recente das distinções foi outorgada em novembro de 2012 pela Associação Latino-americana de Fabricantes de Refratários (ALAFAR), no XXXVI ALAFAR Congress. Na ocasião, o artigo “High-performance nano-bonded refractories for a wide-temperature range” recebeu o prêmio de melhor trabalho na área de cerâmicas de altas temperaturas. São autores desse trabalho Mariana Braulio (doutora em Ciência e Engenharia de Materiais pela UFSCar), Jorge B. Gallo (gerente da área de Pesquisa, Desenvolvimento e Inovação da Alcoa Alumínio S. A.), Jorivaldo Medeiros (pesquisador do CENPES-Petrobras) e Victor C. Pandolfelli.

“Embora os estudos envolvendo nanopartículas sejam hoje assuntos correntes, é raro o uso e domínio da técnica em larga escala e em produtos com preços compatíveis aos disponíveis no mercado”, explica o professor Pandolfelli. “Este estudo e desenvolvimento alia, portanto, o uso dos fundamentos científicos que possibilitam o uso de nanopartículas em materiais cerâmicos para alta temperatura (entre 800 e 1400°C) e o superior desempenho do produto obtido para uso na unidade de craqueamento catalítico de indústrias petroquímicas e calcinadores para a indústria de alumínio”, completa.

Outro trabalho premiado do grupo foi o artigo “Novel technological route to overcome the challenging magnesia hydration of cement-free alumina castables”, de autoria de Tiago M. Souza, que também é doutor em Ciência e Engenharia de Materiais pela UFSCar, Mariana A. L. Braulio e Victor C. Pandolfelli. O trabalho recebeu, em setembro deste ano, o Gustav Eirich Award 2012 – uma distinção outorgada pela empresa alemã Gustav Eirich Maschinenfabrik e o Centro Europeu de Refratários (ECRef) a trabalhos de pesquisa na área de materiais refratários. A avaliação dos trabalhos é realizada por um júri formado por profissionais europeus de indústrias, universidades e centros de pesquisas.

O artigos vencedores estão em processo de publicação em revistas internacionais.