Artigo em destaque: Uma máquina molecular para combater o câncer.


O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: A reversible, switchable pH-driven quaternary ammonium pillar[5]arene nanogate for mesoporous silica nanoparticles. Santos, ECS ; dos Santos, TC; Fernandes, TS; Jorge, FL; Nascimento, V; Madriaga, VGC ; Cordeiro, PS; Checca, NR; Da Costa, NM; Pinto, LFR; Celia Ronconi. J. Mater. Chem. B, 2020,8, 703-714. https://doi.org/10.1039/C9TB00946A

Uma máquina molecular para combater o câncer 

Em 2016, as menores máquinas já criadas pelo ser humano, as máquinas moleculares ou nanomáquinas, ganharam visibilidade com o Prêmio Nobel de Química. Essas máquinas de dimensões nanométricas, cujas peças são moléculas que realizam movimentos controlados, poderão ajudar a humanidade a realizar importantes tarefas na escala do diminuto.

Na área da saúde, uma dessas tarefas é o combate eficaz a células cancerosas sem danificar os tecidos saudáveis. Sabe-se que um dos principais problemas das terapias mais usadas atualmente é seu efeito adverso nos tecidos sadios – problema que tem levado muitos cientistas a desenvolver diferentes sistemas que possam levar os fármacos diretamente e sem vazamentos até as células cancerosas.

Na Universidade Federal Fluminense (UFF), a professora Célia Machado Ronconi e sua equipe científica trabalham há dez anos no desenvolvimento de nanomáquinas para o tratamento do câncer. Em seu pós-doutorado, realizado entre 2003 e 2005, a cientista aprendeu sobre máquinas moleculares na University of California, Los Angeles (UCLA), em um dos laboratórios mais qualificados do mundo no assunto, o grupo de pesquisa de Sir James Fraser Stoddart, quem, anos depois, seria laureado com o Prêmio Nobel mencionado no início desta matéria junto a Jean-Pierre Sauvage e Bernard L. Feringa.

Em artigo recentemente publicado no Journal of Materials Chemistry B, a professora Célia Ronconi, sua equipe e colaboradores, todos de instituições brasileiras, apresentaram uma nova nanomáquina composta por um reservatório de fármacos e uma tampa. A máquina é capaz de abrir ou fechar a tampa respondendo a mudanças na acidez do meio no qual se encontra.  Quando o pH do meio é similar ao do sangue de um ser humano saudável (meio fisiológico), a tampa permanece fechada, impedindo a saída do fármaco. Quando o pH é mais ácido, como ocorre no entorno de células cancerosas, a tampa abre e o fármaco é liberado. Em testes in vitro (em laboratório), a nanomáquina carregada com uma conhecida droga quimioterápica demonstrou ser mais eficaz do que o fármaco puro na eliminação de células de câncer de mama, destruindo 92% delas em 48 horas.

O destaque desta figura mostra um zoom da nanomáquina carregada com o fármaco (bolinhas verdes), com um dos nanocanais do reservatório e a sua nanotampa fechada, impedindo a saída da droga.
O destaque desta figura mostra um zoom da nanomáquina carregada com o fármaco (bolinhas verdes). No zoom é possível distinguir um dos nanocanais do reservatório fechado pela sua nanotampa, impedindo a saída da droga.

Com essas características, a nanomáquina desenvolvida na UFF mostra potencial para aplicação na entrega de fármacos quimioterápicos em células cancerosas. “Os resultados deste trabalho foram extremamente promissores”, diz a professora Ronconi. “Porém, ainda há muito a ser estudado. As próximas etapas do trabalho serão testar a nanomáquina carregada com o fármaco em outras linhagens de células de câncer de mama, pois nós testamos apenas para uma linhagem (MCF-7). Também testaremos a toxicidade do dispositivo sem o fármaco em células sadias e, se os resultados forem positivos, serão feitos estudos in vivo, usando nesses ensaios camundongos alterados geneticamente para ter o sistema imune deficiente”, comenta.

Montagem e funcionamento da nanomáquina

Para cumprir a função de reservatório, o grupo da UFF sintetizou nanopartículas esféricas de sílica mesoporosa de cerca de 85 nm de diâmetro. Além de ser biocompatível, esse material tem a particularidade de ter uma estrutura interna similar a um favo de mel, com um conjunto de nanocanais de até 4 nm de diâmetro, nos quais as moléculas do fármaco podem ser armazenadas. As nanopartículas foram recobertas com grupos carboxil (- COOH) que melhoraram a interação do reservatório com a sua tampa. Para a tampa, os pesquisadores escolheram o pilarareno, uma molécula artificial formada por cinco anéis aromáticos ou arenos, cuja primeira síntese data de 2008 na literatura científica.

Na montagem e operação da nanomáquina, as interações eletrostáticas de atração controladas pelo pH do meio foram as grandes aliadas da equipe científica da UFF. De fato, conforme confirmaram os pesquisadores em seus experimentos, em uma solução com pH de 7,4, que representa a acidez do sangue saudável, os grupos carboxil (-COOH) que recobrem o reservatório perdem um próton formando grupos carboxilato (-COO-), negativamente carregados, os quais interagem eletrostaticamente com a tampa positivamente carregada. Dessa maneira, a atração eletrostática aproxima as duas peças da nanomáquina até impedir a saída do fármaco. Ao diminuir o pH, ou seja, ao tornar a solução mais ácida, os grupos carboxilato (-COO-) ganham prótons, neutralizando sua carga. Em consequência, a atração eletrostática entre a tampa e o reservatório se desfaz, a tampa abre e o fármaco é liberado.

Funcionamento da nanomáquina carregada com o fármaco (bolinhas cor de rosa).À esquerda, o pH fisiológico mantém as tampas fechando os nanocanais do reservatório e impedindo o vazamento do fámaco. À direita, o meio mais ácido gera o afastamento das tampas e o fármaco é liberado.
Funcionamento da nanomáquina carregada com o fármaco (bolinhas cor de rosa). À esquerda, em pH fisiológico, as tampas fecham os nanocanais do reservatório. À direita, o meio mais ácido gera o afastamento das tampas e o fármaco é liberado.

Nos experimentos realizados, o grupo da UFF conseguiu liberar a droga quimioterápica parcialmente (34%) em um pH de 5,5 (provavelmente similar ao do entorno de células cancerosas) e quase totalmente (91%) em um meio com acidez de 2,0. Todos os experimentos foram realizados a uma temperatura de 37 °C, similar à do corpo humano.

História do trabalho 

Desde 2009, ano em que se tornou professora da UFF e montou o Laboratório de Química Supramolecular e Nanotecnologia, a professora Célia Ronconi tem trabalhado nas diversas fases do desenvolvimento de diferentes nanomáquinas e sistemas de transporte e liberação de fármacos, utilizando estímulos químicos, magnéticos e luminosos. Durante o doutorado de Evelyn da Silva Santos, sob orientação de Ronconi, um protótipo de nanomáquina foi desenvolvido usando material disponível no mercado. Entretanto, novos estudos realizados depois da defesa do doutorado, que ocorreu em 2018, mostraram que as nanopartículas usadas como reservatórios formavam aglomerados no meio fisiológico (a solução que emula o sangue nos experimentos). Dessa forma, a professora Ronconi envolveu o pós-doc Thiago Custódio dos Santos e a doutoranda Tamires Soares Fernandes no desenvolvimento de um novo material. “Eles deram continuidade ao projeto e sintetizaram um material com excelente dispersão no meio fisiológico e o dispositivo foi refeito, bem como os estudos de liberação do fármaco”, conta a professora. Os testes biológicos da nanomáquina foram realizados no grupo de carcinogênese molecular do INCA, por meio dos pesquisadores Luis Felipe Ribeiro Pinto e Nathália Meireles da Costa, e da técnica Fernanda Jorge. O estudo também contou com a participação do Centro Brasileiro de Pesquisas Físicas (CBPF) na caracterização dos materiais por técnicas de microscopia, realizada no Laboratório Multiusuário de Nanociência e Nanotecnologia (LABNANO). A pesquisa recebeu financiamento das agências CNPq (Projeto Universal), CAPES (Bolsas de Estudo) e FAPERJ (Programas Instituições Sediadas no RJ e Cientista do Nosso Estado).

Os autores principais do trabalho. A partir da esquerda: Evelyn Santos, Thiago Custódio, Tamires Soares e Célia M. Ronconi.
Os autores principais do trabalho. A partir da esquerda: Evelyn Santos, Thiago Custódio, Tamires Soares e Célia M. Ronconi.

Boletim da SBPMat – edição 46.


 

Saudações %primeiro_nome%!

Edição nº 46 – 30 de junho de 2016 

XV Encontro da SBPMat/ XV Brazil-MRS Meeting - Campinas (SP) 25-29/09/2016 

Cerca de 2.000 resumos foram recebidos pelo XV Encontro da SBPMat.

Inscrições: Estão abertas as inscrições para participar do evento. Valores com desconto até 31 de agosto. Aqui.

Programação: Dois tutoriais serão oferecidos no dia 25 de setembro à tarde aos inscritos no evento, sem custo adicional. Um deles é sobre simulações computacionais de sistemas de átomos usando Reactive Force Fields (teoria e prática). O segundo, organizado pelo prof. Valtencir Zucolotto, abordará capacidades necessárias para fazer ciência de alto impacto, inclusive escrita científica. Reserve sua vaga no momento da inscrição.

Autores: As notificações de aceitação de trabalhos serão enviadas aos autores até 10 de julho. 

Prêmios: Interessados em concorrer ao prêmio do evento para estudantes, o Bernhard Gross Award, que distinguirá até um oral e um pôster de cada simpósio, devem submeter um resumo estendido até 22 de agosto. Saiba mais nas instruções para autores.

Publicação de contribuições apresentadas: Os trabalhos apresentados no XV Encontro da SBPMat poderão ser submetidos por seus autores a avaliação por pares para publicação em periódicos científicos do IOP. Saiba mais. 

Auxílio à participação no evento: doutores de São Paulo podem participar da solicitação de auxílio coletivo à FAPESP. Inscrição até 03 de julho. Aqui.

Expositores: Mais de 30 empresas já garantiram sua participação como expositoras do evento. Outras empresas interessadas em participar do encontro com estandes e outras formas de divulgação devem entrar em contato com Alexandre, no e-mail comercial@sbpmat.org.br.

Plenárias: Veja os resumos das palestras plenárias e palestra memorial do nosso evento e os CVs dos cientistas que vão proferi-las. Aqui.

Hospedagem e passagens: Lista da agência de turismo Follow Up com hotéis, albergues, pousadas e formulário para reserva de vôos. Aqui.

Pacotes turísticos: O site da Follow Up também sugere opções de pacotes turísticos para antes e depois do evento. Aqui.

Local do evento: Veja vídeo sobre a cidade de Campinas e folder sobre o centro de convenções Expo D. Pedro. 

Organizadores: Coordenam esta edição do evento as professoras da Unicamp Ana Flávia Nogueira (Instituto de Química) e Mônica Alonso Cotta (Instituto de Física “Gleb Wataghin”). Saiba quem são os membros da comissão local e veja fotos dos organizadores, aqui.


Artigo em destaque 

Um trabalho de nanomedicina realizado na UFG aponta que nanopartículas magnéticas menores de 10 nm e compostas por mais de um material são nanoaquecedores ótimos para uso no tratamento do câncer por hipertermia. Para chegar nessas conclusões, os dois autores do estudo se basearam em diversas evidências, entre elas, estudos in vivo e resultados obtidos por meio de um método teórico inovador que eles mesmos desenvolveram. O trabalho foi reportado num artigo publicado na Nanoscale. Veja nossa matéria de divulgação.

Gente da nossa comunidade

Entrevistamos o professor Sidney Ribeiro (UNESP), empossado membro titular da Academia Brasileira de Ciências em maio. Ribeiro tem uma atuação forte não apenas na pesquisa científica, onde é autor de estudos de impacto sobre materiais contendo íons terras raras com aplicações em fotônica e biomedicina, mas também na formação de pesquisadores (mais de cem trabalhos orientados) e na transformação de pesquisa em produtos. Na mensagem aos cientistas mais jovens, falou sobre o gosto pela ciência, o qual é natural nas crianças, deve ser preservado pelo sistema educacional e transforma o trabalho do pesquisador em hobby. Veja nossa entrevista com o pesquisador. 

O professor Fernando Lázaro Freire Junior, ex-presidente da SBPMat, tomou posse da função de diretor do Departamento de Física da PUC-Rio. Saiba mais.
Entrevistas com palestrantes do XV Encontro da SBPMat
Plantas e animais constituem uma importante fonte de conhecimento e inspiração para o professor Lei Jiang e seu grupo. Em seus laboratórios do Instituto Técnico de Física e Química, em Pequim (China), eles desenvolvem materiais inteligentes, como por exemplo interfaces que passam de superhidrofilia à superhidrofobia. As descobertas do professor Lei Jiang, além de gerarem publicações que receberam dezenas de milhares de citações, originaram produtos que já são amplamente usados. Saiba mais sobre este cientista chinês,  seu modo de fazer ciência, suas descobertas e seu conceito científico e filosófico de materiais complementares cooperativos binários. Aqui.
Especial: inventores do AFM laureados com o Kavli Prize
Gerd Binnig (IBM Zurich Research Laboratory, Suíça), Christoph Gerber (University of Basel, Suíça) e Calvin Quate (Stanford University, EUA) foram eleitos para receber o Kavli Prize 2016 de nanociência em reconhecimento à criação do microscópio de força atômica. O AFM (de atomic force microscopy) fez e ainda faz avançar a nanociência e a nanotecnologia pelas possibilidades que oferece de estudar e modificar superfícies com resolução/precisão atômica. Saiba mais.
Dicas de leitura
  • Primeiro ímã estável de apenas 1 átomo abre possibilidades de armazenar e processar informação em escala atômica (divulgação de paper da Science). Aqui.
  • Biomineralização: Cientistas elucidam origem da dureza de biominerais como a calcita, ligada à incorporação de impurezas (divulgação de paper da Nature Materials). Aqui. 
  • A Thomson Reuters disponibilizou seu relatório anual de fatores de impacto de periódicos científicos. Veja alguns destaques de revistas de Materiais selecionados pelos sites Materials Today (Elsevier) e Materials Views (Wiley).
Próximos eventos da área
  • Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications (PCNSPA Conference 2016). São Petersburgo (Rússia). 27 de junho a 1 de julho de 2016.  Site.
  • 1st International Symposium on Advanced Photonic Materials. São Petersburgo (Rússia). 27 de junho a 1º de julho de 2016. Site.
  • XXV International Conference on Raman Spectroscopy (ICORS2016). Fortaleza, CE (Brasil). 14 a 19 de agosto de 2016. Site.
  • 26ª edição da Reunião Anual dos Usuários (RAU) do Laboratório Nacional de Luz Síncrotron (LNLS). Campinas, SP (Brasil). 24 a 25 de agosto de 2016. Site.
  • XV Encontro da SBPMat. Campinas, SP (Brasil). 25 a 29 de setembro de 2016. Site.
  • Aerospace Technology 2016. Estocolomo (Suécia). 11 a 12 de outubro de 2016. Site.
      
Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails.

 

Artigo em destaque: Melhores nanoaquecedores para tratar o câncer.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer? Marcus S. Carrião, Andris F. Bakuzis. Nanoscale, 2016,8, 8363-8377. DOI: 10.1039/C5NR09093H.

Os autores do artigo da Nanoscale: à esquerda de quem olha, o professor Andris Bakuzis e à direita, o doutorando Marcus Carrião dos Santos.

A hipertermia, enquanto tratamento do câncer, é um aumento de temperatura capaz de acionar processos de morte nas células tumorais. Uma das vias para gerar essa alta temperatura é a introdução nos tumores de nanopartículas que funcionam como aquecedores e, depois de cumprirem com a sua função, são eliminadas pelo organismo. Nanopartículas magnéticas podem ser utilizadas nesses tratamentos por terem a capacidade de gerar calor quando submetidas a um campo magnético oscilante de intensidade e frequência adequadas.

Um trabalho de nanomedicina (nanotecnologia para uso em medicina) totalmente realizado na Universidade Federal de Goiás (UFG) sugere uma nova estratégia para o tratamento do câncer por meio de hipertermia: utilizar nanopartículas magnéticas menores do que as normalmente usadas e compostas por mais de um material, as quais apresentariam uma série de vantagens para o paciente. Para chegar nessa conclusão, os autores da pesquisa desenvolveram um método teórico inovador que aponta caminhos para a fabricação de nanopartículas magnéticas do tipo proposto, otimizadas para a hipertermia. O estudo foi reportado num artigo publicado no prestigiado periódico Nanoscale, assinado pelo doutorando Marcus Carrião dos Santos e seu orientador Andris Figueiroa Bakuzis, professor do Instituto de Física da UFG.

Em geral, tratamentos do câncer por hipertermia utilizam nanopartículas homogêneas (feitas de um único material) relativamente grandes, da ordem de 20 nm, que são consideradas as mais eficientes na geração de calor de acordo com estudos baseados em métodos teóricos tradicionais. Entretanto, essas nanopartículas “grandes” se acumulam rapidamente no fígado e podem levar vários meses, e até anos, para sair do organismo do paciente em tratamento. Por sua vez, as nanopartículas menores de 10 nm são eliminadas rapidamente pela urina, diminuindo as possibilidades de intoxicação e, assim, ampliando as opções de materiais que podem ser usados para fabricá-las.

A relação entre o tamanho das partículas e a via de excreção (hepática ou renal) foi uma conclusão à qual Bakuzis e seus colaboradores chegaram a partir de evidências reportadas na literatura científica e de estudos pré-clínicos (in vivo) realizados no contexto de uma rede de pesquisa multidisciplinar, coordenada por Bakuzis, dedicada a resolver problemas associados à utilização de nanopartículas magnéticas para o tratamento do câncer.

Além disso, nanopartículas menores apresentam melhor distribuição e penetração nos tumores, entre outras vantagens no contexto do tratamento do câncer.

Cientes dessas características, Bakuzis e dos Santos pesquisaram a possibilidade de fabricar nanopartículas de menos de 10 nm que conseguissem gerar calor com eficiência. Uma importante inspiração veio de um artigo publicado em 2011 na revista científica Nature Nanotechnology (Nat. Nanotech. 6, 418 (2011)). “Neste artigo os pesquisadores concluíram experimentalmente que determinadas estruturas core-shell heterogêneas (feitas de materiais distintos) a base de ferritas do tipo espinélio aqueciam de forma mais eficiente que partículas homogêneas”, relata o professor Bakuzis.

Este esquema, fornecido pelos autores do artigo, resume o processo de hipertermia por nanopartículas magnéticas e compara as nanopartículas convencionais com as propostas pelos pesquisadores da UFG, mostrando as principais vantagens das últimas para aplicação em tratamento do câncer por hipertermia.

A dupla de cientistas decidiu então estudar teoricamente se nanopartículas de menos de 10 nm formadas por um núcleo de um material e uma casca de outro material poderiam gerar calor de maneira eficiente e como otimizá-las para essa função. Entretanto, os métodos convencionais disponíveis para fazer essa modelagem não eram adequados. De fato, eles consideravam a nanopartícula como uma entidade homogênea, desprezando o fato de que os átomos da superfície e os do núcleo respondem diferentemente à aplicação do campo magnético. Essa omissão tornava-se mais significativa no caso do estudo de partículas particularmente heterogêneas como aquelas que a dupla pretendia estudar, motivo pelo qual os pesquisadores de Goiás encararam o desenvolvimento de um modelo mais adequado ao objeto de estudo. “No artigo apresentamos o primeiro modelo analítico de hipertermia em nanopartículas core-shell dentro da teoria de resposta linear e campo médio, e, a partir destes cálculos, apontamos importantes propriedades de materiais para alcançar uma geração de calor eficiente”, diz Bakuzis.

Os resultados publicados no artigo, obtidos por dois cientistas formados em física, poderão ter um impacto significativo num tema do campo da saúde que preocupa a humanidade, a cura do câncer. “Nossos estudos indicam que é possível desenvolver partículas pequenas para o tratamento oncológico que possam ser eliminadas rapidamente do corpo por meio desta rota renal. Em particular, por meio da combinação de diferentes materiais na nanoestrutura”, resume Bakuzis.

Para trabalhar com impacto nesse tema de interface, Bakuzis está sempre em contato com conhecimento de diversas áreas. Além de liderar a rede multidisciplinar de nanomedicina que inclui pesquisadores com formação em biologia tumoral, genética, fisiologia, farmácia, medicina veterinária, biofísica, física, física medica e química, o professor e seu grupo participam ativamente de eventos científicos que reúnem diversos profissionais, inclusive médicos com várias especializações que já utilizam a hipertermia em humanos para tratamento do câncer. “Estes contatos científicos são fundamentais em áreas de interface como a que nosso grupo atua”, conclui Bakuzis.

A pesquisa que gerou o artigo na Nanoscale recebeu financiamento do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) e foi realizada como parte do trabalho de doutorado de Marcus Carrião dos Santos.

Grande Prêmio Capes de Tese para vencedor do prêmio da área de Materiais.


Como Edroaldo está fazendo pós-doutorado nos Estados Unidos, foi representado na cerimônia por seu pai (a quinta pessoa a partir da esquerda). (Foto: Haydée Vieira – CCS/Capes)

O Grande Prêmio Capes de Tese 2015 no grupo de Engenharias, Ciências Exatas e da Terra e Multidisciplinar foi outorgado à tese de doutorado vencedora do Prêmio Capes de Tese 2015 na área de Materiais, intitulada “Interações nanopartícula-células e biomaterial-células induzem mudanças globais em programas de expressão de genes”. A tese foi defendida em 2014 por Edroaldo Lummertz da Rocha para obtenção de diploma de doutor pelo Programa de Pós-Graduação em Ciência e Engenharia de Materiais da Universidade Federal de Santa Catarina (UFSC). O prêmio foi entregue em cerimônia realizada no dia 10 de dezembro na sede da Capes, em Brasília.

O Grande Prêmio seleciona a melhor tese de cada uma das três grandes áreas de avaliação da Capes.  Para concorrer ao Grande Prêmio, os autores vencedores do Prêmio Capes de Tese devem apresentar à Capes uma vídeo-aula com duração de 20 a 30 minutos, destinada a estudantes de ensino médio, abordando o tema da tese de forma apropriada para o público-alvo.

Em seu vídeo, Edroaldo apresentou as contribuições de sua pesquisa de doutorado ao desenvolvimento de nanoestruturas que, introduzidas no corpo humano, podem ter efeitos terapêuticos contra o câncer e, ao mesmo tempo, geram menos efeitos colaterais do que os métodos mais utilizados atualmente (cirurgia, quimioterapia e radioterapia). Para apresentar essas contribuições, o vídeo explica conceitos como o de câncer e o de bionanotecnologia. O vídeo também aborda o desenvolvimento do software CellNet, do qual Edroaldo participou durante seu doutorado, que auxilia na investigação da transformação de células de um tipo em outro tipo (por exemplo, células-tronco em outras células ou células da pele em células do coração). Veja aqui a vídeo-aula preparada por Edroaldo e também os vídeos dos demais candidatos ao Grande Prêmio.

O Grande Prêmio Capes de Tese consiste em passagem aérea e diária para o autor e um dos orientadores da tese premiada para que compareçam à cerimônia de premiação; certificado de premiação ao orientador, coorientador(es) e ao programa em que foi defendida a tese; certificado de premiação e medalha para autor; auxílio equivalente a uma participação em congresso internacional para o orientador, no valor de R$ 6 mil; bolsa para realização de estágio pós-doutoral em instituição nacional de até cinco anos para o autor da tese, podendo converter um ano em estágio pós-doutoral fora do país em uma instituição de notória excelência na área de conhecimento do premiado; e U$ 15 mil para o premiado, concedidos pela Fundação Conrado Wessel.

Veja também a entrevista do Boletim da SBPMat com Edroaldo Lummertz da Rocha, publicada na edição 39.

Artigo científico em destaque: Feitos um para o outro.


O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

Uéslen Rocha, Carlos Jacinto da Silva, Wagner Ferreira Silva, Ilde Guedes, Antonio Benayas, Laura Martínez Maestro, Mónica Acosta Elias, Enrico Bovero, Frank C. J. M. van Veggel, José Antonio García Solé, and Daniel Jaque. Subtissue Thermal Sensing Based on Neodymium-Doped LaF3 Nanoparticles. ACS Nano, 2013, 7 (2), PP. 1188-1199. DOI: 10.1021/nn304373q.

 

Texto de divulgação: Feitos um para o outro.

Uma equipe de pesquisadores de instituições do Brasil, Canadá, Espanha e México reuniu as competências necessárias para realizar um trabalho de nanobiofotônica e avançar em suas aplicações biológicas, no campo da saúde. Os resultados da pesquisa foram publicados na edição de fevereiro do periódico ACS Nano.

Os cientistas analisaram diversas propriedades de nanopartículas de fluoreto de lantânio dopadas com neodímio (Nd3+:LaF3), provando que elas são sumamente adequadas para uma série de aplicações, principalmente para usá-las como nanotermômetros que atuam dentro de tecidos biológicos.

Realizar o monitoramento da temperatura dentro dos tecidos é essencial, por exemplo, em tratamentos contra o câncer que se baseiam no aquecimento (hipertermia) das células cancerígenas com o objetivo de matá-las ou enfraquecê-las. Nesses tratamentos por hipertermia, a temperatura local deve ser controlada de maneira precisa para minimizar os danos colaterais que podem se produzir nos tecidos saudáveis próximos ao alvo do tratamento.

O conhecimento da temperatura local dos tecidos também é uma ferramenta importante no diagnóstico precoce do câncer, desde que os tumores apresentam temperaturas singulares que, se detectadas, permitem localizá-los em estágios iniciais de desenvolvimento.

As nanopartículas

As nanopartículas de fluoreto de lantânio são sintetizadas de uma forma bastante simples e rápida e possuem um conjunto de propriedades interessantes. “É importante salientar que essas nanopartículas foram desenvolvidas e estudadas por nós buscando uma potencial aplicação biológica devido às suas propriedades ópticas”, destaca um dos autores do artigo, o professor Carlos Jacinto, da Universidade Federal de Alagoas (UFAL).

As nanopartículas em questão têm íons luminescentes (emitem fótons quando absorvem radiação), sendo os íons emissores os Nd3+ (neodímio). Quando estão em interação com sistemas biológicos, as emissões desse íon têm um desempenho notável em termos de luminescência, já que os fótons emitidos apresentam reduzidos efeitos de absorção por tecidos, água e sangue e sofrem pouco espalhamento dentro do tecido. Naturalmente, essas emissões dependem da matriz onde o íon está. Neste caso, o fluoreto de lantâneo (LaF3) apresenta certas propriedades que favorecem as emissões. Essas propriedades ópticas do íon podem ser ainda mais otimizadas acrescentando ao núcleo (core) dopado com terras raras (no caso, o neodímio) uma casca (shell) não dopada, sistema cientificamente conhecido como core-shell (sendo Nd3+:LaF3 o core, e LaF3 o shell).

Outra vantagem do sistema estudado é que ele não exige muita potência da fonte de radiação para ser excitado. “Os níveis de potências exigidos são mínimos e podemos usar lasers de diodo CW, que são baratos e comerciais”, afirma o professor Jacinto.

Além de terem bom desempenho luminescente em tecidos biológicos, as nanopartículas pesquisadas apresentam uma destacada capacidade como sensores térmicos, ou nanotermômetros. O princípio de funcionamento desses nanotermômetros se baseia na modificação de seu espectro de luminescência devido às variações térmicas. Assim, a análise do espectro gerado pela nanopartícula fornece informação sobre a temperatura local do sistema biológico na qual está incorporada, como ilustra esta figura:

Espectros de fotoluminescência em torno de 864 nm, das nanopartículas de LaF3 dopadas com Nd3+ nas temperaturas de 10 e 60 °C. Nota-se o deslocamento espectral relacionado à temperatura. Figura extraída do artigo científico em questão (Rocha et al. ACS Nano, 2013, 7, 1188).

Feitos um para o outro

Uma das descobertas mais positivamente surpreendentes veio quando a equipe de cientistas verificou experimentalmente que existia uma coincidência entre os comprimentos de onda bem aceitos pelo tecido biológico e os que possibilitavam uma boa excitação (cerca de 800 nm) e emissão de luminescência (cerca de 870 nm) por parte das nanopartículas. Essa característica permitiu que os pesquisadores obtivessem uma excitação e uma captação da emissão a uns 2 mm de profundidade dentro do tecido, o que pode ser considerado uma boa penetração.

Mais uma feliz coincidência foi apontada durante a pesquisa quando os cientistas observaram uma boa sensibilidade térmica das nanopartículas com relação às temperaturas da chamada “região biológica” (de 20 a 45 °C). Outros materiais apresentam essa sensibilidade (deslocamento espectral) com temperaturas muito altas ou muito baixas, não compatíveis com sistemas biológicos.

A partir dessa série de compatibilidades das nanopartículas de fluoreto de lantânio com tecidos biológicos, a equipe continuou avançando em seu uso em tratamentos por hipertermia.

Os cientistas montaram um aparato experimental composto por nanobastões de ouro agindo como aquecedores de tecidos e as nanopartículas em questão atuando como termômetros para monitorar a temperatura da hipertermia gerada. Nos experimentos foi usado, no lugar do tecido biológico, um material produzido artificialmente para imitar as propriedades ópticas de um tecido humano – um tecido fantoma.

O sistema apresentou mais uma característica muito positiva: tanto os nanotermômetros quanto os nanoaquecedores foram excitados de maneira eficiente e simultânea pela mesma radiação (de 808 nm de comprimento de onda) proveniente de um laser que foi direcionado para eles usando uma objetiva de microscópio. A luminescência gerada pelos nanotermômetros foi coletada com a mesma objetiva do microscópio, contribuindo com o caráter compacto do aparato experimental.

Representação esquemática do aparato experimental de hipertermia controlada. Um feixe de luz laser em 808 nm é focalizado numa solução aquosa contendo os nanobastões de ouro e as nanopartículas de Nd3+:LaF3. A solução é colocada debaixo de um tecido fantoma de 1 mm. Figura extraída do artigo científico em questão (Rocha et al. ACS Nano, 2013, 7, 1188).

Dessa maneira, os cientistas conseguiram provar a viabilidade de um sistema simples e, em princípio, econômico para hipertermia de tecidos biológicos com acompanhamento da temperatura em tempo real.

A equipe de trabalho

“Este é um trabalho científico bem completo na área de nanobiofotônica, ou seja, requer conhecimentos de fotônica, nanomateriais, sínteses, espectroscopia, biomedicina etc.”, afirma o professor Carlos Jacinto. Para a publicação do artigo na ACS Nano, a rede de cooperação científica montada para atender esses requerimentos incluiu grupos das seguintes instituições: a Universidade Federal de Alagoas (Brasil), que contribuiu com as medidas fototérmicas e espectroscópicas; a Universidade de Victoria (Canadá), na síntese dos nanomateriais; a Universidade Autônoma de Madrid (Espanha), com medidas espectroscópicas nos tecidos fantoma; a Universidade Federal do Ceará (Brasil), com algumas medidas espectroscópicas em aparelhos de alta sensibilidade, e a Universidade de Sonora (México), por meio da participação de uma pesquisadora na síntese dos tecidos fantoma.

O primeiro autor, Uéslen Rocha, é estudante de doutorado do professor Carlos Jacinto e foi o principal executor das medidas, muitas delas realizadas no marco de seu doutorado sanduíche na Universidade Autônoma de Madrid (UAM), instituição com a qual o professor Jacinto colabora desde 2005. “A UAM com seu quadro excelente e completo de pesquisadores em várias áreas tem possibilitado fazermos trabalhos bem mais completos”, comenta o professor.

Com o grupo da Universidade de Victoria, as colaborações iniciaram com o interesse do professor van Veggel, especialista em síntese de nanopartículas de fluoreto de lantânio dopadas com terras raras, nos trabalhos do professor Jacinto em medidas quantitativas de eficiência quântica de fluorescência usando técnica fototérmica. Atualmente, a síntese dos nanomateriais é feita na UFAL.

Continuidade da pesquisa

O professor Carlos Jacinto relata que a equipe chegou a investigar o nível de toxicidade do material das nanopartículas. “Vimos que ele é desprezível, sugerindo sua biocompatibilidade”, diz. “Também já fizemos experimentos in vivo e in vitro em outro trabalho, que está submetido para publicação e que contou com a participação de pesquisadores da área biomédica”, comenta. Porém, de acordo com o professor da UFAL, para se chegar à introdução das nanopartículas e nanobastões em seres humanos “muito precisa ser feito ainda, pois existem várias etapas, inclusive burocráticas, para serem vencidas”.

A importância do trabalho feito já tem sido reconhecida não somente pela publicação na prestigiada revista ACS Nano, mas também pelo destaque recebido na Chemical & Engineering News (C&E News).