|
|
Na edição 2016, o Kavli Prize–Nanoscience foi concedido a três cientistas que criaram o microscópio de força atômica: Gerd Binnig (IBM Zurich Research Laboratory, Suíça), Christoph Gerber (University of Basel, Suíça) e Calvin Quate (Stanford University, EUA). O prêmio Kavli é outorgado desde 2008 nas áreas de Astrofísica, Nanociência e Neurocências pela Fundação Kavli, a Academia Norueguesa de Ciências e Letras e o Ministério Norueguês de Eduação e Pesquisa.
O microscópio de força atômica (AFM na sigla em inglês), criado na metade da década de 1980, foi o primeiro instrumento que possibilitou tornar visíveis ao olho humano os detalhes de materiais de todos os tipos com resolução de menos de um nanometro (da ordem dos angstroms). Mais recentemente, o instrumento também tem sido utilizado para manipular superfícies com precisão atômica, ao retirar, colocar, trocar ou empurrar átomos, um por um, com a ponta do microscópio.
De acordo com o material de divulgação do site do Kavli Prize, a história do microscópio de força atômica se remonta ao ano 1981, quando o físico alemão Gerd Binnig, junto a Heinrich Rohrer e outros colaboradores criaram, nos laboratórios da IBM em Zürich (Suíça), o microscópio de varredura por tunelamento (STM em inglês), o primeiro instrumento que conseguiu mostrar como é a matéria na escala nanométrica, com resolução de poucos nanometros. O STM, contudo, tinha uma séria limitação: só podia ser usado com amostras de materiais condutores. Binnig ficou pensando em modificações desse microscópio que permitissem superar esse empecilho.
Em 1985, ele depositou o pedido de patente do AFM, que conseguiria fazer imagens de amostras de todos os tipos. Em seguida, convocou dois cientistas com quem tinha trabalhado no desenvolvimento do STM (Gerber e Quate). Juntos montaram o primeiro AFM e com ele fizeram os primeiros experimentos, cujos resultados foram publicados no periódico Physical Review Letters em março de 1986.
Depois de três décadas de desenvolvimento da técnica e do instrumento, a microscopia de força atômica conta com diversos modos de uso, novos instrumentos derivados e novos campos de aplicação (inclusive nas Ciências Biológicas).
Mais informações sobre o AFM e seus realizadores no site do Kavli Prize: http://www.kavliprize.org/prizes-and-laureates/prizes/2016-kavli-prize-nanoscience
O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride. Oliveira, Camilla K.; Gomes, Egleidson F. A.; Prado, Mariana C.; Alencar, Thonimar V.; Nascimento, Regiane; Malard, Leandro M.; Batista, Ronaldo J. C.; de Oliveira, Alan B.; Chacham, Helio; de Paula, Ana M.; Neves, Bernardo R. A. Nano Research. 2015, 8(5): 1680–1688. DOI: 10.1007/s12274-014-0665-y.
Origamis nanométricos: deformação organizada de materiais bidimensionais.
Camilla Oliveira estava na Universidade Federal de Minas Gerais (UFGM) estudando amostras de nitreto de boro hexagonal (h-NB) com um microscópio de força atômica (AFM), no marco de seu doutorado em Física, quando uma particularidade das amostras controle chamou a atenção dela e de seu orientador, o professor Bernardo Neves. Após passar por um tratamento térmico (annealing), o h-NB tinha ganhado dobras nanométricas dispostas num padrão geométrico que parecia seguir algum tipo de organização.
Os pesquisadores decidiram estudar essas dobras mais detalhadamente. Eles tinham uma pergunta importante para responder: existia alguma relação entre a disposição das dobras e a estrutura cristalina do h-NB?. Em outras palavras, tinham essas dobras uma orientação cristalográfica? Até o momento, não havia registros na literatura científica de materiais bidimensionais com dobras com orientação cristalográfica, mas essa propriedade poderia ser útil.
Camilla e seu orientador se uniram a outros cientistas da UFMG e da Universidade Federal de Ouro Preto (UFOP) para realizar a pesquisa. A equipe fabricou amostras formadas por algumas camadas de h-NB ancoradas sobre um substrato de silício e as submeteu a um tratamento térmico consistente em aquecimento a 1.000 °C e posterior resfriamento. Durante esse tipo de processo, o silício e o nitreto de boro apresentam comportamentos opostos entre si com relação à deformação. Em decorrência do aquecimento, enquanto o h-NB se contrai, o silício se expande, esticando o h-NB. Já no resfriamento, o h-NB expande e o silício contrai, dobrando o nitreto de boro como papel de origami.
Depois de muito trabalho experimental usando diversas técnicas e abordagens, e de várias simulações, os cientistas puderam confirmar que as dobras formavam-se em direções bem definidas dentro da rede cristalina. Analisando em detalhe o padrão de dobras, os cientistas repararam nas junções de formato triangular nas quais as dobras (geralmente três delas) se uniam.
Detalhe: segundo comprovaram os cientistas de Minas Gerais, para que sejam formados padrões de dobras com orientação cristalográfica, o tratamento térmico deve consistir em um aquecimento rápido seguido de um esfriamento lento (por exemplo, citando as taxas usadas na pesquisa, de 50 °C por minuto para aquecer e 8 °C por minuto para resfriar). Taxas de esfriamento mais rápidas produzem dobras dispostas de maneira desordenada e sem orientação cristalográfica.
Os pesquisadores também concluíram que esse tipo de deformação organizada poderia acontecer não apenas com o h-NB, mas também com outros materiais bidimensionais, como o grafeno, e que poderia ter interessantes aplicações na “straintrônica” (straintronics) – área do conhecimento que estuda e explora a condição de alguns materiais de ter algumas de suas propriedades profundamente alteradas em consequência de processos de deformação.
Os resultados do trabalho foram recentemente publicados pelo prestigiado periódico científico Nano Research.
“Na minha opinião, a principal contribuição do artigo é mostrar uma propriedade que pode ser comum a muitos materiais bidimensionais: a deformação organizada, isto é, em direções cristalográficas bem definidas, de um material na escala nanométrica”, resume o professor Neves, que é o autor correspondente do artigo.
A pesquisa contou com financiamento da Capes, CNPq, Fapemig e do INCT-Nanocarbono.
O Centro de Tecnologia em Nanotubos de Carbono (CTNanotubos) está realizando um processo de seleção para bolsista de pós-Doutorado na área de Caracterização. O foco do CTNanotubos é o desenvolvimento tecnológico – de produtos, processos e serviços – a partir dos naotubos de carbono, material de destacada importância estratégica para a competitividade de múltiplas indústrias. A visão do CTNanotubos é servir como plataforma para a contínua geração de sociedades empresárias, a partir da transferência de tecnologia.
Detalhes sobre o processo:
– Área de atuação: Caracterização
– Regime: Bolsista Pós-Doutorado
– Pré-requisito: Doutorado
– Valor da Bolsa: R$ 4.176,00
– Vigência: 36 meses
As técnicas a serem utilizadas inicialmente são:
– Espectroscopias ópticas (Raman, IR, UV-vis)
– Microscopia eletrônica de varredura (MEV)
– Microscopia de força atômica (AFM)
– Análise termogravimétrica (TGA)
– Difração de raios X
Procuramos por profissionais com doutoramento completo que possuam experiência prévia em pelo menos três das técnicas descritas acima (não necessariamente especialistas). As funções a serem exercidas pelo profissional são:
– Realização de ensaios e análises
– Confecção de relatórios
– Confecção de projetos de pesquisa
– Acompanhamento e atuação em em órgãos relacionados à padronização (ABNT, ISO, VAMAS, NANOREG, outros).
– Atuação junto ao INMETRO para processos de acreditação.
Os interessados devem enviar um email para cancado@fisica.ufmg.br, contendo uma breve carta de apresentação (máximo de duas páginas) e link para o CV Lattes. A data limite para a inscrição é 20/07/2015. Os candidatos pré-selecionados serão convidados para uma entrevista junto à Coordenação do CT-Nanotubos. Previsão de contratação para agosto/2015.