Artigo em destaque: Nanotubos que se espiralam ao som de tango ou chorinho.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Defect-Free Carbon Nanotube Coils. Nitzan Shadmi, Anna Kremen, Yiftach Frenkel, Zachary J. Lapin, Leonardo D. Machado, Sergio B. Legoas, Ora Bitton, Katya Rechav, Ronit Popovitz-Biro, Douglas S. Galvão, Ado Jorio, Lukas Novotny, Beena Kalisky, and Ernesto Joselevich. Nano Lett., 2016, 16 (4), pp 2152–2158. DOI: 10.1021/acs.nanolett.5b03417.

Nanotubos que se espiralam ao som de tango ou chorinho

Entre as numerosas aplicações que se vislumbram para os nanotubos de carbono, constam alguns dispositivos nanoeletrônicos que aproveitariam a excelente capacidade de conduzir a eletricidade que os diminutos tubos de grafeno podem apresentar. Para que os nanotubos tenham um bom desempenho em algumas aplicações desse tipo, um dos formatos mais adequados seria o espiralado, formado por um nanotubo único, com suas duas pontas livres de modo a poder fazer contato com outros componentes dentro de um dispositivo. Além disso, para não perder condutividade, a bobina de nanotubo deveria apresentar baixa densidade de defeitos estruturais.

Contudo, na prática, conseguir que tubinhos de 1 nm de diâmetro se enrolem em espirais sem gerar imperfeições e deixando suas pontinhas separadas do feixe não é tarefa simples para o ser humano.

Capa da Nano Letters. Representação de uma espiral formada por um único nanotubo de carbono enrolado. Acima à direita, a inserção destaca, por meio de uma imagem de microscopia eletrônica de varredura, o corte transversal de uma espiral real obtida pela equipe de cientistas.

Num artigo publicado na prestigiada revista Nano Letters, destacado na capa da edição de abril deste ano, uma equipe de 14 cientistas reportou a formação de espirais de nanotubos, sem defeitos e com pontas livres, a partir de um mecanismo de enrolamento espontâneo de nanotubos de carbono de parede única. O trabalho foi liderado por pesquisadores do Weizmann Institute of Science (Israel) e contou com participação de quatro cientistas de universidades brasileiras (Unicamp, UFMG e Universidade Federal de Roraima), do ETH Zürich (Suíça) e da israelense Bar-Ilan University.

A equipe dispôs nanopartículas de ferro sobre substratos de dióxido de silício e acrescentou um gás contendo carbono – uma combinação conhecida por promover o crescimento de longos nanotubos de parede única, que podem chegar a mais de 100 micrometros de altura. Os nanotubos crescem como árvores, de forma perpendicular ao substrato.

Nessas condições, os cientistas geraram uma série de nanotubos de carbono nas amostras, sendo que alguns deles se apresentaram espontaneamente em formato de espiral. Os autores analisaram as espirais de nanotubos por meio de microscopia eletrônica de varredura e de transmissão e de microscopia de força atômica, obtendo informações como o diâmetro, altura e quantidade de voltas das espirais. Usando a técnica de espectroscopia Raman, os autores continuaram investigando as espirais de nanotubos e concluíram que a concentração de defeitos estruturais era muito baixa e que o diâmetro e quiralidade dos nanotubos eram os mesmos ao longo de toda a espiral. As análises por Raman foram parcialmente realizadas na Universidade Federal de Minas Gerais (UFMG) pelo professor Ado Jorio.

Para compreender o mecanismo de formação das espirais, a equipe apelou para simulações atomísticas de dinâmica molecular, que estudam os movimentos físicos de átomos e moléculas. Essas simulações foram dirigidas pelo professor Douglas Soares Galvão (Instituto de Física Gleb Wataghin- Unicamp) e realizadas pelo pós-doc Leonardo Dantas Machado, ex-orientando de Galvão, e pelo professor Sergio Benites Legoas (Universidade Federal de Roraima), ex-bolsista de pós-doutorado do grupo de Galvão. No IFGW – Unicamp, Douglas Galvão coordena um grupo de pesquisa especializado em simulação e modelagem computacional de propriedades de nanoestruturas, em especial envolvendo nanofios e nanotubos, que colabora frequentemente com grupos experimentais de diversos países. Por meio das simulações, o grupo consegue estudar, compreender e prever fenômenos que às vezes não conseguem ser diretamente visualizados ou experimentalmente acessados na escala de tempo em que ocorrem.

Em grandes linhas, as simulações realizadas mostraram que, depois de crescerem verticalmente, os nanotubos que tinham formado espirais começaram a se depositar de baixo para cima sobre o substrato formando uma primeira volta, como resultado da sua interação com o fluxo de gás de carbono e com o substrato. Depois desse passo inicial, os nanotubos continuaram a se depositar em formato de espiral, espontaneamente e com constância, completando até 74 voltas.

A equipe também investigou o desempenho das espirais como indutores (dispositivos espiralados ao longo dos quais passa corrente elétrica, gerando um campo magnético, também conhecidos como bobinas eletromagnéticas) – uma aplicação dos nanotubos que não tinha sido estudada até esse momento. As espirais de nanotubos do artigo da Nano Letters demonstraram que, apesar de altamente condutoras, não estão prontas ainda para serem usadas como indutores eficientes. Contudo, por meio da análise de seu comportamento elétrico e magnético, o artigo trouxe valiosas e novas informações que podem ser utilizadas no desenvolvimento de dispositivos indutores a partir de nanotubos.

Capa da Physical Review Letters destacou em 2013 outro artigo da equipe internacional de cientistas, liderada na ocasião por Galvão, sobre serpentinas de nanotubos de carbono.

De acordo com o professor Galvão, o trabalho publicado na Nano Letters é uma continuação de um projeto anterior sobre serpentinas de carbono, que envolveu seu grupo, o grupo de Israel, liderado por Ernesto Joselevich, e o professor Ado Jorio (UFMG). Esse primeiro trabalho também gerou um artigo destacado na capa de uma prestigiada revista, no caso, a Physical Review Letters (Dynamics of the Formation of Carbon Nanotube Serpentines, L. D. Machado, S. B. Legoas, J. S. Soares, N. Shadmi, A. Jorio, E. Joselevich, and D. S. Galvão, Phys. Rev. Lett. 110, 105502 – Published 8 March 2013).

A história da colaboração entre os brasileiros e o grupo de Israel, conta Galvão, começou em uma conferência na Espanha, na qual o brasileiro assistiu a uma apresentação de Joselevich sobre os nanotubos de carbono com formato de serpentina. “Eu achei o problema muito interessante”, diz Galvão. Por coincidência, os dois cientistas se encontraram novamente num evento brasileiro de física da matéria condensada e almoçaram juntos na companhia de Ado Jorio. Ali nasceu a colaboração. “Do ponto de vista de simulação, era um projeto bastante desafiador e difícil (além da necessidade de desenvolver novos protocolos especificamente para o problema, as simulações envolveram milhões de átomos), mas o Leonardo e o Legoas conseguiram resolver”, relata Galvão.

Além de consistentes do ponto de vista científico, as simulações ficaram interessantes do ponto de vista estético. A esse respeito, o professor Galvão compartilha uma anedota. “O Joselevich, que é argentino de nascimento, conhece bem o Brasil e a cultura brasileira. A primeira vez que ele viu as simulações das serpentinas, ele disse que se lembrou da música “Brasileirinho”. Nós fizemos umas versões dos vídeos incorporando o Brasileirinho como trilha musical e, em homenagem a ele, dentro da rivalidade Brasil-Argentina, outras com tangos. O Brasileirinho, ganha, claro”, brinca o professor.

Dois vídeos de nanotubos dançando e formando espirais podem ser acessados sem custo nas informações de apoio (supporting info) publicadas junto ao paper da Nano Lettershttp://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03417

Minientrevistas com palestrantes do XII Encontro da SBPMat: Douglas Soares Galvão (Unicamp).

O professor Douglas Soares Galvão (divulgação).

Douglas Soares Galvão é mestre e doutor pelo Instituto de Física Gleb Wataghin da Unicamp, aonde ingressou como professor em 1990. Na graduação, formou-se, também em Física, pela Universidade Federal do Rio Grande do Norte (UFRN). Realizou trabalhos de pós-doutoramento nos Estados Unidos, na empresa de pesquisa e desenvolvimento em telecomunicações Bell Communications Research e na Universidade de Princeton. É autor de mais de 160 artigos publicados em periódicos indexados, totalizando aproximadamente 3.800 citações.

Na palestra plenária do XII Encontro da SBPMat, o pesquisador falará sobre desafios e perspectivas da modelagem de nanomateriais num contexto de problemas e demandas surgidas da nanotecnologia. Em particular, Galvão abordará propriedades mecânicas incomuns de materiais a base de carbono na escala nano, o aproveitamento dessas propriedades para criar macromateriais funcionais e a formação espontânea de estruturas metálicas complexas que só podem existir na nanoescala – assuntos tratados em artigos científicos de sua autoria que foram publicados em revistas científicas de alto impacto como a Science e a Nature Nanotechnology.

Segue uma minientrevista com o palestrante.

Boletim da SBPMat (B. SBPMat): – Qual é a importância da modelagem na nanociência e na nanotecnologia? Quais papéis essa modelagem está cumprindo atualmente?

Nanofios de ouro e prata.

Douglas Soares Galvão (D.S.G.): – Com os avanços recentes na parte de hardware e software e a redução dos preços dos computadores, a modelagem se tornou hoje uma ferramenta importante na área de Materiais, em particular para nanomateriais. É possível hoje construir modelos confiáveis que permitem evitar testes desnecessários nos laboratórios, consequentemente reduzindo os custos e o tempo para produzir novos produtos e/ou materiais.

B. SBPMat: – Comente particularidades da interação do pesquisador experimental e o teórico na área de nanomateriais. Há muitos pesquisadores no Brasil e no mundo trabalhando com modelagem de nanomateriais?

D.S.G.: – É de fundamental importância. Infelizmente no Brasil ainda não existe uma tradição consolidada dessas interações, principalmente quando envolve parceiros industriais. O número de grupos no Brasil ainda é pequeno, mas está crescendo rapidamente. No mundo é uma área em forte expansão.

B.SBPMat: – Comente sobre a evolução das ferramentas computacionais para se adaptarem à escala nano.

D.S.G.: A escala nano coloca novos desafios para a modelagem. Nós temos muito boas ferramentas para a escala atômica e para as escalas meso e macroscópica. Na escala nano algumas dessas ferramentas não funcionam bem; o desafio agora é construir e/ou adaptar essas ferramentas para a escala nano. Algumas vezes isso não é fácil.

B.SBPMat: – Na sua avaliação, quais são os principais desafios na área de modelagem de nanomateriais?

D.S.G.: – O grande desafio é construir modelos que permitam projetar o uso de nanomateriais para aplicações multifuncionais em macroescala. Um dos problemas em que estamos muito interessados é o de construir modelos para explicar como fibras de nanotubos de carbono funcionam como músculos artificiais.

Veja o resumo da palestra plenária do professor Douglas Soares Galvão.

Serpentinas de carbono (capa da Physical Review Letters).

 

Osciladores de nanotubos de carbono (capa da Physical Review Letters.