Breves entrevistas com cientistas: Junbai Li (Academia Chinesa de Ciências).

Prof. Junbai Li
Prof. Junbai Li

Com moléculas semelhantes àquelas que a natureza usa para formar proteínas, o professor Junbai Li produz nanomateriais para aplicações biomédicas. Mais precisamente, o cientista chinês usa um aminoácido conhecido como difenilalanina como unidade básica para formar estruturas baseadas em peptídeos (cadeias de aminoácidos) por meio de processos de automontagem. Embora esses processos ocorram espontaneamente, o Prof. Li tem suas próprias receitas para controlar o formato das estruturas resultantes.

A fabricação e aplicações desses nanomateriais automontados serão objeto da palestra plenária do Professor Li no XVII Encontro da SBPMat/ B-MRS Meeting, intitulada “Molecular Assembly of Peptide Based Materials towards Biomedical Application“.

Junbai Li é professor do Instituto de Química da Academia Chinesa de Ciências. Ele é autor de mais de 280 artigos publicados em revistas internacionais, proprietário de 20 patentes concedidas e 8 capítulos de livros. Ele também é o organizador de 5 livros. Sua produção científica tem 10.100 citações e seu índice h é 55. Li atua como editor-chefe da revista Colloids & Surfaces A (Elsevier) e editor da seção de auto-montagem na Current Opinion em Colloid & Interface Science (Elsevier). Junbai Li recebeu seu Ph.D. em Química pela Universidade de Jilin (China) em 1992 e realizou pós-doutorado no Instituto Max Planck de Colóides e Interfaces (Alemanha) de 1994 a 1996.

Veja nossa mini entrevista com o professor Li.

Boletim da SBPMat: – Na sua opinião, quais são as aplicações mais promissoras de materiais auto-organizados baseados em peptídeos e por quê?

Junbai Li: – Nanoestruturas baseadas em peptídeos têm atraído atenção considerável devido à sua biocompatibilidade, capacidade de reconhecimento molecular e estruturas bem definidas. Em primeiro lugar, os dipéptidos catiônicos auto-agrupam-se em nanotubos a valores fisiológicos de pH, e estes nanotubos dipeptídicos catiônicos podem também rearranjar-se para formar vesículas após a diluição. Além disso, eles podem atravessar as membranas celulares e ser absorvidos pelas células após a conversão espontânea em vesículas. Com essa propriedade de superfície com alta carga positiva, materiais auto-montados baseados em peptídeos podem ser efetivamente usados para a transferência e entrega gênica. Em segundo lugar, os pontos quânticos traçados (QDs) podem ser bem distribuídos em um gel à base de peptídeos contra a agregação e oxidação de QDs para melhorar a estabilidade para bioimagem e biossensores.

Boletim da SBPMat – Queremos saber mais sobre o seu trabalho. Por favor, escolha dois artigos / patentes de sua autoria (seus favoritos) e descreva-os brevemente. Também compartilhe as referências.

Junbai Li: – Nosso grupo trabalhou na automontagem de dipeptídeos aromáticos por um longo tempo. Descobrimos que o tratamento criogênico em 77 K permitiu a transição sintonizável de um organogel de difenilalanina auto-agregado em um cristal hexagonal e formar uma estrutura cristalina quiral bem definida. Esses conjuntos exibem emissão aprimorada. (X.C. Liu, et ai. Angew. Chem. Int. Ed. 2017, 56, 2660-2663). https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201612024

Outro trabalho: sob iluminação, um gerador fotoácido de vida longa libera um próton e medeia a dissociação do organogel baseado em dipeptídeos, resultando na formação de sol. Na escuridão, a porção fotossensível aprisiona um próton para levar à regeneração do gel. Ele abre uma nova possibilidade para a transição de fase controlada por luz de biomateriais baseados em peptídeos. (X. B. Li, et al. Angew. Chem. Int. Ed. 2018, 57, 1903-1907). https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201711547

a) Encapsulamento dos nanocristais de CdSeS em gel dipeptídico. Fotografia PL de quatro diferentes géis QDs encapsulados, imagem TEM dos nanocristais QD523 encapsulados na rede de fibrilas e imagem ampliada do TEM dos nanocristais QD523 imobilizados na fibrila. (X. H. Yan, et al., Chem. Mater. 2008, 20, 1522-1526). b) Imagens TEM de nanocontêineres à base de FF após incubação a pH 5,0, 7,2 e imagem óptica da medição de coagulação in vivo. (J. B. Fei, et al., Adv. Healthcare Mater. 2017, 6, 1601198). c) Guia de ondas ópticas de cristais simples dipeptídicos. Imagem de fotoluminescência de plaquetas excitadas a 330-380 nm. O círculo vermelho marca a área de excitação e a seta verde indica o acoplamento externo da emissão de PL na outra extremidade. (X. H. Yan, et al., Angew. Chem. Int. Ed. 2011, 50, 11186-11191). d) Caracterização de cristais simples ultralongos FF. Imagem, imagem 3D-AFM e padrão SAED de cristais simples FF depositados em uma superfície de sílica. (B. B. Sun, et al., ACS Nano 2017, 11, 10489-10494)
a) Encapsulamento dos nanocristais de CdSeS em gel dipeptídico. Fotografia PL de quatro diferentes géis QDs encapsulados, imagem TEM dos nanocristais QD523 encapsulados na rede de fibrilas e imagem ampliada do TEM dos nanocristais QD523 imobilizados na fibrila. (X. H. Yan, et al., Chem. Mater. 2008, 20, 1522-1526). b) Imagens TEM de nanocontêineres à base de FF após incubação a pH 5,0, 7,2 e imagem óptica da medição de coagulação in vivo. (J. B. Fei, et al., Adv. Healthcare Mater. 2017, 6, 1601198). c) Guia de ondas ópticas de cristais simples dipeptídicos. Imagem de fotoluminescência de plaquetas excitadas a 330-380 nm. O círculo vermelho marca a área de excitação e a seta verde indica o acoplamento externo da emissão de PL na outra extremidade. (X. H. Yan, et al., Angew. Chem. Int. Ed. 2011, 50, 11186-11191). d) Caracterização de cristais simples ultralongos FF. Imagem, imagem 3D-AFM e padrão SAED de cristais simples FF depositados em uma superfície de sílica. (B. B. Sun, et al., ACS Nano 2017, 11, 10489-10494)

Para mais informações sobre este palestrante e a palestra plenária que ele proferirá no XVII Encontro da SBPMat/B-MRS Meeting, clique na foto do palestrante e no título da palestra: https://www.sbpmat.org.br/17encontro/home/

Boletim da SBPMat – 69ª edição.

 

Caso não esteja visualizando corretamente esta mensagem, acesse este link

logo header 400

Boletim da
Sociedade Brasileira
de Pesquisa em Materiais

Edição nº 69. 31 de maio de 2018.
Artigo em Destaque

A partir de uma linha de costurar, de algodão, uma equipe científica desenvolveu um material que conduz eletricidade e tem ação antibacteriana. A linha condutora demonstrou desempenho muito bom ao ser usada como aquecedor elétrico e como eletrodo de supercapacitor. Flexível, confortável ao toque e fácil de ser incorporada a qualquer produto usando uma agulha, a linha condutora é um material promissor para compor eletrônicos vestíveis, como camisetas armazenadoras de energia. O trabalho foi totalmente realizado na Univasf (Juazeiro, BA) e foi reportado em artigo da Applied Materials and Interfaces. Saiba mais.

luva

Cientista em Destaque

Entrevistamos Joan Ramón Morante Lleonart, diretor do Instituto de Pesquisa em Energia da Catalunha, professor da Universidade de Barcelona e editor-chefe do Journal of Physics D. Os trabalhos deste cientista se inserem nos esforços para tornar real a “economia circular do carbono”, na qual o dióxido de carbono vira matéria-prima. Para isso, é necessário desenvolver uma série de materiais, principalmente catalíticos. O professor Morante abordará esses assuntos em palestra plenária do XVII B-MRS Meeting. Veja a entrevista.

joan morante

XVII Encontro da SBPMat/ B-MRS Meeting
(Natal, RN, 16 a 20 de setembro de 2018)

natal_careca

Some-se a nós, junto à praia, e faça parte desta grande reunião, onde ciência e tecnologia se agregarão à natureza para uma experiência ideal de aprendizagem e intercâmbio!

O evento recebeu cerca de 1.700 trabalhos de autores de 42 países do mundo e de todas as regiões do Brasil! Saiba mais.

Submissão de resumos corrigidos. Encerra no dia 8 de junho a submissão da nova versão dos trabalhos que precisam ser corrigidos para serem aceitos.

Prêmios para estudantes. Até 18 de junho, está aberta a submissão de resumos estendidos para candidatar trabalhos de estudantes aos prêmios Bernhard Gross e ACS Publications. Saiba mais.

Inscrições. Aproveite os valores com desconto até 31 de julho, e o desconto especial para sócios SBPMat. Saiba mais.

Tutorial. Os inscritos ao evento poderão participar sem custo adicional do tutorial sobre escrita científica e processo editorial. Inscrições gratuitas, no ato da inscrição geral do encontro. Saiba mais.

Conference Party. A festa do evento será na noite de 19 de setembro, à beira-mar, no Imirá Plaza Hotel & Convention, e terá patrocínio de periódicos científicos da ACS Publications. Saiba mais.

Auxílio Fapesp. Informações sobre o pedido de auxílio coletivo à Fapesp para pesquisadores do estado de São Paulo, aqui.

Hospedagem, transfer e passeios. Veja opções da agência de turismo oficial do evento, a Harabello. Aqui.

Palestras plenárias. Saiba quem são os 8 cientistas de renome internacional que proferirão as plenárias do evento e quais são os temas das palestras. Veja aqui.

Palestra memorial. A Memorial Lecture “Joaquim da Costa Ribeiro” será proferida pelo professor Fernando Galembeck, na abertura do evento.

Simpósios. Veja a relação dos 21 simpósios que compõem o evento. Aqui.

Expositores e patrocinadores. 18 empresas já reservaram seus estandes e 14 entidades participam do evento com outras formas de apoio e divulgação. Empresas interessadas em participar do evento podem entrar em contato com Alexandre no e-mail comercial@sbpmat.org.br.

Organizadores. O coordenador do evento é o professor Antonio E. Martinelli (UFRN). Conheça a equipe do comitê organizador.

Centro de convenções. O evento será realizado no centro de convenções do Hotel Praiamar, localizado a metros da famosa praia de Ponta Negra. Saiba mais.

Natal. Destino turístico de visitantes do mundo todo, Natal também oferece um prazeroso ambiente para debates, interações e aprendizagem. O clima agradável (seco e com temperatura média de 25 °C em setembro), o povo acolhedor e a deliciosa culinária da cidade criam uma atmosfera de bem-estar que vai além das belezas naturais do seu litoral. Veja vídeo sobre Natal.

montagem natal

Novidades dos Sócios SBPMat

O sócio Victor Pandolfelli (UFSCar) foi reeleito membro do advisory board da World Academy of Ceramics (WAC), onde será um dos três representantes do continente americano. Saiba mais.

pandolfelli

Seja Sócio SBPMat: anuidade 2018 e novos sócios

Se você, estudante ou profissional, ainda não é sócio SBPMat, está convidado a fazer parte. Sócios em dia se beneficiam com descontos nos eventos da SBPMat e de entidades parceiras, podem participar de prêmios da SBPMat e parceiros, divulgar suas novidades nos canais da SBPMat, e votar e ser votados nas eleições da sociedade, entre outras vantagens. Além disso, contribuem para que a SBPMat possa promover ações junto à comunidade de pesquisa em Materiais.

Se você já é sócio SBPMat, poderá encontrar seu boleto referente à anuidade 2018 na sua área de sócio, inserindo login e senha no cabeçalho do site da SBPMat.

Saiba mais.

Dicas de Leitura

  • Cientistas conseguem gerar correntes de spin em materiais supercondutores, abrindo possibilidades para computação de alto desempenho (paper da Nature Materials). Saiba mais.

  • Como se fosse um sistema biológico, novo material eletrônico cresce ou se reduz sozinho em resposta a sinais bioquímicos (paper da Nature Chemistry). Saiba mais.

  • Desenvolvido por cientistas, novo método de cura de polímeros de alto desempenho, usados em aviões e carros, é muito mais rápido, econômico e ecológico (paper da Nature). Saiba mais.

  • Magnetização ultraeficiente de um material usando apenas luz: pesquisa da USP demonstrou que 1 fóton pode ordenar os spins de 6 mil elétrons em 50 picossegundos (paper da Physical Review Letters). Saiba mais.

  • Artigo de revisão com participação de pesquisadores do Brasil: fabricação de materiais 2D de carbono para aplicações em conversão e armazenamento de energia (Progress in Energy and Combustion Science). Saiba mais.

  • Artigo de capa com participação brasileira apresenta borracha nitrílica, material usado em indústrias como a petroquímica, com propriedades mecânicas melhoradas graças à adição de nanopartículas híbridas (paper do Journal of Applied Polymer Science). Saiba mais.

Oportunidades

  • Abertas as inscrições para o Doutorado em Ciências Exatas (Materiais) da UFG-Catalão. Saiba mais.

  • Inscrições abertas para prêmios para mulheres cientistas e iniciativas que promovam a presença feminina na ciência, tecnologia, engenharia e matemática. Saiba mais.

  • Oportunidade de mestrado em Engenharia de Materiais na UFSCar. Saiba mais.

Eventos

  • Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications (PCNSPA 2018). São Petersburgo (Rússia). 4 a 6 de junho de 2018. Site.

  • 7th International Congress on Ceramics (ICC7). Foz do Iguaçu, PR (Brasil). 17 a 21 de junho de 2018. Site.

  • IX Método Rietveld. Fortaleza, CE (Brasil). 16 a 20 de julho de 2018. Site.

  • International Conference on Electronic Materials 2018 (IUMRS-ICEM). Daejeon (Coreia do Sul). 19 a 24 de agosto de 2018. Site.

  • Symposium “Nano-engineered coatings, surfaces and interfaces” no “XXVII International Materials Research Congress”. Cancun (México). 19 a 24 de agosto de 2018. Site.

  • 8th International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA2018). Maresias, SP (Brasil). 26 a 31 de agosto de 2018. Site.

  • 16th International Conference on Molecule-based Magnets (ICMM2018). Rio de Janeiro, RJ (Brasil). 1 a 5 de setembro de 2018. Site.

  • XVII Encontro da SBPMat/ B-MRS Meeting. Natal, RN (Brasil). 16 a 20 de setembro de 2018. Site.

  • XXXIX Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência (CBrAVIC). Joinville, SC (Brasil). 8 a 11 de outubro de 2018. Site.

  • São Paulo School of Advanced Science on Colloids (SPSAS Colloids). Campinas, SP (Brasil). 28 de outubro a 7 novembro de 2018. Site.

  • International Conference of Young Researchers on Advanced Materials (ICYRAM 2018). Adelaide (Austrália). 4 a 8 de novembro de 2018. Site.

  • 6th Meeting on Self Assembly Structures In Solution and at Interfaces. São Pedro, SP (Brasil). 7 a 9 de novembro de 2018. Site.

  • 3rd International Brazilian Conference on Tribology (TriboBR 2018). Florianópolis, SC (Brasil). 3 a 5 de dezembro de 2018. Site.

Siga-nos nas redes sociais

Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails

 

 

Breves entrevistas com cientistas: Joan Ramón Morante Lleonart (Instituto de Pesquisa em Energia da Catalunha, Espanha).

Prof. Joan Ramón Morante Lleonart
Prof. Joan Ramón Morante Lleonart

Vilão no aquecimento global e na acidificação oceânica, o excesso de dióxido de carbono gerado pelas atividades humanas pode ser usado para produzir compostos muito úteis.

Um exemplo é a produção de combustíveis a partir de dióxido de carbono, água e luz solar por meio de processos semelhantes à fotossíntese, nos quais os materiais catalíticos podem desempenhar um papel fundamental ao aumentar significativamente a eficiência das reações.

Nesse contexto, pesquisadores de vários países estão trabalhando em uma série de desafios científicos e tecnológicos relacionados à “reciclagem” de dióxido de carbono. O objetivo final desses esforços é tornar real a chamada “economia circular de carbono” – um sistema baseado no uso de dióxido de carbono, energia renovável e materiais ecologicamente corretos, e no princípio de minimizar o desperdício e maximizar a reutilização.

Um desses cientistas é Joan Ramón Morante Lleonart, diretor do Instituto de Pesquisa em Energia da Catalunha (IREC) e professor da Faculdade de Física da Universidade de Barcelona. Morante, que obteve seu diploma de doutorado em Física pela Universidade de Barcelona, é também o editor-chefe do Journal of Physics D: Applied Physics (IOP Publishing). De acordo com o Google Scholar, sua produção científica tem mais de 24.000 citações e seu índice h é 82.

Este cientista espanhol estará em setembro no XVII Encontro da SBPMat, onde oferecerá uma palestra plenária intitulada “Materiais catalisadores para refinarias solares, combustíveis sintéticos e procedimentos para uma economia circular do CO2”.

Veja nossa breve entrevista com o professor Morante.

Boletim da SBPMat: – Quais materiais podem desempenhar um papel importante na economia circular do CO2?

Joan Ramón Morante Lleonart: – A economia circular de CO2 abrange diferentes materiais. Primeiro, o próprio CO2 que deve ser capturado e purificado. Esses processos não são diretos e exigem o aprimoramento dessas etapas, principalmente o desenvolvimento de materiais para membranas que ajudam a separar adequadamente o CO2 de outros componentes que, embora menores, como o enxofre, podem degradar os materiais catalíticos.

Isso é necessário tanto para a captura de CO2 do carbono de origem fóssil, quanto para o CO2 contido nos processos de fermentação e putrefação que produzem biogás.

No entanto, além do processo de “caking”, o ponto mais crítico que requer a contribuição de um profundo conhecimento dos materiais é o passo da transformação catalítica do CO2 para alcançar sua redução direta a produtos como CO, metanol, ácido fórmico, etc. Ou a sua transformação, utilizando outras matérias-primas, em metano (metano sintético) ou outros produtos, por exemplo, por hidrogenação de CO2 (metanização de acordo com a reação denominada reação de Paul Sabatier).

Esses processos exigem não apenas o desenvolvimento de catalisadores eficientes, mas também materiais para novos reatores que combinem resistência ao uso, sendo capazes de resistir a condições corrosivas, junto com capacidade de dissipação térmica em alguns casos, ou condutividade elétrica em outros casos, ou condições de iluminação para os casos em que a solução passa pela direta transformação de CO2 usando os fótons do sol.

O desenvolvimento desses materiais oferece uma oportunidade magnífica para aplicar nanomateriais, sendo necessário ter grandes superfícies ativas por grama de material e características controladas no nível nanométrico, evitando fenômenos de degradação.

Todas essas características constituem uma grande oportunidade para o desenvolvimento de ciência e tecnologia, promovendo, ao mesmo tempo, a transferência da ciência para um conhecimento maior, bem como novas oportunidades de negócios, respondendo a um verdadeiro problema de nossa sociedade, pois é o consumo de fontes de energia fóssil que gera mudanças climáticas.

Boletim da SBPMat: – Queremos saber um pouco mais sobre seu trabalho. Escolha sua contribuição científica favorita e descreva-a brevemente, além de compartilhar a referência.

Joan Ramón Morante Lleonart: – Há alguns anos, eu estava trabalhando na compatibilidade de diferentes materiais com os processos de microeletrônica, procurando apenas a integração de diferentes funcionalidades (sensores e atuadores) com as unidades de processamento. De certa forma, é uma atividade biomimética porque a comunidade científica tenta fazer algo semelhante aos seres vivos, isto é, colocar os sentidos (sensores) para ter um sinal como informação e conectá-lo a um cérebro (processadores) para processá-lo.

Nestas atividades foi necessário gerar sinais elétricos e controlá-los. A partir disso, passei a gerar sinais elétricos em diferentes ambientes, só que considerados não como sinais de informação, e sim como fontes de energia.

Também neste caso, os melhores resultados foram obtidos controlando esses fenômenos em escala nanométrica, e é por isso que agora minhas atividades estão focadas em “nano energia” para produzir GWh.

Atualmente, estou focado nos mecanismos de transferência de energia em interfaces sólidas envolvendo elétrons, fótons e fônons, bem como compostos químicos. Da mesma forma, sou especializado no desenvolvimento de dispositivos e sistemas de energia renovável para aplicações no campo da energia e meio ambiente baseados em nanoestruturas e sua funcionalização. Por isso, prestei atenção em materiais e estruturas avançadas para fotossíntese artificial, incluindo a produção de hidrogênio e combustíveis em refinarias solares. Um dos meus principais objetivos é armazenar a energia elétrica além do bombeamento hidráulico ou a capacidade limitada usando baterias. O armazenamento químico usando hidrogênio ou metano ou biometano sintético constitui meu principal objetivo, embora eu também esteja trabalhando em baterias eletroquímicas.

Então, se eu verificar meus últimos artigos publicados, por um lado, eu poderia destacar “Recent developments in organic redox flow batteries: A critical review ” publicado no Journal of Power Sources, que vai além das abordagens de íons de lítio para baterias. Por outro lado, eu gostaria de destacar “Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering” ou “A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics”, ambos publicados no periódico Energy and Environmental Science. Especialmente o último é muito representativo das questões discutidas acima.

Boletim da SBPMat: – Escolha também uma contribuição tecnológica da qual você participou, um caso de transferência para a indústria ou uma patente, por exemplo, e faça uma breve descrição.

Joan Ramón Morante Lleonart: – Nosso instituto promove e incentiva a transferência de tecnologia e a geração de patentes apenas ligadas à sua exploração industrial.

Durante estes últimos anos, patenteamos alguns aspectos da tecnologia para produzir combustíveis solares ou sintéticos industriais. Assim, com um de nossos colaboradores industriais, algumas patentes foram realizadas como “fotoeletrônica de filtro-prensa, oxidação de água e célula de redução de CO2” ou “fotoeletrodos iluminados por interface eletrodo-substrato e suas células fotoeletroquímicas”.

No entanto, gostaria de indicar outra das patentes feitas em colaboração com outros grupos que abrem uma nova perspectiva para os materiais catalíticos para a conversão catalítica de CO2. Seu título é “procedimento para a redução de dióxido de carbono a metano por catalisador ativado por plasma DBD” e lida com o desenvolvimento de novos conceitos de materiais catalíticos que são submetidos à ação de um plasma que altera todas as condições das reações químicas que ocorrem na superfície do catalisador ao mesmo tempo que o próprio plasma contribui com uma energia complementar para ter um comportamento catalítico diferente. Isso permite desenvolver outros comportamentos e conceitos. Assim, foi conseguido em condições adiabáticas ter uma taxa de conversão de CO2 à temperatura ambiente comparável à de um processo de conversão termoquímica isotérmica padrão a 300-400 °C. Isso abre novas rotas para implementar reatores mais econômicos e de alto desempenho.

 ———————

Para mais informações sobre este palestrante e a palestra plenária que ele proferirá no XVII Encontro da SBPMat/B-MRS Meeting, clique na foto do palestrante e no título da palestra: https://www.sbpmat.org.br/17encontro/home/

Artigo em destaque: Linha de algodão condutora para costurar eletrônicos vestíveis.

O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. Ravi M. A. P. Lima, Jose Jarib Alcaraz-Espinoza , Fernando A. G. da Silva, Jr., and Helinando P. de Oliveira. ACS Appl. Mater. Interfaces, 2018, 10 (16), pp 13783–13795. DOI: 10.1021/acsami.8b04695

Linha de algodão condutora para costurar eletrônicos vestíveis

Esta imagem de microscopia eletrônica de varredura (MEV) amplifica uma das “linhas eletrônicas” desenvolvidas neste trabalho, composta por algodão revestido com nanotubos de carbono e com polipirrol obtido por polimerização interfacial.
Esta imagem de microscopia eletrônica de varredura (MEV) amplifica uma das linhas condutoras desenvolvidas neste trabalho.

A “velha conhecida” linha de costura, universalmente usada, por exemplo, para pregar botões, foi recentemente transformada por uma equipe científica brasileira em um material condutor de eletricidade e multifuncional. De fato, os usos desta nova linha de costurar vão muito além da costura. Ela funciona muito bem como mini aquecedor elétrico, como componente de supercapacitores (dispositivos que armazenam e liberam energia, similares às baterias) e como agente bactericida. Além disso, a linha é flexível e confortável ao toque, e conserva suas propriedades eletrônicas mesmo depois de lavada, torcida, enrolada ou dobrada repetidas vezes.

Com essas características, a fibra pode cumprir um papel importante na eletrônica vestível –  o conjunto de dispositivos eletrônicos planejados para serem usados sobre o corpo humano, incorporados a roupas ou acessórios.

“Como a linha é um elemento básico para a concepção de têxteis, imaginamos que qualquer produto vestível possa fazer uso desta tecnologia”, diz Helinando Pequeno de Oliveira, professor da Universidade Federal do Vale de São Francisco (Univasf) e líder da equipe científica que desenvolveu a linha condutora e bactericida. Junto a outros três autores, todos ligados à Univasf, Oliveira assina um artigo sobre o assunto, que foi recentemente publicado no periódico científico ACS Applied Materials and Interfaces (fator de impacto= 7,504).

A fibra condutora e bactericida de Oliveira e seus colaboradores é feita de um material compósito, formado por linhas de algodão de 0,5 mm de diâmetro, revestidas com nanotubos de carbono e polipirrol. O material resultante apresenta, além de alta condutividade elétrica, boa atividade eletroquímica – característica necessária para que possa ser usado em supercapacitores.

Para fabricar a fibra condutora, a equipe da Univasf desenvolveu um processo bastante simples, formado por duas etapas principais. Na primeira etapa, pedaços de linha de algodão são submergidos em uma tinta de nanotubos de carbono quimicamente modificados de modo a aumentar sua interação com o algodão. Como resultado, a linha fica revestida por uma rede contínua de nanotubos interconectados.

A segunda etapa é destinada a revestir as fibras com um segundo material: o polipirrol. Para isso, inicialmente, prepara-se uma solução formada pelo composto pirrol e o solvente hexano, na qual se submergem as fibras revestidas com nanotubos. Em seguida, verte-se, em cima desta preparação, uma outra solução, formada por água e alguns compostos que acabarão se incorporando em quantidades muito pequenas à composição química do polipirrol num processo chamado “dopagem” do material. Na interface entre ambas as soluções, as quais não se misturam, ocorre então a união das pequenas moléculas de pirrol, resultando na formação de macromoléculas de polipirrol que se depositam na superfície das fibras. Este processo, no qual um polímero se forma na interface entre duas soluções, é chamado de “polimerização interfacial”. “Dado o bom nível de dopagem do polipirrol (otimizado para esta síntese) e a sua forte interação com os nanotubos funcionalizados, as fibras resultantes apresentam ótimas propriedades elétricas”, diz o professor Oliveira.

A equipe científica também produziu algumas variantes dessa linha de costurar condutora. Por exemplo, uma fibra sem nanotubos de carbono e outra fibra cujo revestimento de polipirrol foi produzido por meio de uma polimerização não interfacial. Entretanto, as linhas com nanotubos de carbono e polimerização interfacial mostraram o melhor desempenho elétrico e eletroquímico.

Aquecedores e supercapacitores em fibras de algodão

Primeira e segunda geração de protótipos do supercapacitor baseado nas linhas de costurar condutoras.
Primeira e segunda geração de protótipos do supercapacitor baseado nas linhas de costurar condutoras.

“A alta condutividade elétrica (em conjunto com a boa porosidade do material) fez do material um ótimo protótipo para aplicação em eletrodos de supercapacitores”, diz Oliveira. “Estas propriedades também viabilizaram o seu uso como aquecedor elétrico com tensões de operação bem baixas (da ordem de poucos volts). Junto a estas aplicações, se soma o potencial antibacteriano da matriz”, completa.

Além de testarem o desempenho da fibra condutora e bactericida de forma isolada no laboratório, Oliveira e seus colaboradores desenvolveram uma prova de conceito. “Usamos uma agulha para costurar a linha em uma luva”, conta o professor. “Com isso poderíamos monitorar a temperatura que a mão, vestindo esta luva, atingiria quando conectássemos o dispositivo a uma fonte de alimentação”, explica.

O sistema de aquecimento testado na luva pode ser adaptado a diversos contextos, como por exemplo uma versão ambulatória da termoterapia (aquecimento terapêutico de regiões do corpo, que é frequentemente utilizado em sessões de fisioterapia), com a vantagem adicional da ação antibacteriana. Essa propriedade é particularmente interessante em materiais que são usados em contato com a pele, já que, dessa maneira, evitam doenças e odores. No caso do polipirrol, a ação ocorre quando o material atrai eletrostaticamente as bactérias e promove o rompimento de sua parede celular, inibindo a sua proliferação.

Aquecimento local (em graus centígrados) proporcionado pela linha condutora costurada ao dedo indicador da luva, depois de aplicar uma tensão elétrica de 12 V.
Aquecimento local (em graus centígrados) proporcionado pela linha condutora costurada ao dedo indicador da luva, depois de aplicar uma tensão elétrica de 12 V.

Um possível produto vestível baseado na linha de costurar condutora é um casaco térmico. Ele poderia ser alimentado por meio de uma célula solar incorporada ao casaco, ou por meio de dispositivos triboelétricos, que colheriam a energia gerada pelo movimento do usuário do casaco. A energia resultante seria armazenada em um supercapacitor feito com a fibra condutora. Costurado ao casaco, o supercapacitor forneceria eletricidade ao aquecedor quando necessário.

Mais um exemplo é o da camiseta armazenadora de energia, na qual o grupo do professor Oliveira está trabalhando atualmente com o objetivo de gerar um produto comercializável. “No momento estamos otimizando a confecção de supercapacitores em peças de tecidos à base de algodão e lycra, como forma a conectá-los diretamente a geradores de energia portáteis, viabilizando assim o desenvolvimento de camisetas armazenadoras de energia”, revela Oliveira.

Ciência e tecnologia desenvolvida no sertão nordestino

O trabalho reportado no artigo da ACS Appl. Mater. Interfaces e seus desdobramentos foram totalmente realizados no Instituto de Pesquisa em Ciência dos Materiais da Univasf, no campus do município de Juazeiro, localizado ao norte do estado da Bahia.  A Univasf, que possui seis campi distribuídos no interior dos estados da Bahia, Pernambuco e Piauí, foi criada em 2002 e inaugurada em 2004. No mesmo ano, Oliveira tornou-se professor da instituição.

O desenvolvimento das linhas de algodão condutoras nasceu de uma linha de pesquisa sobre eletrônicos e dispositivos flexíveis, criada em 2016. Em 2017, a ideia virou tema do trabalho de mestrado de Ravi Moreno Araujo Pinheiro Lima, com orientação do professor Helinando Oliveira, dentro do Programa de Pós-Graduação em Ciência dos Materiais na Univasf – Juazeiro, criado em 2007. O pós-doc José Jarib Alcaraz Espinoza, que estava otimizando sínteses de polímeros condutores para supercapacitores, adaptou uma metodologia à polimerização interfacial em algodão. Com isso, os pesquisadores perceberam que as linhas condutoras funcionavam como bons eletrodos de supercapacitores, e fabricaram esses dispositivos. Ao mesmo tempo, com a colaboração de Fernando da Silva Junior, doutorando do programa de pós-graduação institucional Rede Nordeste de Biotecnologia, a equipe testou a ação do material contra a bactéria Staphylococcus aureus, responsável por uma série de infecções de diversos graus de gravidade no ser humano.

“Estes resultados refletem o investimento do Brasil na interiorização de sua rede de instituições federais de ensino e pesquisa. Com isso, a migração do sertanejo rumo às grandes capitais na busca por conhecimento vem sendo reduzida. Agora há também mais ciência sendo produzida no sertão nordestino”, afirma o professor Oliveira. “No entanto, os recentes cortes em C&T têm lançado uma enorme nuvem de incerteza sobre o futuro da ciência no país (e em particular sobre estas jovens instituições). O governo brasileiro não tem o direito de jogar tantos sonhos no lixo. A ciência precisa superar mais esta crise”, completa o pesquisador.

Foto do grupo de pesquisa liderado pelo professor Oliveira no Instituto de Pesquisa em Ciência de Materiais. À direita, em azul, os autores do artigo.
Foto do grupo de pesquisa liderado pelo professor Oliveira no Instituto de Pesquisa em Ciência de Materiais. À direita, em azul, os autores do artigo.

XVII B-MRS Meeting: cerca de 1.700 trabalhos submetidos para apresentação.

logo17EncontroCerca de 1.700 resumos foram submetidos ao XVII Encontro da SBPMat/B-MRS Meeting, visando apresentação oral ou por meio de pôster em algum dos 21 simpósios que compõem esta edição do evento.

Os trabalhos submetidos são assinados por autores de 42 países do mundo e, dentro do Brasil, de 25 estados da federação, representando todas as regiões do país.

Atualmente, os trabalhos estão sendo avaliados pelos pareceristas dos simpósios. Até 25 de maio, os autores dos trabalhos receberão as notificações de aceitação, rejeição ou necessidade de modificação dos resumos.

Alguns dos simpósios contaram com mais de 100 trabalhos submetidos. Tal foi o caso dos simpósios sobre (nano)materiais para aplicações biomédicas (224 submissões), engenharia de superfícies (120), nanoestruturas de óxidos metálicos (118), e eletrônica e bioeletrônica orgânica (117).

Prof. Victor Pandolfelli é reeleito para o advisory board da World Academy of Ceramics.

Prof. Victor Carlos Pandolfelli (UFSCar).
Prof. Victor Carlos Pandolfelli (UFSCar).

O sócio da SBPMat Victor Carlos Pandolfelli, professor do Departamento de Engenharia de Materiais da Universidade Federal de São Carlos (DEMa-UFSCar), foi reeleito membro do advisory board da Academia Mundial de Ciências (World Academy of Ceramics, WAC) para cumprir seu segundo período de 4 anos (2018 a 2022). No board, o pesquisador brasileiro será, juntamente com o professor Gary Messing (Penn State) e o doutor M. Singh (NASA), representante das Américas.

Para compor o advisory board da WAC, é necessário ser membro da Academia e ser eleito em votação envolvendo todos os membros da mesma região do planeta (neste caso, o continente americano). Os nomes dos mais votados devem ser endossados pela presidência da Academia. Para ser membro da WAC, é necessário passar por um processo de seleção que inclui a indicação por dois membros efetivos, a avaliação da candidatura por um comitê de pares selecionados pela Academia e a aprovação final de pelo menos dez entre os doze membros do advisory board.

De acordo com o professor Pandolfelli, algumas das atividades que ele realizará no conselho nos próximos quatro anos são: revisar as regras de admissão na WAC, definir os membros que participarão dos novos processos de seleção dos candidatos, definir a temática e palestrantes para apresentação técnica e premiação no fórum científico para os membros da Academia.

A posse e primeira reunião do novo conselho serão realizadas em junho próximo em Perugia (Itália) na Itália.

Boletim da SBPMat – 68ª edição

 

logo header 400

Boletim da
Sociedade Brasileira
de Pesquisa em Materiais

Edição nº 68. 30 de abril de 2018.
Artigo em Destaque

Dois professores e dois estudantes da UFPE reportaram, na prestigiada Nature Physics, a primeira observação de um fônon com spin – algo similar a uma rede de átomos vibrando e rotando. A equipe conseguiu esse resultado surpreendente depois de superar uma série de dificuldades experimentais. Saiba mais sobre esta descoberta, seus possíveis impactos e sua história. Aqui.

artigo fonos

Da Ideia à Inovação

Para inaugurar esta seção do boletim, dedicada a contar a trajetória de invenções que viraram produtos de sucesso, propomos uma brincadeira com você, leitor: uma adivinha. Aqui vai a primeira pista. Trata-se de um produto biomimético, metonímico, adorado pelas crianças… e muito prático. Veja aqui.

velcro news

XVII Encontro da SBPMat/ B-MRS Meeting
(Natal, RN, 16 a 20 de setembro de 2018)

natal_careca

Some-se a nós, junto à praia, e faça parte desta grande reunião, onde ciência e tecnologia se agregarão à natureza para uma experiência ideal de aprendizagem e intercâmbio!

Submissão de resumos. Encerra hoje (30 de abril) o prazo de submissão. Acesse o sistema para enviar seu resumo.

Aceitação de trabalhos. Até 25 de maio, os autores de trabalhos submetidos receberão notificação a respeito da aceitação, rejeição ou necessidade de modificação dos resumos.

Prêmios para estudantes. Até 18 de junho, está aberta a submissão de resumos estendidos para candidatar trabalhos de estudantes aos prêmios Bernhard Gross e ACS Publications. Saiba mais.

Inscrições. Aproveite os valores com desconto até 31 de julho, e o desconto especial para sócios SBPMat. Saiba mais.

Conference Party. A festa do evento será na noite de 19 de setembro, à beira-mar, no Imirá Plaza Hotel & Convention, e terá patrocínio de periódicos científicos da ACS Publications. Saiba mais.

Auxílio Fapesp. Em breve, haverá informações sobre o pedido de auxílio coletivo à Fapesp para pesquisadores do estado de São Paulo. Aqui.

Hospedagem, transfer e passeios. Veja opções da agência de turismo oficial do evento, a Harabello. Aqui.

Palestras plenárias. Saiba quem são os 8 cientistas de renome internacional que proferirão as plenárias do evento e quais são os temas das palestras. Veja aqui.

Palestra memorial. A Memorial Lecture “Joaquim da Costa Ribeiro” será proferida pelo professor Fernando Galembeck, na abertura do evento.

Simpósios. Veja a relação dos 21 simpósios que compõem o evento. Aqui.

Expositores e patrocinadores. 16 empresas já reservaram seus estandes e 13 marcas participam do evento com outras formas de divulgação. Empresas interessadas em participar do evento podem entrar em contato com Alexandre no e-mail comercial@sbpmat.org.br.

Organizadores. O coordenador do evento é o professor Antonio E. Martinelli (UFRN). Conheça a equipe do comitê organizador.

Centro de convenções. O evento será realizado no centro de convenções do Hotel Praiamar, localizado a metros da famosa praia de Ponta Negra. Saiba mais.

Natal. Destino turístico de visitantes do mundo todo, Natal também oferece um prazeroso ambiente para debates, interações e aprendizagem. O clima agradável (seco e com temperatura média de 25 °C em setembro), o povo acolhedor e a deliciosa culinária da cidade criam uma atmosfera de bem-estar que vai além das belezas naturais do seu litoral. Veja vídeo sobre Natal.

montagem natal

Novidades dos Sócios SBPMat

Antonio Martinelli (diretor científico da SBPMat) e Fernando Lázaro Freire Jr (ex-presidente da SBPMat) foram escolhidos coordenadores das áreas de Materiais e Astronomia/Física na CAPES. Aqui.

novos coordenadores

Vídeo: em entrevista concedida a programa da Rádio UFSCar, Edgar Zanotto (cofundador da SBPMat) fala sobre a importância do vidro, desde seu papel no início da revolução científica até o uso de vidros bioativos na área de saúde. O cientista também comenta o lugar dos grupos brasileiros na pesquisa mundial sobre materiais vítreos. Veja.

zanotto

Vídeo: em entrevista à TV NBR, a professora da UnB María del Pilar Hidalgo Falla fala sobre seu trabalho com nanocatalisadores, nanofiltros, nanossensores e fontes de energia alternativa, e sobre o prêmio da International Association of Advanced Materials que recebeu em fevereiro em evento na Singapura. Veja.

maria del pilar

Seja Sócio SBPMat: anuidade 2018 e novos sócios

Se você, estudante ou profissional, ainda não é sócio SBPMat, está convidado a fazer parte. Sócios em dia se beneficiam com descontos nos eventos da SBPMat e de entidades parceiras, podem participar de prêmios da SBPMat e parceiros, divulgar suas novidades nos canais da SBPMat, e votar e ser votados nas eleições da sociedade, entre outras vantagens. Além disso, contribuem para que a SBPMat possa promover ações junto à comunidade de pesquisa em Materiais.

Se você já é sócio SBPMat, poderá encontrar seu boleto referente à anuidade 2018 na sua área de sócio, inserindo login e senha no cabeçalho do site da SBPMat.

Saiba mais.

Dicas de Leitura

  • Canais bidimensionais: pesquisa brasileira fornece descrição detalhada dos mecanismos pelos quais membranas de óxido de grafeno separam água de álcool (paper da Carbon). Saiba mais.

  • Método para desenvolvimento super rápido de materiais, baseado em inteligência artificial + “fábrica de experimentos”, leva à descoberta de novos vidros metálicos (paper da Science Advances). Saiba mais.

  • Cientistas propõem material que é quase cristal e superfluido ao mesmo tempo (paper da Physical Review Letters). Saiba mais.

Oportunidades

  • Chamada da rede M-ERA NET (União Europeia) e FAPESP para projetos transnacionais de pesquisa e inovação em Materiais. Saiba mais.

  • Edital para Professor Visitante na UFPEL. Saiba mais.

  • Pós-doc no LNNano-CNPEM: fabricação de dispositivos miniaturizados para aplicações em eletrônica. Saiba mais.

  • Pós-doutorado no CTNano (MG) em nanocompósitos poliméricos aditivados com nanomateriais. Saiba mais.

  • Pós-doutorado em Física da Matéria Condensada e outras sub-áreas da Física na UFSC. Saiba mais.

  • Vaga para pós-doc no Grupo de Nanomedicina e Nanotoxicologia do IFSC/USP. Candidatos devem ter experiência em biossensores eletroquímicos. Saiba mais.

  • Processo seletivo para mestrado e doutorado em Física da UFSC. Saiba mais.

  • Processo seletivo para mestrado e doutorado em Materiais na USP São Carlos. Saiba mais.
  • Estágio e vagas no CNPEM. Saiba mais.

Eventos

  • Workshop Paranaense sobre Nanomateriais e Materiais Funcionais. Londrina, PR (Brasil). 2 a 4 de maio de 2018. Site.

  • Simpósio “Homenagem aos 90 anos do prof. Sérgio Mascarenhas”. São Carlos, SP (Brasil). 4 de maio de 2018. Site.

  • 6º Encontro Nacional de Engenharia Biomecânica (ENEBI 2018). Águas de Lindoia, SP (Brasil). 8 a 11 de maio de 2018. Site.

  • 2a Escola de Pesquisadores do campus USP São Carlos. São Carlos, SP (Brasil). 9 e 10 de maio de 2018. Site.

  • 8th International Symposium on Natural Polymers and Composites. São Pedro, SP (Brasil). 27 a 30 de maio de 2018. Site.

  • Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications (PCNSPA 2018). São Petersburgo (Rússia). 4 a 6 de junho de 2018. Site.

  • 7th International Congress on Ceramics (ICC7). Foz do Iguaçu, PR (Brasil). 17 a 21 de junho de 2018. Site.

  • IX Método Rietveld. Fortaleza, CE (Brasil). 16 a 20 de julho de 2018. Site.

  • International Conference on Electronic Materials 2018 (IUMRS-ICEM). Daejeon (Coreia do Sul). 19 a 24 de agosto de 2018. Site.

  • Symposium “Nano-engineered coatings, surfaces and interfaces” no “XXVII International Materials Research Congress”. Cancun (México). 19 a 24 de agosto de 2018. Site.

  • 8th International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA2018). Maresias, SP (Brasil). 26 a 31 de agosto de 2018. Site.

  • 16th International Conference on Molecule-based Magnets (ICMM2018). Rio de Janeiro, RJ (Brasil). 1 a 5 de setembro de 2018. Site.

  • XVII Encontro da SBPMat/ B-MRS Meeting. Natal, RN (Brasil). 16 a 20 de setembro de 2018. Site.

  • XXXIX Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência (CBrAVIC). Joinville, SC (Brasil). 8 a 11 de outubro de 2018. Site.

  • São Paulo School of Advanced Science on Colloids (SPSAS Colloids). Campinas, SP (Brasil). 28 de outubro a 7 novembro de 2018. Site.

  • International Conference of Young Researchers on Advanced Materials (ICYRAM 2018). Adelaide (Austrália). 4 a 8 de novembro de 2018. Site.

  • 6th Meeting on Self Assembly Structures In Solution and at Interfaces. São Pedro, SP (Brasil). 7 a 9 de novembro de 2018. Site.

  • 3rd International Brazilian Conference on Tribology (TriboBR 2018). Florianópolis, SC (Brasil). 3 a 5 de dezembro de 2018. Site.

Siga-nos nas redes sociais

Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails

 

 

XVII B-MRS Meeting: submission system remains open until May 4th.

Yesterday, April 30th, was the deadline for abstract submission to the 17th Brazil-MRS meeting, Natal, 2018. However, the organization received a number of messages from last minute authors experiencing system difficulty to send their contributions. Therefore, the system will remain open until May 4th to receive your abstract.

For details, visit https://www.sbpmat.org.br/17encontro/home/

Brazil-MRS 2018 Organizing Committee

Da ideia à inovação: Uma invenção biomimética que virou metonímia.

Adivinha.

O que é, o que é?

É talvez o mais conhecido dentre os produtos biomiméticos (isto é, produtos desenvolvidos pelo ser humano imitando seres vivos que foram “desenvolvidos” pela natureza ao longo de muitos milhões de anos).

É um caso de invenção que virou inovação (entrou no mercado) e, depois de algum tempo, teve enorme aceitação entre os consumidores. Seu uso se espalhou pelo planeta Terra (em terra firme, água e ar) e chegou até a Lua.

É uma invenção que foi a semente de uma companhia multinacional que hoje comercializa milhares de produtos.

Você não adivinhou? Vai mais uma pista.

A palavra popularmente usada para designar este produto corresponde, na verdade, a uma marca registrada, e não ao objeto em si. É um caso de metonímia, parecido ao dos “cotonetes ®” (o nome correto neste caso seria “hastes flexíveis com pontas de algodão”).

Já sabe de qual invenção estamos falando? Ainda não? Então, leia atentamente a história desta invenção.

Frutos de uma planta do gênero Arctium, similares àqueles que inspiraram a invenção. Créditos: https://en.wikipedia.org/wiki/Bur#/media/File:Burdock_Hooks.jpg
Frutos de uma planta do gênero Arctium, similares àqueles que inspiraram a invenção. Créditos: https://en.wikipedia.org/wiki/Bur#/media/File:Burdock_Hooks.jpg

Tudo começou em 1941, nos Alpes suíços. George de Mestral, um engenheiro eletrônico suíço de trinta e poucos anos, estava de volta de um passeio pela montanha com seu cachorro, retirando os carrapichos que tinham grudado no pelo do cão e na roupa dele durante a caminhada. Essas bolinhas revestidas de espinhos são os frutos de algumas famílias de plantas, e sua capacidade de aderirem ao pelo de animais é uma vantagem dessas espécies, pois ajuda a dispersar as sementes que estão dentro do fruto.

Conta a história que, nesse momento, Mestral se perguntou por que os carrapichos grudavam e decidiu observá-los com um microscópio que havia na casa dele. O engenheiro percebeu então que a fixação ocorria entre dois elementos: por um lado, minúsculos laços formados na pelagem emaranhada do cachorro ou na superfície dos tecidos; por outro, as pontas dos pequenos espinhos dos carrapichos, as quais tinham forma de gancho. Esses “ganchinhos” flexíveis enredavam-se nos lacinhos e só se desprendiam ao afastar com certa força ambos os elementos (ganchos e laços). Com olhar biomimético e espírito inventor (Mestral apresentou sua primeira patente aos 12 anos), ele enxergou nesse sistema natural de fixação reversível, um modelo para desenvolver artificialmente um produto muito útil.

Já adivinhou qual é a invenção? Se sim ou se não, veja como continua a história.

Figura contida na patente US2717437A, representando o método para produzir o tecido com ganchos nas pontas dos fios.
Figura contida na patente US2717437A, representando o método para produzir o tecido com ganchos nas pontas dos fios.

Durante alguns anos, George de Mestral enfrentou o desafio de criar um protótipo desse sistema de minúsculos ganchos e laços. O problema principal era desenvolver um método que permitisse fabricar de modo simples uma faixa de tecido na qual se erguesse, perpendicularmente, uma boa concentração de ganchinhos flexíveis.

Parece que o processo não foi nada fácil, e que Mestral sofreu para encontrar gente que o ajudasse a produzir tal tecido. Contudo, em 1952, ele depositou um pedido de patente no escritório de patentes dos Estados Unidos sobre um tecido desse tipo e a forma de fabricá-lo. No documento, Mestral apresentou um “tecido tipo veludo”, pois era coberto, assim como o veludo, de um denso “bosque” de fios empinados. Entretanto, diferentemente do veludo, no novo tecido os fios eram de nylon (material que tinha sido recentemente criado), e uma boa parte dos fios tinha pontas em forma de gancho. O processo de fabricação proposto na patente era similar ao do veludo tradicional, usando um tear, só que com alguns truques adicionais para formatar os ganchos nas pontas dos fios de nylon.

Concedida em 1955, essa parece ser a primeira de uma série de patentes do engenheiro suíço em torno da invenção que é a resposta da nossa adivinha.

Em seguida, Mestral fundou uma empresa para fabricar e comercializar o produto. Contudo, o sistema de fabricação que tinha proposto na patente não era completamente mecanizado e não lhe permitia uma produção em escala industrial. O acabamento para gerar os ganchos era manual… e  muito trabalhoso. O engenheiro teve que esperar cerca de 20 anos desde seu “heureca!” para obter um tear capaz de produzir em massa o tecido com os ganchinhos.

Ao acasalar o tecido com os ganchinhos com outro tecido coberto por um emaranhado de lacinhos, Mestral obteve um produto para fixação reversível, com mil e uma utilidades, e com potencial para revolucionar o mercado dos zíperes e botões.

No início, o sistema inventado por Mestral não tinha uma aparência muito atraente. Porém, aos pouquinhos, ele foi ganhando visibilidade (de colunas em jornais até filmes futuristas) e sendo adotado por diversos segmentos. No final da década de 1960, por exemplo, a invenção começou a ser utilizada por fabricantes de calçado esportivo, substituindo os cadarços, e se destacou no programa espacial da NASA “Apollo” como sistema para fixar pequenos objetos às paredes das naves espaciais, impedindo que ficassem flutuando.

Atualmente, o produto está super disseminado. Ele ajuda a resolver pequenos problemas do dia-a-dia em escritórios, lojas, residências, hospitais, laboratórios, passarelas, escolas…

Precisa de mais uma pista para adivinhar qual é a invenção? Aqui vai. É a última:

Em 1956, George de Mestral obteve o registro de marca para sua empresa. O nome inventado pelo suíço é a união de duas palavras em francês (idioma predominante na região da Suíça onde ele nasceu e morreu): “velours” (veludo) e “crochet” (gancho).

Não precisamos dizer o nome desta invenção, não é mesmo? Até porque é proibido. “Velcro” designa hoje a empresa multinacional que comercializa esse e outros produtos similares, e é também a marca registrada usada para todos os produtos da empresa, e não apenas para o “fixador de gancho e laço”. Vá explicar isso para as crianças, que gostam tanto do V________, principalmente nos tênis…

Imagem de microscópio mostrando como os ganchos se enredam nos laços nesta invenção. Créditos: https://commons.wikimedia.org/wiki/File:Micrograph_of_hook_and_loop_fastener,(Velcro_like).jpg
Imagem de microscópio mostrando como os ganchos se enredam nos laços nesta invenção. Créditos: https://commons.wikimedia.org/wiki/File:Micrograph_of_hook_and_loop_fastener,(Velcro_like).jpg

 

Artigo em destaque: Redes de átomos em rotação.

O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Detecting the phonon spin in magnon–phonon conversion experiments. J. Holanda, D. S. Maior, A. Azevedo & S. M. Rezende. Nature Physics (2018) doi:10.1038/s41567-018-0079.

Redes de átomos em rotação

box quanticaNo início deste mês de abril, uma equipe científica brasileira anunciou, em artigo publicado na Nature Physics (fator de impacto 22,806), uma impactante novidade sobre a dimensão atômica e subatômica da natureza, objeto da Física Quântica, na qual minúsculas partículas que também se comportam como ondas movimentam-se sem parar.

A equipe, liderada pelo professor Sergio Machado Rezende, conseguiu detectar experimentalmente, pela primeira vez na história da ciência, fônons com spin – algo parecido a uma vibração coletiva de átomos interligados (fônon) girando em torno de um eixo (spin). “Nunca qualquer pessoa tinha observado um fônon com spin antes destes experimentos”, contextualiza Rezende, que é professor da Universidade Federal de Pernambuco (UFPE).

A pesquisa foi totalmente realizada no Departamento de Física da UFPE, com financiamento de agências de apoio à pesquisa federais (CNPq, CAPES e FINEP) e estadual (FACEPE).

A descoberta poderá ter um impacto importante na chamada “spintrônica”, tanto do ponto de vista fundamental (compreensão de fenômenos) quanto aplicado. Assim como a eletrônica utiliza a carga elétrica dos elétrons para desenvolver tecnologia, a ainda incipiente spintrônica aproveita o spin das partículas para codificar dados e armazená-los, transportá-los e decodifica-los. Nesse contexto, a evidência apresentada no artigo da Nature Physics abre possibilidades de aproveitamento dos fônons no desenvolvimento de dispositivos spintrônicos.

Uma descoberta que quase não aconteceu

A pesquisa que gerou o artigo foi desenvolvida dentro do doutorado em Física de José Holanda da Silva Júnior, defendido em 20 de abril deste ano na UFPE, e orientado pelo professor Sergio Rezende. Além de ser conhecido por ter exercido o cargo de ministro da Ciência e Tecnologia de 2005 a 2010, Rezende trabalha com materiais magnéticos há mais de meio século, sendo um cientista internacionalmente destacado nessa área. Rezende também é sócio fundador da SBPMat.

Os 4 autores do artigo. A partir da esquerda: Antônio Azevedo da Costa (professor da UFPE), José Holanda da Silva Júnior (que acaba de obter seu diploma de doutor pela UFPE), Daniel Souto Maior Pifano Ferreira (doutorando na UFPE) e Sergio Machado Rezende (professor da UFPE).
Os 4 autores do artigo. A partir da esquerda: Antônio Azevedo da Costa (professor da UFPE), José Holanda da Silva Júnior (que acaba de obter seu diploma de doutor pela UFPE), Daniel Souto Maior Pifano Ferreira (doutorando na UFPE) e Sergio Machado Rezende (professor da UFPE).

A ideia do trabalho de tese era gerar uma onda de spin em um material ferromagnético adequado e convertê-la em um uma onda elástica. Dito em termos quânticos, o objetivo era converter “mágnons” em “fônons” – transformação que é possível realizar desde que, nos materiais ferromagnéticos, o movimento dos spins pode provocar vibrações na rede de átomos.

A ideia da conversão mágnon – fônon foi bastante estudada nas décadas de 1960 e 1970, comenta Rezende. Entretanto, naquele momento, não foi possível obter evidências experimentais claras da existência da conversão, já que os materiais disponíveis para fazer os experimentos (materiais “massivos”) limitavam a observação do efeito. “Usava-se cilindros de materiais ferromagnéticos”, conta Rezende. “O efeito ocorria, mas era dentro do material e não havia forma de testar se realmente ele estava ocorrendo”, completa. Para se obter evidências mais definitivas, era necessário utilizar camadas muito finas de material ferromagnético.

Nos últimos 20 anos, explica Rezende, desenvolveu-se tecnologia para fabricar filmes finos de diversos materiais. Com isso, o interesse acadêmico pela conversão mágnon – fônon voltou, gerando diversos avanços na compreensão do fenômeno na última década.

Nesse novo contexto, no início do trabalho de tese de José Holanda, em 2014, o doutorando, seu orientador e o colaborador Antônio Azevedo da Costa (também professor do Departamento de Física da UFPE) conseguiram fabricar um filme fino do material ferromagnético mais adequado para estudar a conversão mágnon – fônon, a granada de ítrio e ferro. Com esse filme fino, a equipe preparou amostras em forma de fitas de 2 x 12 milímetros quadrados de superfície e 8 micrômetros de espessura, e realizou com elas dois tipos de experimentos principais.

O primeiro consiste, em grandes linhas, em aplicar radiação de micro-ondas numa das duas pontas do filme, gerando uma excitação nos spins do material. Como consequência, a rotação (spin) se orienta em torno do campo magnético que é aplicado (fenômeno conhecido como precessão). Essa precessão coletiva inicia numa ponta da amostra e se propaga como uma onda até chegar à outra ponta, motivo pela qual é chamada de “onda de spin”.

Se o campo magnético aplicado à amostra for uniforme, a onda de spin se atenua e não chega a se converter em onda elástica. Por isso, a equipe de Pernambuco utilizou ímãs de terras-raras (um em cada ponta da amostra) para provocar variações no campo magnético ao longo do filme, acompanhando o deslocamento da onda de spin.

Os experimentos com micro-ondas geraram evidências de que a conversão mágnon – fônon estava acontecendo, mas o grupo considerou importante confirmar ou não os resultados por meio de medidas do chamado “espalhamento Brillouin”. Nesse experimento, aplica-se luz laser em algum ponto da amostra e se analisa o espalhamento da luz pelas excitações no material. O resultado permite determinar qual é a natureza da excitação (neste caso, mágnon ou fônon) que está interagindo com a luz. “A grande vantagem de usar um filme em vez de um material massivo é que você pode incidir o laser em qualquer posição do filme e pode variar o ângulo de incidência”, explica Rezende.

Ilustração do sistema de espalhamento Brioullin de luz por fônons gerados pela conversão de mágnons e resultados da medida da polarização da luz.
Ilustração do sistema de espalhamento Brioullin de luz por fônons gerados pela conversão de mágnons, e resultados da medida da polarização da luz.

José Holanda ainda estava no início do doutorado, portanto havia de tempo de sobra e as perspectivas eram muito boas. Entretanto, o equipamento de espalhamento Brioullin da UFPE apresentou alguns problemas e, por ser um instrumento científico de certa complexidade, não era possível prever quando voltaria a ficar em condições de operar normalmente. Assim, enquanto dois estudantes se dedicavam a consertar o equipamento, Holanda se envolveu em outros trabalhos do grupo, obtendo bons resultados e participando de vários artigos.

Foi só no segundo semestre de 2017, no final de seu doutorado, que José Holanda pôde voltar ao equipamento de espalhamento Brioullin para completar seu trabalho sobre conversão mágnon – fônon. “Nós não sabíamos se ele ia conseguir fazer as medidas porque isso não é uma coisa trivial, e seria a primeira experiência dele com o equipamento”, conta o professor Rezende. Os experimentos foram finalmente realizados com ajuda do mestrando Daniel Souto Maior Pifano Ferreira.

A espera valeu a pena. Além de verificar que a onda de spin (mágnons) submetida a um campo magnético não uniforme realmente tinha se convertido em onda elástica (fônons), a equipe se deparou com uma surpresa: esses fônons espalhavam luz circularmente polarizada – uma evidência de que tinham spin. “Nós não esperávamos que o fônon produzido pela conversão do mágnon também tivesse um certo movimento de rotação, que é o que a gente chama de spin”, conta Rezende.

Depois de fazer essa descoberta pela via experimental, a equipe fez os cálculos teóricos correspondentes. “Confirmamos que a teoria previa, realmente, que o fônon tivesse spin, mas nós não sabíamos a teoria antes”, revela o professor Rezende.

Em questão de semanas, Rezende, Holanda, Azevedo e Maior terminavam de preparar um artigo reportando esta pesquisa, o qual, após ser ampliado e aprofundado a partir de sugestões dos revisores, foi publicado no passado 2 de abril na prestigiada Nature Physics.