Featured paper: Artificial Intelligence to develop new glasses.


[Paper: O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Predicting glass transition temperatures using neural networks. Daniel R.Cassar, André C.P.L.F. de Carvalho, Edgar D. Zanotto. Acta Materialia. Volume 159, 15 October 2018, Pages 249-256. https://doi.org/10.1016/j.actamat.2018.08.022]

Artificial Intelligence to develop new glasses

Glasses, materials used in a wide variety of products, from a bottle of wine to a dental implant, can make new contributions to the quality of life of humans and animals, and to the preservation of the planet. In fact, so far, about 400,000 (4 x 105) glass formulas have been produced and published, while 1052 new glasses can still be developed using possible combinations of 80 friendly elements from the periodic table.

In order to deal with this myriad of possibilities, it is vital to count on the help of sophisticated computational tools that indicate the most promising chemical formulas in terms of their physicochemical properties. Recent tools use artificial intelligence, mainly algorithms of the so-called “machine learning.” After adequate training with known data, these tools can perform the initial screening that allows deciding in which formulas it is worth investing resources (time, money, efforts) to develop them in the laboratory.

box Tg ENThis was the direction chosen by a Brazilian team that brought together researchers from the Materials and Computing areas, and created a machine learning computer tool (an artificial neural network) that proved capable of effectively predicting the glass transition temperature (Tg), which is an important property of glass that depends on its composition [See box].

The work was reported in a scientific paper recently published in the journal Acta Materialia (impact factor 6,036, and 22% acceptance rate).

“The main contribution of the article was to demonstrate the possibility of predicting an important property of oxide glasses (in this case Tg) using an artificial neural network,” says Edgar Dutra Zanotto, professor at the Brazilian Federal University of São Carlos (UFSCar) and one of the paper’s three authors. “The only information needed to make such a prediction is the chemical composition of the material,” he adds.

Artificial neural networks are widely used, for example, for facial recognition in large facial image databases, but their application in Materials research is still scarce and incipient. In the area of vitreous materials, for example, the article by Zanotto and coauthors is the third paper that reports the use of this computational tool.

Artificial neural networks are distributed computing systems made up of  data units (equivalent to simplified neurons) interconnected through connections that are equivalent to synapses. They learn through learning algorithms. Working together, the “neurons” can process large volumes of data and make predictions, but for this the network needs to be trained based on concrete examples.

Zanotto’s approach to artificial neural networks began about two years ago when he thought of looking for artificial intelligence tools to facilitate the search for new glass formulas. The idea attracted great interest from Daniel Roberto Cassar, postdoctoral fellow at the Laboratory of Glassy Materials (LaMaV) of the Department of Materials Engineering (DEMa) of UFSCar, coordinated by Zanotto. Cassar then participated in courses and lectures on neural networks and began to venture into the development of neural networks applied to the study of glasses.

About a year ago, these materials scientists felt the need to rely on an artificial intelligence specialist and began collaboration with Professor André Carlos Ponce de Leon Ferreira de Carvalho, a professor at the Institute of Mathematical and Computer Sciences (ICMC) of the University of São Paulo (USP) at São Carlos. Thus, the research ended up involving a series of postdoctoral research fellows from both groups, all located in the city of São Carlos.

Photo on the right: Professor André Carlos Ponce de Leon Ferreira de Carvalho (second from left) at a laboratory of ICMC - USP São Carlos, surrounded by grant holders who are doing research on artificial intelligence tools to predict glass properties. From the left side: Bruno de Almeida Pimentel (postdoctoral fellow), Edesio Alcobaça Neto (doctoral student) and Saulo Martiello Mastelini (doctoral student).
Photo on the left: Professor Edgar Zanotto and postdoctoral research fellow Daniel Cassar. Photo on the right: Professor André Carlos Ponce de Leon Ferreira de Carvalho (second from left) at a laboratory of ICMC – USP São Carlos, surrounded by fellowship holders who are doing research on artificial intelligence tools to predict glass properties. From the left side: Bruno de Almeida Pimentel (postdoctoral fellow), Edesio Alcobaça Neto (doctoral student) and Saulo Martiello Mastelini (doctoral student).

The team designed and implemented an artificial neural network, which was trained so that it could correlate Tg and chemical composition. The training was performed with Tg data and the composition of about 45,000 glasses based on the combination of 45 chemical elements. Each of the formulas used in the training contained at least 3 elements and a maximum of 21 elements. All the data were extracted from a glassy material database that collects experimental data extracted from the scientific literature.

Glass transition temperature (Tg) predicted by the neural network versus the experimental value reported in the literature. Graph constructed considering 5,515 experimental points that were not used for neural network training. The straight line shows the identity where the network prediction is equal to the reported value. The insertion shows the distribution of the relative error of the prediction (in percentage).
Glass transition temperature (Tg) predicted by the neural network versus the experimental value reported in the literature. Graph constructed considering 5,515 experimental points that were not used for neural network training. The straight line shows the identity where the network prediction is equal to the reported value. The insertion shows the distribution of the relative error of the prediction (in percentage).

After training the network, the scientists tested its ability to predict Tg. This was done by informing the network the chemical composition of another 5,515 glasses, also present in the database, but that had not been used in the training. When comparing the values predicted by the neural network with the values obtained by means of experimental methods, present in the database, the scientific team was positively surprised. The artificial neural network performed very well in the responses, erring at most 6% up or down in temperature values in 90% of the tests – a level of uncertainty very similar to that exhibited by the experimental studies. In addition, the degree of precision of the results has been shown to be independent of the amount of chemical elements in the glass composition, which is important when thinking about probing materials with extensive chemical formulas.

The neural network of São Carlos is poised to help scientists and materials engineers worldwide to quickly estimate the Tg of any composition glass, making research and development of new glass much faster, easier and more economical. In addition, the study conducted by Cassar, Carvalho and Zanotto shows a path that can be followed to develop new neural networks applied to Materials Science and Engineering. “This result opens a wide path for similar studies aimed at predicting almost all the physico-chemical properties of glass based on their composition!” says Zanotto.

In fact, in the groups of professors Zanotto and Carvalho, a little more than a year after the beginning of the collaboration, a series of works on the subject is now underway. These studies shall generate: new algorithms to further improve neural networks, new networks trained to predict other properties (refractive index, modulus of elasticity, liquidus temperature, etc.), more knowledge about the performance of machine learning algorithms, new scientific articles and software tools to be used by the community.

The work that originated the article published in Acta Materialia was funded by the São Paulo State Research Foundation FAPESP, through the Research, Innovation and Dissemination Centers CERTEV (Vitreous Materials) and CeMEAI (Applied Mathematical Sciences). The research also received funding from the Nippon Sheet Glass Overseas Grant (Japan).

Works of B-MRS member awarded in a conference of refractory materials.


Prof. Victor Carlos Pandolfelli (UFSCar).
Prof. Victor Carlos Pandolfelli (UFSCar).

Professor Victor Carlos Pandolfelli (DEMa – UFSCar), a B-MRS member, is co-author of two papers awarded at the 41st Congress of the Latin American Association of Refractory Manufacturers (“41 Congreso ALAFAR 2018“) held in Medellín, Colombia from September 30 to October 3, 2018.

These works received the first and second prize for the best works of the conference. According to Professor Pandolfelli, “they address the issue of energy conservation in processes using high temperatures, which is the most direct and practical way to help the environment”.

Founding member of B-MRS is elected “Scientist of the Year” by the Nanocell Institute.


Edgar Dutra Zanotto.
Edgar Dutra Zanotto.

Professor Edgar Dutra Zanotto (UFSCar), a member of B-MRS and one of its founders, was elected “Scientist of the Year” in the area of fine materials chemistry: sustainable routes and new (nano) materials in the “Scientist and Entrepreneur of the Year Award”. In total, eight professors, six students and one company were awarded in the various categories. The award was presented on October 20 in a ceremony held at the Institute of Chemistry of the University of São Paulo (USP).

The winners were chosen through a process that involved nominating candidates by the Nanocell Institute site users, that community`s online voting, and voting by a pool of researchers (members of scientific committees, foundations, associations and societies).

The “Scientist and Entrepreneur of the Year Award” is sponsored by the Nanocell Institute, a non-governmental organization whose mission is “to promote science and education, developing technology and innovation for social welfare” and the Brazilian Society of Cellular Signaling (SBSC). The award aims to recognize and disseminate innovative works in the areas of science, education and public health.

For more information about the award visit: http://www.institutonanocell.org.br/premio/

Victor C. Pandolfelli receives for the third time the ACerS award for the best paper on refractory ceramics.


Prof. Victor Carlos Pandolfelli (UFSCar).
Prof. Victor Carlos Pandolfelli (UFSCar).

Since the 1980s, The American Ceramic Society (ACerS) has selected and awarded publications on high temperature ceramics that have most contributed knowledge to the field and has honored them with the Alfred Allen Award.

There is no submission for this award, since the choice is based on queries in the journals indexed in the Web of Science, which are analyzed by a team of experts.

This year, in its 18th edition, the award was bestowed to an article published in the journal Ceramics International, authored by three researchers from the Brazilian Federal University of São Carlos (UFSCar), Professor Victor Carlos Pandolfelli and the researchers Ana Paula da Luz and Mariana Braulio, besides Analía Tomba Martinez, a researcher from the Research Institute of Materials Science and Technology (INTEMA), in Argentina. Victor C. Pandolfelli and Mariana Braulio had already received this award in two previous editions, and thus far they have been the only researchers to have been honored three times with the ACERS Alfred Allen Award since it has been created.

The award was received by the authors during the 53rd Annual Symposium on Ceramic Refractories, held in late March in St Louis (United States).

On this occasion, Professor Pandolfelli presented an invited lecture on high temperature ceramics inspired by nature.

  • See the list of award-winning papers in all editions of the Alfred Allen Award, here.
  • See the award-winning paper in the 2017 issue, here.
  • See the article on the ACerS website about the symposium, with an account of Professor Pandolfelli’s lecture, here.