Featured scientist: interview with Prof. Oscar Manoel Loureiro Malta.


DSC_4269CMYK-Photo 1Brazil, besides having one of the world’s largest reserves of ores with lanthanide elements, also occupies a prominent place in the research of these elements and their compounds, which have significant applicability in strategic areas such as energy, health and catalysis, as well as in many other areas.

One of the most prominent Brazilian scientists in this research field is Oscar Manoel Loureiro Malta, born in the city of Recife (state of Pernambuco) 63 years ago. Malta is Professor at the Department of Fundamental Chemistry of the Federal University of Pernambuco (UFPE). Over the course of four decades, he has made important contributions to the research on lanthanides, both in the fundamental and applied fields.

Malta defined his interest in science during his high school years. In 1974, he started the Chemical Engineering course at UFPE and the Physics course at the Catholic University of Pernambuco. After completing his degree in Physics, he left the Chemistry course to join the Master’s degree in Physics at UFPE. There he carried out research work on spectroscopy of lanthanide compounds, mentored by Professor Gilberto Fernandes de Sá. In December of 1977, he obtained the master’s degree. He continued his studies on lanthanide spectroscopy in his doctorate at the University of Paris VI (France), also known as Pierre et Marie Curie Université, guided by Professor Yves Jeannin. He obtained his doctorate in March 1981. He then returned to Recife, where that same year he became professor at UFPE. In 1986, he returned to France for one year as a visiting researcher in the group of Paul Caro, a world-renowned scientist in the lanthanide area, linked to the French National Center for Scientific Research (CNRS).

Oscar Malta was visiting professor in several international institutions: University of Wroclaw (Poland) in 2015; University of Aveiro (Portugal) in 2005; Industrial University of Santander (Colombia) in 2000; University of São Paulo, USP, in 1995, 1996 and 1999, and Paulista State University Júlio de Mesquita Neto, UNESP, in 1994-95 and 1998.

At UFPE, he participated in the creation and consolidation of the Department of Fundamental Chemistry, where he served as department head (1987-89) and postgraduate coordinator (1991-93 and 1999-2001). He was also the coordinator of two national research networks: the National Network of Molecular Nanotechnology and Interfaces, RENAMI (2001 – 2009), and the National Institute of Science and Technology for Integrated Markers, INAMI (2009-2015).

Malta has received a number of acknowledgments for his scientific trajectory. On November 15, 2017, he received an honorary doctorate from the University of Wroctaw, an important institution in Poland where nine Nobel laureates have emerged. In 2016, a special edition of the Journal of Luminescence (publisher Elsevier) on lanthanide spectroscopy was dedicated to this researcher from Pernambuco (https://doi.org/10.1016/j.jlumin.2015.11.024). In 2015, Malta received the Ricardo Ferreira Award for Scientific Merit, recently created by the Foundation for Science and Technology of Pernambuco, Facepe. In 2014, he received the Professor Paulo José Duarte Medal from the Brazilian Chemistry Association. In 2003, he became a full member of the Brazilian Academy of Sciences, ABC.

In this year, Malta was chairman of the International Conference on Luminescence (ICL), which, after seventeen editions in the northern hemisphere, was held in the Brazilian city of João Pessoa.

With a productivity research grant 1A of CNPq, Oscar Malta is the author of approximately 180 papers published in international journals, with about 7,000 citations in the Web of Science. The scientist has a 42 H index.

Here is our interview with Oscar Manoel Loureiro Malta.

SBPMat newsletter: What do you believe are your main contributions to the Materials area and why do you consider them more relevant?

Oscar Malta:  Since my master’s degree, which I started in 1977, my work has been in the areas of theoretical chemistry, binding field theory, 4f-4f spectral intensities, non-radioactive energy transfer, in particular intramolecular energy transfer in coordination compounds with lanthanide ions whose theory I developed between 1996 and 1998 and which until today I continue working on, as well as several groups in Brazil and abroad. Over the last three decades, in a work that involves great and extraordinary synergy between theory and experiment, we have been able to construct a very successful scheme for the modeling of highly functional luminescent lanthanide ion coordination compounds with the potential for diverse applications such as luminescent markers in bioassays. Many of these results were obtained during the time I coordinated two national nanotechnology networks. The first, National Network of Molecular Nanotechnology and Interfaces (RENAMI), was in force from 2001 to 2009, the second, the National Institute of Science and Technology for Integrated Markers (inct-INAMI), was in force from 2009 to 2015. Coupled to these results two important themes were also developed: the effect of metal nanoparticle plasmas on the luminescence of compounds with lanthanide ions, a subject that is currently linked to the so-called plasmon, and the concept of polarizability of the coating region in the chemical bond as a way to quantify covalence, which I introduced between 2002 and 2005 in order to better understand the chemical bond involving 4f orbitals. This concept was subsequently generalized to any chemical bonding, from single molecules to complex materials. In all these results it is important to emphasize the students’ participation, from scientific initiation to the doctorate.

SBPMat Bulletin:  You started researching in the field of lanthanide ion compounds spectroscopy in your master’s degree, 40 years ago, and you’re still working in the area. What most appeals to you in this research topic? Is it still a promising area? What has changed in the research in this area in Brazil since the 1970s so far?

Oscar Malta:  Lanthanides and their compounds are fascinating. They took me into the world of theoretical chemistry, in the world of angular momentum algebra, in the world of the interaction of radiation with matter, and into the world of spectroscopy. When I finished my master’s degree, everything was in place for me to go on to do a doctorate in England to work in atomic physics. At that time he was in Recife, at the invitation of Gilberto Sá and Ricardo Ferreira, Paul Caro, one of the most renowned researchers in lanthanide spectroscopy. He presented a seminar that really impressed me. I gave up on going to England and went to work for Paul Caro’s group at CNRS in Meudon-Bellevue in France. At first the plan was to develop an experimental thesis. However, I wanted to work on the theory. Paul Caro accepted this without problems, and a very fruitful theory/experiment interaction emerged that extended to other groups and continues to this day, always with much to do from a fundamental point of view and from the point of view of applications. Brazil is one of the world leaders in this field, with extremely active and internationally recognized research groups in the country. In fact there is again a discussion about the production of lanthanides since Brazil is a country rich with the minerals of these elements, so important for today’s technology and undoubtedly for the future. We cannot overlook this.

SBPMat Bulletin: Now we invite you to leave a message for the readers who are starting their scientific careers.

Oscar Malta:  There is now a strong tendency of young researchers (I am referring to the scientific area under consideration here) to exacerbate the value of applied science in a short-sighted manner. As a result they forget the theoretical foundations and they often do not know the history of the subject, even the experimental history, that they work with or intend to work with. It is exhausting (a fact) to notice this in scientific meetings and I usually am amazed. This is like a linear inflationary process in which money is thrown into the market without having a stabilizer. Sooner or later it ends up in trouble, problems whose creative solutions (an assumption that must accompany a scientist) could be found if greater investment had been deposited in the theoretical foundation and greater attention given to the history of the situation at hand. Therefore, with respect to this question, my message is: do not neglect good theoretical formation and the knowledge of the origin of the subject with which you intend to work. Countries that are now developing and exporting good technology realize how important this is.

SBPMat Bulletin: Feel free to share other comments with our community.

Oscar Malta: Science and technology are more than ever a social activity that requires creativity (as always), training, and therefore education, dedication and strong interdisciplinary cooperation. And it requires investments. Without these ingredients, coupled with sound and sensible ethics committees, we will not be able to create intelligent and reliable science and technology policies that will ensure the continuation of human civilization. The great astronomer Carl Sagan said that not taking these ingredients seriously and the notion that five billion years from now our solar system will have been burned (by our red giant), we will have no chance of getting out of here. This sounds like science fiction, but it’s not. Hopefully the next generations, especially our leaders, will realize this. But I am optimistic in this regard, like a great neuroscientist (Miguel Nicolelis) who wrote “Beyond Boundaries”, which I recommend to my colleagues in Materials Science – especially with respect to emerging properties.

IUMRS-ICAM 2017


MRS-Japan is honored to announce that it hosts IUMRS-ICAM 2017 at Kyoto, Japan during August 27 to September 1, 2017.  Its website is www.iumrs-icam2017.org.  The abstract submission is open.

Kyoto is ancient capital of Japan and has many temples and other places to visit.  All of you are welcome to Kyoto.  We have many attractive talks from Nobel laureates and leading scientists.  They are listed below.  We also have “Young Scientist Awards contest” during this conference.  Please visit our website for more information and submit abstract hopefully before February 28, 2017.

I am looking forward to meeting you in Kyoto.

Best regards,

Yasuro Ikuma

MRS-Japan

Call for Participation.

List of Nobel laureates and plenary lecturers (in alphabetical order)

Professor Hiroshi Amano (Japan). He received Nobel Prize in Physics 2014 for his work on the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources.

Professor Elvira Fortunato (Portuguese Republic). She pioneers European research on new transparent electronics, namely thin-film transistors based on oxide semiconductors, demonstrating that oxide materials can be used as true semiconductors.

Professor Axel Hoffmann (USA). He is outstanding scientist in the field of magnetism related subjects, including basic properties of magnetic heterostructures, spin-transport in novel geometries, and biomedical applications of magnetism.

Professor Andrew Holems (Australia). He is the president of Australia Academy of Science and is the best of the best in all Australian scientists.   He has made extensive contributions in the area of light emitting and photovoltaic devices.

Professor Ado Jorio (Brazil). He is one of the scientists who received SOMIYA Award in 2009. Also, he is the authority in the field of Optical spectroscopy which provides information on the matter at the molecular level, with unlimited range of applications.

Professor George Malliaras (France). He made distinguished achievements in the field of Bioelectronics which deals with the coupling of the worlds of electronics and biology.

Professor Chintamani Nagesa Ramachandra Rao (C.N.R. Rao, India). He is head of the Scientific Advisory Council to the Prime Minister of India. On 16 November 2013, the Government of India announced his selection for Bharat Ratna which is the highest civilian award in India.

Professor Akira Suzuki (Japan). He received Nobel Prize in Chemistry 2010 for his work on cross couplings between carbon atoms, with the metal palladium as a catalyst.

Professor Eiji Yashima (Japan). He is a leading scientist in the field of design and synthesis of helical molecules, supramolecules, and polymers with novel structures and functions.

B-MRS newsletter. Year 4, issue 6.


 


The newsletter of the Brazilian Materials Research Society News update from Brazil for the Materials community
English edition. Year 4, issue 6.

XVI B-MRS Meeting (Gramado, Brazil, September 10-14)

Registration – discounts. Registration is open. All categories have discounts until August 31st. See here the different values for B-MRS members (you can become a member during registration) and for non-members. Attention: The registration fee of the event + B-MRS membership fee is less than the registration fee of the event for non-members.

Student Awards. Contributions of undergraduate or graduate students that are accepted for presentation at the event, may compete for awards from B-MRS and from the American Chemical Society (ACS) publisher. Up to 46 works will be awarded. The top 6 (3 posters and 3 oral) will receive cash prizes. To participate in the selection the author must submit by August 14 an extended abstract supplemented to the conventional abstract. Learn more about student awards, here.

Mini courses. On Sunday, September 10, those enrolled in the event will be able to attend, at no extra cost, the mini courses on scientific writing and publication, taught by Prof. Valtencir Zucolotto and by professionals of the Elsevier publishing house. More information and reservation, coming soon.

Plenary lectures. Seven internationally renowned scientists will speak about cutting edge research on subjects such as materials for biomedical and environmental applications; biomimetic surfaces; heterogeneous catalysis; materials and technologies for miniaturized electronic circuits; piezoelectric films and their energy, optics and electronics applications. Learn more by clicking on the speakers’ photos, here.

Memorial lecture. At the opening of the event, SBPMat will pay homage to Professor João Alziro H. da Jornada, from the Federal University of Rio Grande do Sul (UFRGS), who will deliver the traditional Memorial Lecture “Joaquim da Costa Ribeiro”.

Venue. The FAURGS event center is in the center of Gramado, within walking distance of restaurants, shops, tourist attraction spots and hotels.

City of the event. Gramado is a charming tourist town, with a wide and qualified chain of hotels, gastronomic restaurants and shops. This attractive city is also the starting point for a series of sightseeing highlights that explores the area’s natural florid beauty, its history marked by German and Italian immigration, and the theme parks around the city.

Organization. Meet the organizing committee. Here.

Exhibitors. 23 companies have already confirmed their participation in the industrial exhibition. Contact for sponsoring and exhibition issues: Alexandre, comercial@sbpmat.org.br.  

Featured paper

A team of researchers from the Nanotechnology Brazilian National Lab has developed a paper-based electrochemical sensor having, as a conductive material, graphite film, obtained through the simple technique of painting the paper with an ordinary pencil. After making some adjustments to the manufacturing process of the sensor, the scientific team achieved exceptional performance of the device in detecting a biological compound present in all living cells, but particularly difficult to detect. The research was recently reported in ACS Applied Materials & Interfaces. See our news story.

People from our community

Our interviewee is João Alziro Herz da Jornada, who will be honored by SBPMat through the Joaquim da Costa Ribeiro Memorial Lecture during the society’s 16th annual event. Jornada was a professor at the Physics Institute of UFRGS for more than four decades, until his retirement in 2016. He also held various management positions in science and technology institutions, such as the presidency of the Brazilian National Institute of Metrology, Quality and Technology, where he worked for 11 years. A pioneer in Brazil in the study of the effects of high pressures on materials, Jornada also made important contributions on superhard materials. He is the author of papers published in journals of high impact factor, notably Science and Nature. In the interview, the researcher recalled how his fascination with science emerged, describing his main contributions to the field of materials. He also presented us with an inspirational message for the young readers, in which he spoke about the various dimensions that make scientific activity a rich and stimulating human experience. Jornada also told us what he will address in his memorial lecture in September in Gramado: the complex mechanisms that generate economic and social impact from basic research – a very relevant topic in the current setting of research funding cuts in Brazil. See the interview.

Reading tips

  • Nanoparticles in the human body: study proposes an in vitro test mode that best simulates in vivo conditions (based on paper from Small). Here.
  • Scientists from Brazilian institutions advance in the understanding of friction by providing experimental evidence of the influence of phonons on the phenomena at the nano scale (based on paper from Scientific Reports). Here.
  • Scientists develop LDH nanotubes hosting quantum dots and create a luminescent material (based on paper from Chemical Communications). Here.
  • Impact Factors 2016: see the highlights in journals from the materials field of the Elsevier and Wiley publishers.

Opportunities

  • Postdoctoral Fellowship in Condensed Matter Physics. Here.

Events

  • 1ª Escola Brasileira de Síncrotron (EBS).
    Campinas, SP (Brazil). July 10 – 21, 2017.Site.
  • 2º Ciclo de Minicursos de Cristalografia. Juiz de Fora, MG (Brazil). July,10 – 21, 2017. Site.
  • XI Brazilian Symposium on Glass and Related Materials (XI Brazglass). Curitiba, PR (Brazil). July 13 – 16, 2017. Site.
  • VIII Método Rietveld de Refinamento de Estrutura. Fortaleza, CE (Brazil). July 24 – 28, 2017. Site.
  • XXXVIII Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência (CBRAVIC) + III Workshop de Tratamento e Modificação de Superfícies (WTMS). São José dos Campos (Brazil). August 21 – 25, 2017. Site.
  • IUMRS-ICAM 2017. Kyoto (Japan). August 27 – Setember 1, 2017. Site.
  • International Conference on Luminescence (ICL-2017).  João Pessoa (Brazil). August 27 – September 1, 2017.
    Site.
  • 23a Reunião da Associação Brasileira de Cristalografia. Vitória, ES (Brazil).  September 5 – 9 2017. Site.
  • XVI Encontro da SBPMat/ XVI B-MRS Meeting. Gramado, RS (Brazil). September 10 – 14, 2017. Site.
  • 18th International Conference on Internal Friction and Mechanical Spectroscopy (ICIFMS-18). Foz do Iguaçu, PR (Brazil). September 12 – 15 2017. Site.
  • 2ª Conferência Nacional em Materiais Celulares (MatCel’2017) + Conferência Internacional em Dinâmica de Materiais Celulares (DynMatCel’2017). Aveiro (Portugal). September 25 – 27, 2017. 
    Site. 

  • 1st Pan American Congress of Nanotechnology. Fundamentals and Applications to Shape the Future. Guarujá, SP (Brazil). November 7 – 30 2017. Site.









Submit your suggestion for any section of our newsletter: comunicacao@sbpmat.org.br

 

 

 

People from our community: interview with João Alziro Herz da Jornada.


joaojornada (1)João Alziro Herz da Jornada was born on June 1, 1949 in São Borja (Rio Grande do Sul State, Brazil). Between 1968 and 1971, he studied Physics at the Federal University of Rio Grande do Sul (UFRGS), in the city of Porto Alegre. Shortly after receiving his bachelor’s degree, he started his master’s degree in Physics, also at UFRGS, which he completed in 1973. His master’s dissertation focused on one of the subjects which he would pursue throughout his scientific career, the effect of high pressures on materials.

In August of 1974, he assumed the position of assistant professor of the Physics Institute of UFRGS. From 1977 to 1979 he did a PhD in Science at UFRGS, where he developed new research on the effects of high pressures on materials, guided by Professor Fernando Claudio Zawislak. His doctoral thesis received praise from UFRGS. In 1983 and 1984, he carried out his postdoctoral studies at the National Institute of Standards and Technology (NIST), an institute dedicated to promoting innovation and industrial competitiveness through metrology, science and technology in the United States. In April 1985, he became a full professor at the Physics Institute of UFRGS, a position he held until his retirement in February 2016. Since then, he has been a guest contributor at this institution. Throughout his academic career at UFRGS, he held several management positions, including president of the university’s research chamber and coordinator of post-graduate programs at the Institute of Physics. Professor Jornada also created and coordinated the Laboratory of High Pressures and Advanced Materials of IF-UFRGS.

From 1993 to 2000, Jornada was the coordinator of the executive committee of the Rio Grande do Sul Metrology Network Association (RS Metrology Network), an entity created in 1992, acting in qualified metrology.

From 2000 to 2004, Jornada was director of scientific and industrial metrology at the National Institute of Metrology, Quality and Technology (Inmetro), a federal agency linked to the Ministry of Industry, created in 1973, whose mission is to strengthen national companies, increasing their productivity by adopting mechanisms aimed at improving the quality of products and services.

In December 2004, Professor Jornada assumed the presidency of Inmetro, remaining in the position for 11 years, until December 2015. During his mandate, Jornada promoted changes in the strategy, training, infrastructure and management of Inmetro, which led the institution to increase its national and international scientific recognition and to develop interactions with academia, companies and government.

Jornada received a series of honors, mainly from the Rio Grande do Sul Research Foundation (FAPERGS), from the Presidency of the Republic, Brazilian Air Force, Ministry of Foreign Affairs and Brazilian Navy. He has been a member of the Brazilian Academy of Sciences since 2001, and a fellow of TWAS (The World Academy of Sciences for the advancement of science in developing countries) since 2008. Since 2016, he has been a distinguished fellow of the Global Federation of Competitiveness Councils, a network of individuals and organizations involved in competitiveness strategies, based in Washington (USA).

The scientist is the author of about 100 papers published in scientific journals, including Science and Nature.

SBPMat Bulletin: Tell us what led you to become a scientist and, in particular, to work in the area of Condensed Matter Physics.

João A. Herz da Jornada: I had a great interest in science from a very early age. The environment in the late 1950s and early 1960s, during my childhood and adolescence, was especially stimulating for the scientific career, especially Physics.  There was so much emphasis in the press on topics that fascinated me, such as rockets, sputnik, space race, nuclear power, transistor, computers… It was a time when the world saw Science with extreme optimism and confidence, truly the “endless frontier”, in the words of Vannevar Bush. Science represented certainties, providing the sure way to answer all questions, large and small, a true, complete and unified worldview – perhaps the apex of the Enlightenment ideology. All this fascinated me. I have always enjoyed reading, learning, experimenting and building things involving Physics, Chemistry and Electronics, enjoying the pleasure of discovery and accomplishment. Therefore, following a scientific career was very natural. I graduated in Physics and did a masters and PhD in Experimental Physics, applying techniques of Nuclear Physics to problems of Condensed Matter Physics, under the guidance of Fernando Zawislak. At that time Condensed Matter Physics was emerging dynamically, there were plenty of interesting problems to tackle and also relevant demands for applications in various areas. My PhD work involved designing and building very high pressure chambers, requiring deeper knowledge about some materials properties; so I began to take interest beyond Condensed Matter Physics, entering into Materials Science. Moreover, I was enthusiastic about the potentialities of the Condensed Matter Physics technique, because it allows considerable and controllable variations of interatomic distances, determinants of properties of solids, besides generating phase transformations. As there was no expertise at all in high pressure in Brazil, I decided to create a Laboratory to develop the technique, implement good experimental infrastructure and explore its possibilities as a new research instrument in our surroundings. In fact, we set up a good laboratory, with different types of systems for producing high pressure, designed and built right here, enabling high-temperature and in-situ measurements using various probing techniques such as optical spectroscopy and x-ray diffraction. We were then able to develop several lines of research in Condensed Matter Physics. I am using the plural to emphasize teamwork with a fantastic team of students and collaborators. The mastery of this technique further increased my interest in Materials Science because it offered a new window of opportunity for the production of new materials, especially superhard materials such as diamond and its composites. The production of synthetic diamonds in our Laboratory undeniably led us to Materials Science, with some very representative research lines, such as diamond synthesis by high pressures and by CVD, production of compacts and composites of high hardness materials, production of diamond cutting tools and cBN, etc. Subsequently we started work on ceramic materials, involving both basic research and applied research, in association with companies to produce structural ceramics.

But there is also a factor I believe has influenced my career choice: both Condensed Matter Physics and Materials Science offer tremendous possibilities for innovations and wealth generation for society, our society that despite the difficulties, supports and pays for our work. I have a sense of duty, shared by many of my generation, in order to effectively help our Country’s development.

SBPMat Bulletin: What do you believe are your main contributions to the Materials area? We would like to ask you to go beyond listing the results and briefly describe the contributions you consider as the most relevant or most outstanding. In your response, we ask that you consider all aspects of scientific activity. 

João A. Herz da Jornada: The answer is not easy, given the multiple dimensions of the question and the natural difficulty of speaking about one’s own deeds. I will comment briefly on some points. Firstly, the formation of people, in a varied spectrum of levels within the area of Materials: Doctors, Masters, undergraduate students and scientific initiation fellows. In fact, I believe the formation of quality human resources is the greatest contribution of basic research in a country like Brazil, still under development. I am very proud to have contributed to the scientific development of many people, in particular the many doctors I have helped who are now in important leadership positions. Another aspect that I consider relevant is with regard to the construction, together with dedicated students and collaborators, of the unique laboratory infrastructure in the area of high pressures and associated techniques, enabling many research works and also some that support the Industry. We implemented the high pressure technique in Brazil, building various types of equipment, and applied it in a wide range of scientific and technological works, including synthesizing diamonds and other advanced materials for the first time in the Country.

Like all Brazilian researchers, my scientific contributions, especially publications, are detailed in the Lattes Curriculum, but from a personal point of view I have been very pleased with some of the publications in high impact journals, such as Science, Nature, PRL and PR, which were the results of works entirely carried out in our Laboratory, with own ideas and with equipments largely constructed by us, often using scrap from old equipments. Another contribution to the Science of Materials was the creation of the Materials Laboratory at Inmetro, during my term as president of that institution. In addition to being an interesting scientific program and a very high-level team, the largest electronic microscopy infrastructure in the Southern Hemisphere was implemented, accessible to the entire scientific and technological community in the country. At UFRGS, I was one of the founders of the Postgraduate Program in Materials Science and of the Center for Microscopy and Microanalysis. I also highlight the construction of a network of international partnerships involving materials and high pressure studies.

SBPMat Bulletin: You will be honored at the XVI SBPMat/B-MRS Meeting with the “Joaquim da Costa Ribeiro” Memorial Lecture. Could you briefly comment on what you will discuss in this talk and/or leave an invitation to our readers.

João A. Herz da Jornada: I am honored by this recognition and invite the readers to the lecture; I will be very pleased to have the meaningful participation of our community. The theme will be the connection between Materials Science and Innovation, from a perspective not often discussed in Brazil, more specifically the complex mechanisms that generate economic and social impact from basic research.  I believe this theme is currently very relevant at a time of severe budgetary restrictions for Science in Brazil. It is important to have an in-depth understanding of the subject, using the same scientific approach we work with, based on evidence, good logic, rigor, critical thinking, open-mindedness and broad discussion. We will discuss the need to work with new concepts, such as the capacity for absorption, capacity for appropriation of knowledge and connectivity, to better understand the problem. We will see that Materials Science is a particularly important area, not only because the specific associated knowledge is very close to applications, but also because its multidisciplinary nature unavoidably involves a wide range of connections – one of the important factors of an innovative “ecosystem”.

SBPMat Bulletin: Please leave a message for the readers who are starting their scientific careers.

João A. Herz da Jornada: As a message to those who are beginning their career, I would like to suggest reflecting on a famous idea of the great Enlightenment philosopher, David Hume, who wrote this famous quote: “reason is, and ought only to be the slave of the passions”. What does it mean in the present context? Science is an essentially rational undertaking of the human spirit. It requires logic, intelligence, disciplined and rigorous work. But it also requires creativity, imagination, connection with people, dreams, and a lot of will power – primarily passion. Passion inspires us and mobilizes us for work, however, it is also nourished by the challenges and results of a beautiful work, and also nourished by the highly social and stimulating nature of the scientific environment. These two dimensions must also be recognized and properly cared for. Materials Science provides us with a huge range of beautiful challenges, constantly renewed by their own dynamics and by the demands for applications, which are always connecting us with society. It provides good chances of rewarding results, both scientific and technological. Its multidisciplinary nature, always requiring much interaction, gives us a rich and stimulating human experience.

1º MultiMat (I Encontro Multidisciplinar em Ciência dos Materiais do Rio Grande do Sul).


O Programa de Pós-Graduação em Ciência dos Materiais (PGCIMAT) da UFRGS realizará o primeiro encontro regional multidisciplinar em Ciência dos Materiais no Rio Grande do Sul. O propósito deste evento é congregar discentes, docentes e profissionais das indústrias do setor a uma ampla discussão e divulgação de pesquisa e desenvolvimento de novos materiais.

O encontro será estruturado de modo a divulgar as atividades desenvolvidas pelos estudantes de pós-graduação da área de materiais através de apresentações orais e pôsteres. As sessões serão precedidas por palestras de importantes pesquisadores da área de Ciência dos Materiais.

Site do evento: http://www.multimateriaisufrgs2016.com/