B-MRS End of Year Message.


The year 2020 will undoubtedly be marked with sadness in our lives by the pandemic of Covid-19, which violently altered our daily lives, imposed tragic losses for many of us and gave more space to scientific negacionism, reinforcing the feeling of “nonsense” that we experience in today’s society.

However, at the same time, it was in 2020 that Science was once again a safe haven, pointing out alternatives and strategies to combat this terrible disease, while, in record time, decoding the virus genome and manufacturing vaccines with high efficacy. Brazilian researchers played an active part in building this knowledge chain, while resiliently fighting against threats to the country’s Science, Technology and Innovation (ST&I) structure. The materials research community could not abstain at such a critical moment and therefore quickly adapted research on biosensors, drug-carrying nanoparticles, materials with virucidal properties, etc. to combat SARS-CoV-2.

In 2020 B-MRS also had to reinvent itself. With the postponement of its annual meeting due to the health crisis, the virtual platform was our form of communication. And the community responded! With a strong presence in webinars, online events, and participating in awareness actions to maintain the country’s ST&I infrastructure as well as our most precious resource for the future, young PhDs and undergraduate and graduate students. The drive and motivation that students at our University Chapters show in their activities, brings us the certainty that there is a light at the end of the tunnel for Brazil.

And may 2021 come! We will be ready, equipped with the powerful resources of Science, to build a better year, with more health and decent living conditions for Brazilian citizens.

An excellent end of the year to everyone – as far as possible and observing all necessary care :).

B-MRS Board

B-MRS former president elected vice president of IUMRS.


chuProf. Osvaldo Novais de Oliveira Junior (IFSC-USP), B-MRS member, was elected First Vice President of the International Union of Materials Research Societies (IUMRS).

The Brazilian scientist was chosen for the position unanimously, in an election held this December, involving materials research societies from around the world that participate in IUMRS.

He will hold the position of First Vice President for two years, from 2021 to 2022. At the end of his term, Oliveira Junior, who was the President of B-MRS from 2016 to 2020, will automatically assume the presidency of IUMRS.

B-MRS member is the new director of CINE.


ana flaviaProf. Ana Flávia Nogueira (UNICAMP), B-MRS member, took on the position of general director of the Center for Innovation in New Energies (CINE) this December.

Founded in 2018 by the São Paulo Research Foundation (FAPESP) and the company Shell, CINE brings together research groups from UNICAMP, IPEN and USP and their collaborators to develop research on the frontier of knowledge and transfer technology to the industry in the area of new energies.

B-MRS member is appointed editor of the Journal of Materials Science.


andrea de camargo

Prof. Andrea S. S. de Camargo (IFSC-USP), B-MRS member and scientific director, was appointed editor of the Journal of Materials Science (Springer), a well-established scientific journal within the international materials science community.

At the moment, the Brazilian scientist is the only representative of an institution from Latin America among the journal’s 25 editors.

 

Former B-MRS president is elected full member of the Brazilian Academy of Sciences.


Osvaldo Novais de Oliveira JrProfessor Osvaldo Novais de Oliveira Junior (IFSC-USP), B-MRS member, was elected a full member of the Brazilian Academy of Sciences (ABC) in the area of Physical Sciences. The professor was president of B-MRS for two consecutive terms, from 2016 to 2020.

The election of the 21 new full members of ABC was held at an ordinary general meeting on December 3, 2020, based on nominations made by full members of ABC.

B-MRS Newsletter. Year 7, issue 11.


 

logo header 400

Newsletter of the
Brazilian Materials
Research Society

Year 7, issue 11. December 21, 2020.

boas festas sbpmat

B-MRS End of Year Message

The year 2020 will undoubtedly be marked with sadness in our lives by the pandemic of Covid-19, which violently altered our daily lives, imposed tragic losses for many of us and gave more space to scientific negacionism, reinforcing the feeling of “nonsense” that we experience in today’s society.

However, at the same time, it was in 2020 that Science was once again a safe haven, pointing out alternatives and strategies to combat this terrible disease, while, in record time, decoding the virus genome and manufacturing vaccines with high efficacy. Brazilian researchers played an active part in building this knowledge chain, while resiliently fighting against threats to the country’s Science, Technology and Innovation (ST&I) structure. The materials research community could not abstain at such a critical moment and therefore quickly adapted research on biosensors, drug-carrying nanoparticles, materials with virucidal properties, etc. to combat SARS-CoV-2.

In 2020 B-MRS also had to reinvent itself. With the postponement of its annual meeting due to the health crisis, the virtual platform was our form of communication. And the community responded! With a strong presence in webinars, online events, and participating in awareness actions to maintain the country’s ST&I infrastructure as well as our most precious resource for the future, young PhDs and undergraduate and graduate students. The drive and motivation that students at our University Chapters show in their activities, brings us the certainty that there is a light at the end of the tunnel for Brazil.

And may 2021 come! We will be ready, equipped with the powerful resources of Science, to build a better year, with more health and decent living conditions for Brazilian citizens.

An excellent end of the year to everyone – as far as possible and observing all necessary care :).

B-MRS Board

Featured Paper

By adopting a strategy inspired by nature, a team led by researchers from Brazil was able to produce a material that stimulates bone regeneration, which is very similar to the natural material that performs this function in the body. The research was recently reported on ACS Applied Materials & Interfaces. Know more.

imagem news

Unpaid Researchers

We share the story of Thiago Marinho Duarte, 33, PhD in Chemistry from UFPB. First in his family to obtain a university degree, Thiago had to disregard the thirteen years dedicated to his scientific education and training. He has been doing electrician jobs while applying, without success, for postdoctoral scholarships and temporary positions in the area. See here.

thiago_news

A Nature article about a survey carried out with more than 7,600 postdocs in the world shows the instability and devaluation they experience, and reports that 2/3 of the interviewees want to continue in academia, despite the difficulties. See here.

News from B-MRS Members

– Prof. Osvaldo Novais de Oliveira Junior (IFSC-USP), former B-MRS president, was elected Vice President of IUMRS (know more) and full member of the Brazilian Academy of Sciences (know more).

– Prof. Andrea S. S. de Camargo (IFSC-USP), B-MRS scientific director, was appointed editor of the Journal of Materials Science. Know more.

Prof. Ana Flávia Nogueira (UNICAMP), B-MRS member, took on the position of general director of the Center for Innovation in New Energies. Know more.

B-MRS News

– Represented by Prof. Daniel Mario Ugarte (UNICAMP), B-MRS delivered a plaque in honor of the scientist and engineer Ricardo Rodrigues, one of the leaders in the construction of Brazilian synchrotron light sources. Know more.

Advocacy & Policy

– B-MRS and dozens of scientific entities signed the “Letter from the City of Natal”, manifesto in defense of science and technology, quality education at all levels, environment, sustainable development and democracy in Brazil. See document.

Reading Tips

– Using two-dimensional materials, scientists create a new way to fix electrons and distribute them in regular arrangements, generating “electron crystals”, and develop a method that can analyze this structure without interfering with it (Nature). Know more.

– Based on simulation data, scientists were to able to train a neural network that sheds light on the relationship between monomer sequences and polymer properties. Artificial intelligence tools should help develop polymers with the desired properties (Science Advances). Know more.

– Use of a new liquid resin combined with an innovative 3D printing technique generates resistant, rigid or flexible objects within a few minutes (Advanced Materials). Know more.

– Via 3D printing, scientists use paint with graphene flakes to manufacture “sandwiches” with several two-dimensional layers, which allowed to understand how electrons advance between the flakes. The study opens possibilities for 3D printing of optoelectronic devices based on 2D materials (Advanced Functional Materials). Know more.

– Scientists develop piezoelectric nylon fibers that utilize the vibrations of body movement as a source of energy. The study opens possibilities in electronic fabrics (Advanced Functional Materials). Know more.

Opportunities

– Abstract submission for the special issue on surfaces for energy efficiency of the journal Frontiers in Chemical Engineering is open until February 4th. Know more.

boas festas sbpmat

Follow us on social media

You can suggest news, opportunities, events or reading tips in the materials field to be covered by B-MRS Newsletter. Write to comunicacao@sbpmat.org.br.

 

 

Biomimetic strategy for the synthesis of nanotubes that stimulate bone regeneration.


Experts say that, to date, there is nothing better than a natural bone to help regenerate another natural bone. In fact, despite the enormous advances in the area of biomaterials, there is still no synthetic material that works as well as autogenous bone graft (bone extracted from the patient himself) to encourage bone tissue regeneration – a process that occurs in our body regularly and spontaneously, but it is necessary to stimulate this through graft implantation when we experience noticeable bone loss due to trauma or disease. In this process, the basic unit of bone formation is the mineralized collagen fibril, a collagen cylinder formed by a group of cells called osteoblasts, which is filled and coated with calcium phosphates during the “biomineralization” process.

A study carried out by researchers from Brazil with collaborators from France took an important step in this context. Using a strategy inspired by nature, the scientific team produced, in the laboratory, a material that is very similar to mineralized collagen fibrils, in shape, size and structure. Collagen structures, which are expensive and difficult to handle proteins, were not used in this research. Instead, the researchers produced tubes (about 200 nm in diameter) which are very similar to fibrils, but composed of calcium phosphate crystals, the main inorganic component of bones, and strontium, an element used to treat osteoporosis, which helps reduce bone tissue loss and increase bone formation.

In in vitro tests, the material showed that it is not toxic to cells and that it generates the necessary conditions for bone tissue formation. In addition, it showed the ability to release strontium ions for long periods in controlled doses – an essential parameter for the long-term development of safe therapies, since in excess it can lead to the weakening of bones.

Strategy

Procedure adopted to produce the bone regeneration material. Use of a membrane allowed to obtain the desired characteristics.
Procedure adopted to produce the bone regeneration material. The use of a membrane (center) allowed to obtain the desired characteristics.

To produce the material having a cylindrical structure of controlled dimensions, the team employed a strategy that is used by several living organisms to generate teeth, shells and bones: physical confinement, which is nothing more than the use of a mold to induce a material to follow a specific morphology and size.

The mold used was a polycarbonate membrane, commercially available, which has cylindrical pores of 200 nm in diameter, similar in size to bone collagen fibrils. The membrane was submerged for twelve hours in a solution containing phosphate, calcium and strontium, which penetrated the pores. After drying the membrane in the presence of compounds that triggered mineralization, the polycarbonate was dissolved, allowing to separate and analyze the material that had formed inside the pores.

“By delimiting the physical environment in which the nucleation and growth processes of the mineral occur, we obtained nanotubes with highly controlled morphology, composition and size,” says Ana Paula Ramos, professor at the University of São Paulo (USP), campus Ribeirão Preto, and corresponding author of a recently published article reporting the study.

The same procedure, but without the use of molds, resulted in agglomerated spherical nanoparticles with very different characteristics from the collagen fibrils that were sought to emulate.

Surprise

The research was carried out within the PhD in Chemistry of Camila Bussola Tovani, which was carried out with funding from FAPESP, supervised by Professor Ana Paula Ramos, and defended this year at USP, campus Ribeirão Preto.

The initial idea of the project was to understand how strontium ions, used in the treatment of osteoporosis, acted on the bone mineralization mechanism. As this process, in the body, occurs in a situation of confinement, limited by the framework formed by the collagen fibrils, Camila and her advisor decided to use a mold to study how the calcium phosphate mineralization occurs in the presence of strontium ions.

“During the structural characterization, we found high similarity between the particles obtained and the mineralized collagen fibrils that form the bones, which encouraged us to conduct biological investigations”, says the professor. “What really surprised us, was the possibility of controlling particle properties such as mineral phase, morphology and size, by simply changing the medium in which precipitation occurred,” adds Ana Paula, who suggests that the same strategy can be applied to synthesize other inorganic particles for different applications in which the control of physicochemical properties is essential.

The nanotubes were produced and characterized in the Physical and Chemical Laboratory of Surfaces and Colloids, coordinated by Professor Ana Paula. Biological tests were carried out in other laboratories at USP campus in Ribeirão Preto, through collaborations with Professor Pietro Ciancaglini and Professor Sandra Fukada.

The study also benefited from two collaborations by Professor Ana Paula with researchers from France. The first, with the researcher Alexandre Gloter (Université Paris-Saclay), made it possible to investigate the formation mechanism and to characterize the nanotubes by advanced spectroscopy and microscopy techniques. The second, with researcher Nadine Nassif (Sorbonne Université), helped to understand the bone mineralization processes. “It is interesting that the initial contact with Dr. Alexandre Gloter took place in Brazil during TEM Summer School, organized at CNPEM by LNNano, and that the BEPE-FAPESP scholarship allowed Camila Tovani to stay at the Chimie de la Matiere Condensée laboratory at Sorbonne Université, under the supervision of Dr. Nadine Nassif for one year,” says Ana Paula Ramos. “The investment of Brazilian funding agencies in internationalization, both in bringing and sending researchers abroad, had an important impact on this research,” she concludes.

From the laboratory to the market

According to Professor Ana Paula, after conducting an investigation to validate the performance of nanotubes in animal models, the material will be able to be used to locally fill small bone defects. The nanotubes could also be incorporated into polymeric matrices that are used in orthopedic and cranio-maxillofacial surgery to replace, fill or repair bone defects caused by infections, injuries and neoplasms. In addition, the material could be incorporated into toothpaste formulations for the treatment of tooth hypersensitivity, since some toothpastes used for this purpose have strontium in their composition.

“The biggest challenge to make the particles as product is to find companies in the industry interested in the technology, which would allow us to develop formulations in the short term,” says the researcher.

The authors of the paper. From the left: Camila Bussola Tovani, Tamires Maira Oliveira, Mariana P. R. Soares, Nadine Nassif, Sandra Y. Fukada, Pietro Ciangaglini, Alexandre Gloter and Ana Paula Ramos.
The authors of the paper. From the left: Camila Bussola Tovani, Tamires Maira Oliveira, Mariana P. R. Soares, Nadine Nassif, Sandra Y. Fukada, Pietro Ciangaglini, Alexandre Gloter and Ana Paula Ramos.

[Paper: Strontium Calcium Phosphate Nanotubes as Bioinspired Building Blocks for Bone Regeneration. Camila B. Tovani, Tamires M. Oliveira, Mariana P. R. Soares, Nadine Nassif, Sandra Y. Fukada, Pietro Ciancaglini, Alexandre Gloter, and Ana P. Ramos. ACS Appl. Mater. Interfaces 2020, 12, 39, 43422–43434. doi.org/10.1021/acsami.0c12434.]