Featured scientist: Edson Roberto Leite.

Prof Edson Roberto Leite
Prof Edson Roberto Leite

Edson Roberto Leite memories related to science are all very pleasant: the book about rockets in his childhood in the interior of São Paulo, the opportunity to use an exceptional microscope during the sabbatical period in the United States, the discovery of a mechanism for the growth of nanocrystals at the Brazilian National Synchrotron Light Laboratory…

Some of these wonderful memories include the many occasions experienced alongside his tutor and scientific father, Professor José Arana Varela, a prominent Brazilian materials scientist who died in 2016. Arana Varela was honored by B-MRS with the creation, in 2019, of an award that bears his name, and which annually distinguishes a prominent researcher from Brazil, who gives a plenary lecture at the Society’s annual event. In its first edition, the award was befittingly granted to Edson Roberto Leite, professor at the Federal University of São Carlos (UFSCar) and scientific director of the Brazilian National Nanotechnology Laboratory (LNNano-CNPEM). Leite is also editor for Latin America of the Journal of Nanoparticle Research (Springer).

Edson Roberto Leite received his first degree in Materials Engineering from UFSCar in 1988. In doubt between pursuing a career in industry or academia, he initially tried to reconcile both. After graduating, he worked in the research and development area at 3M, while doing his master’s degree and starting his doctorate, both in Materials Science and Engineering at UFSCar. In 1992, he left the company in order to dedicate his time to the doctorate, a decision that he recalls did not please his father-in-law, who was concerned with the livelihood of the family that by now included two children. However, over the years, the results of this decision have been very positive. In 1994, shortly after defending his doctorate, Leite became a professor in the Chemistry Department at UFSCar and started a career as a researcher in materials, which would not only be fruitful, but also enjoyable.

Co-author of more than 400 scientific articles published with more than 19 thousand citations, today Leite has an h index of 72 (Google Scholar). The scientist is also the editor of three books related to materials for energy and co-author of a book on the process of nucleation and growth of nanocrystals. Leite received several awards, including the Scopus Prize from Elsevier/CAPES (2006), for the excellence of his scientific production as a whole, and the John Simon Guggenheim Memorial Foundation Fellowship (2009), awarded to scientists with exceptional research skills. In 2012, Edson Leite was elected member of the World Academy of Ceramics and the Academy of Sciences of the State of São Paulo. In 2014, he was cochair of the Spring Meeting of Materials Research Society, held in San Frascisco (USA). In 2019 he was elected full member of the Brazilian Academy of Sciences (ABC).

Read our interview and learn more about this scientist, his main contributions and his memories of Professor Arana Varela.

B-MRS newsletter: At school, you had more affinity with science subjects, right? Do you remember how this taste for science originated?

Edson Roberto Leite: A person’s story always has the personal version and the version of the people who interacted with him. I will recount my perspective of how it happened.

At school I always had a strong affinity for Science and History. A striking memory was when I was in the third grade of elementary school and my father took me to the Municipal Library of Araras to take out a membership card so I could access books. The first book I chose was about rockets. I have always loved the conquest of space and the science behind fundamental historical moments. It is noteworthy that man had reached the moon only a few years earlier, nuclear power was seen as the global energy solution and semiconductors were just beginning.

In addition to this fond memory, there were other motivations, including Jonny Quest, a really cool cartoon. This animation, in addition to the adventures, had a lot of science fiction, and Jonny’s father (Dr. Benton Quest) was a renowned scientist with an excellent research laboratory in his own home.

My childhood, then, was always marked by a strong influence of science classes. I think it easily guided me to choose Engineering. At first the idea was to become a mechanical engineer, but during my prep course for the entrance exam I was introduced to Materials Engineering, at UFSCar. I took the exam in the middle of 1983 and passed. From then on I knew what I wanted and what I liked.

However, there was still a doubt, whether to go to the academic area or go to industry (my father was a Nestlé employee in Araras and the industrial sector always caught my attention). During my undergraduate studies, I went to live at the student housing headed by Celso V. Santilli (today an important researcher in the field of Materials, Professor at IQ-UNESP-Araraquara) and he helped me to participate in an undergraduate research program with professors Elson Longo and José Arana Varela. That was when I learned what science was and that increased my taste for the academic area. In 1984, I had the first undergraduate scholarship from FAPESP under the guidance of Professor Varela (who was a visiting professor in the Materials Engineering department (DEMa) at UFSCar). In 1988 I graduated, joined the DEMa-UFSCar master’s degree program and went to work as a development engineer at 3M do Brasil, in Sumaré, SP. My director at 3M was the engineer Aloysio Pizarro and he released me for the master’s degree (which I defended in 1990 under the guidance of Professor Elson) and for the doctorate (in 1990). In 1992, I realized it would be impossible to reconcile the research area and my activities at 3M, so I left 3M to focus entirely on my academic research, returning to São Carlos. I finished my doctorate in 1993 under the supervision of Professor José A. Varela. In January 1994, I became an adjunct professor in the Chemistry department at UFSCar and joined LIEC (Interdisciplinary Laboratory of Electrochemistry and Ceramics), founded by Elson, Varela and Bulhões (Professor Luís Otávio S. Bulhões). I went back to the place that had introduced me to science.

Those moments influenced me…

B-MRS newsletter: In your assessment, what are your main contributions to the Materials area?

Edson Roberto Leite: Ever since undergraduate research, I have been working mainly with inorganic materials, more specifically with ceramic materials. So, I will report the contributions I believe are most important, according to my point of view (in fact these may be the contributions I most enjoyed working with).

Since 1994 I have been working with chemical and physical-chemical materials and have been involved in several areas, among them: chemical synthesis of ceramic oxides, synthesis of nanoparticles with controlled size and morphology, growth of nanocrystals, electrical properties of ceramic oxides, materials for application in alternative energy devices and transmission electron microscopy (TEM). During this period, always developing works in collaboration with professors Elson Longo and José A. Varela, at LIEC of DQ-UFSCar. Among these different areas I will highlight my contributions to the growth of nanocrystals and the work on alternative energy.

In 1998, that is, 4 years after I was hired, I went on a sabbatical in the USA, in the group of Professor Martin P. Harmer, at Lehigh University (Betlehem, PA). In my sabbatical, I worked on converting polycrystalline ceramics into monocrystalline ceramics, using controlled grain growth. It was a wonderful year and my recollection of that period is vivid in my memory. I still remember the smell of the laboratory and the friendships I cultivated. From a professional point of view, the work drew my attention to the process of solid-state crystal growth. My contribution to the project was to characterize the growth process using advanced transmission electron microscopy techniques. At that time I had the opportunity to operate the VG-603 analytical transmission electron microscope. There were few microscopes like this being produced, and I still remember the words of the coordinator of the Lehigh microscopy laboratory, Dr. Dave Ackland saying that “few researchers in the world have had the honor of operating this equipment.” Returning to Brazil in 1999, I dedicated a lot of my time to microscopy and, with the help of the newly created Electronic Microscopy Laboratory of LNLS (created in 1997 by Dr. Daniel Ugarte), I began studying the process of growing nanocrystals in colloidal solution. I quickly identified, for SnO2 nanocrystals, a growth mechanism recently described in the literature known as “Oriented Attachment” (OA). The first article we published about this nanocrystal growth mechanism was in 2003. During this period I created a group of high-level master and doctoral students (today these students are researchers and professors), which truly allowed exploring this growth mechanism. In fact, we published, almost simultaneously with American groups, the first kinetic model to describe this growth process, and shortly afterwards we published two important articles, one related to the growth of anisotropic nanocrystals and the other correlating the OA process with a polymerization process. Both articles are considered pioneers in the area. International recognition in the area came with the invitation to publish two review articles (one at Nanoscale and the other at CrysEngComm), one of them in collaboration with leading international experts in the field of nanocrystal growth kinetics by OA.

I started working in alternative energy in 2004, when I helped organize a symposium on the theme at the MRS Spring Meeting in San Francisco. After that, we invested in this area and, with a new group of brilliant students, we achieved fantastic results, between 2007 and 2016, regarding the development of hematite photo anodes to promote water photo-electrolysis aimed at hydrogen production. We developed an electrode manufacturing process based on colloidal nanocrystal deposition. This enabled the highest impact publications of my career, in journals such as JACS and Energy Environ. Sci. In the same period we developed a method for synthesizing MoS2 (2D material), combining non-hydrolytic sol-gel method and microwave reaction. This again resulted in excellent materials for electrocatalysis and for supercapacitors. This research also enabled publications in high-impact journals, such as Chem. Comm and Advanced Energy Materials. Without a doubt, this team of students placed us in the state-of-the-art to develop materials for alternative energy.

I would like to highlight just one more important contribution, which was in the study of the combustion process in glass-melting furnaces, carried out with funding from White Martins/Praxair. In this work, carried out with Professor Carlos Paskocimas (currently at UFRN) and Professors Elson and Varela, we characterized the corrosion rate of the furnaces and proposed technological solutions to inhibit this corrosion. This work was a success at the time and we were invited to present the results at Corning Glass and Praxair in the United States.

B-MRS newsletter: You were celebrated in the first edition of the B-MRS José Arana Varela award, which honors this prominent Brazilian scientist (who died in 2016), former president of B-MRS. Professor Varela was your doctoral advisor and co-author of many published articles. Could you share with us some memories about Professor Varela and comment on the scientific partnership both of you developed over time? Feel free to leave any more personal comments.

Edson Roberto Leite: As I mentioned above, I was introduced to Professors Varela and Elson during my undergraduate years, and Professor Varela was my undergraduate and PhD advisor. In fact, I was Varela’s first doctoral student, in 1993. Being the first to win this award is an honor, which made me very happy. Besides being my advisor, Professor Varela was a tutor and almost a father, teaching me and introducing me to the national and international scientific community. It was with him that I made my first trip abroad, in 1993, where he introduced me to the great names of international Ceramics at the American Congress of The American Ceramic Society. It was at this opportunity that I met Professor Gary Messing and Professor Harmer. I remember him introducing me to the famous Professor W.D. Kingery, the father of modern Ceramics. It was Varela who encouraged me to be a member of World Academy of Ceramics. There were several trips, opening new work fronts and new research areas. As a tutor and advisor he knew how to get my attention and point out my mistakes. I remember, more recently, at an MRS Fall meeting in Boston (USA), a long discussion that we had where he, without hesitation, “pulled my ear” and helped me handle future problems I would face as a group leader in the Materials Chemistry area. I know he saw me as a rebellious student, but I’m sure he was proud of the training he gave me. His premature death took me by surprise and I miss him very much. I miss our discussions, our conversations and especially his advice and guidance.

B-MRS newsletter: Please leave a message for our younger readers who are starting a scientific career or are evaluating this possibility.

Edson Roberto Leite: I am not good with words, my students and former students know that I am very direct. I never worried about planning my career, everything was happening as I followed my instincts. What I am today is largely due to my students and the support of two scientific parents, professors Elson and Varela. My job is not a job, it is a hobby. So my message is: To achieve success in a scientific career you must really like what you do.

B-MRS members are co-authors of an article that is among the most read 100 papers of Scientific Reports in 2018 in the area of materials.

Prof Elson Longo
Prof Elson Longo

Professor Elson Longo (CDMF-UFSCar), founding member and former president of B-MRS, is the corresponding author of an article that appears in the Top 100 2018 ranking of the journal Scientific Reports in the area of Materials Science. The ranking highlights the most read articles in 2018, among those published that year in the journal of the Nature group. The paper was published on January 30, 2018 and received 1,042 views throughout the year.

Entitled Towards the scale-up of the formation of nanoparticles on alpha-Ag2WO4 with bactericidal properties by femtosecond laser irradiation, the article is signed by eleven authors, six of them from Brazilian institutions, including the researcher Camila Cristina de Foggi (UNESP), who is also a B-MRS member.

The work proposes a new process to produce bactericidal nanocomposites based on silver nanoparticles and semiconductor materials. The method increases 32 times the bactericidal action of the nanocomposite and, at the same time, generates a new class of spherical nanoparticles.

paper longo

History of Materials Research: 30 years of LIEC – UFSCar.

The Interdisciplinary Laboratory of Electrochemistry and Ceramics (LIEC) of the Federal University of São Carlos (UFSCar) is completing 30 years of scientific research, development of innovative products and processes, training of scientists and extension activities.

The idea of creating an interdisciplinary laboratory emerged in 1988, from discussions of three research professors, two from UFSCar and the third from UNESP – Araraquara, with education background in chemistry, physics and physical chemistry. These professors were Elson Longo da Silva, Luís Otávio de Sousa Bulhões and José Arana Varela (deceased in 2016). “The idea came about because we had obtained equipment from funding agencies, but there was not enough space in our respective departments to allocate them,” recounted Elson Longo, now professor emeritus of UFSCar, during the commemoration of the anniversary of LIEC, on March 23.

The idea was materialized thanks to a partnership with Companhia Brasileira de Metais e Metalurgia (CBMM) to finance the construction of the building that would house the equipment. The company, Longo said, was interested in the future laboratory developing some products. “Fortunately, we secured their support for the construction of the building at UFSCar,” explained Longo

Soon after, the laboratory began to receive students interested in participating in the research. The first ones, recalls Longo, were Edson Roberto Leite (now professor at UFSCar), Carlos Alberto Paskocimas (currently at UFRN) Ernesto Chaves Pereira (UFSCar) and Maria Aparecida Zaghete (UNESP). “It can be said that over the past 30 years there have been hundreds of students who have completed their studies at LIEC,” said Longo. In addition to students from various UFSCar courses, LIEC has received young people from other institutions in Brazil and abroad for classes, courses and research at all levels of education.

Partnerships with the industrial sector have marked the history of LIEC in the following years. “The various research themes have been developed, and also changing, from theoretical reflections and from contacts with various companies,” declares Longo. “I emphasize that it was not the production of reflexive knowledge of business needs; on the contrary, such needs have given rise to new interpretive models and dialogues with other theories,” he clarifies.

One of the longest-standing industrial partners is Companhia Siderúrgica Nacional (CSN), with which the laboratory continues to work. Initially, LIEC helped the company eliminate the corrosion that the ceramic burner experienced. “The solution to this problem put the team to research and solve problems related to blast furnace, race channel, torpedo car, converter etc.,” Longo recalled.

Another example cited by Longo is the partnership with 3M of Brazil. LIEC collaborated with the company in the implementation of a varistor plant in Ribeirão Preto, some 100 km from São Carlos. “This collaboration allowed us to open another research sub-area, whereby we produced the first tin oxide varistor,” added the professor emeritus.

Parallel to the projects with companies, LIEC carried out, from the beginning, research in structural ceramics based on zirconia oxide stabilized with rare earths and alkaline earth metals. Thus began the collaboration of the laboratory with the theoretical chemist Juan Andrés, professor of the Universitat Jaume I (Spain) – a cooperation that has lasted for 29 years.

As for the extension activities, LIEC also has successful examples, such as the project through which it brought technical knowledge to artistic ceramics artisans from 9 Brazilian states.

In the 21st century, from multidisciplinary laboratory to materials development center

The year 2000 was a turning point in the scientific trajectory of LIEC. The laboratory was approved in the call for FAPESP CEPID projects, and denominated as Multidisciplinary Center for the Development of Ceramic Materials (CMDMC), and with the guarantee of continuous financing for 11 years. Consequently, the area of diffusion of knowledge was created, international collaborations multiplied (covering more than a dozen countries), and support was given to creating spin-off companies. From this environment came Nanox, specialized in bactericidal nanoparticles, and CosmoScience, dedicated to the characterization of cosmetics.

“This is when LIEC initiated comprehensive modifications in the research of ceramic semiconductors using the Pechini method,” Longo said. “There has been significant expansion in the research on piezoelectric materials, sensors, nanometric particles and thin films for non-volatile memory applications,” affirmed LIEC’s founder.

In 2013, LIEC was again contemplated with the FAPESP CEPID project, now denominated the Center for the Development of Functional Materials (CDMF). In this phase, which continues to this day, the diffusion of knowledge has grown remarkably through the use of social networks and the creation of videos, educational games and radio and television programs. In addition, LIEC researchers have established two spinoffs, NChemi Nanomaterials, of nanomaterials, and Katléia, which specializes in capillary diagnostics. In the scientific research activities, the laboratory has concentrated efforts in obtaining semiconductor nanoparticles with controlled reaction kinetics and morphology.

During the event of the 23rd, Professor Longo thanked everyone who built and still builds the history of LIEC, as well as UFSCar and the funding agencies CAPES, CNPq, FAPESP and FINEP. Finally, Longo addressed a few words to the new generations of researchers who will continue the work. The emeritus professor recommended that they plant new seeds for other crops, and that they create their own models and reinvent themselves.

The emeritus professor’s speech ended with this message: “In these moments of moral and ethical crisis that our country experiences, allied to a silent project of dismantling research and public education at all levels, it is imperative that we gather energies for many present and future confrontations”.

In the first line, from the left, LIEC professors. In the other lines, staff and students of the lab. Photo taken in 2004, at the Chemistry Department of UFSCar.
In the first line, from the left, some LIEC professors. In the other lines, staff and students of the lab. Photo taken in 2004, at the Chemistry Department of UFSCar.

Featured paper: New ozone sensor based on nanorods of silver tungstate.

The scientific paper by members of the Brazilian community on Materials research featured this month is:

Luís F. da Silva, Ariadne C. Catto, Waldir Avansi, Laécio S. Cavalcante, Juan Andrés,  Khalifa Aguir, Valmor R. Mastelaro and Elson Longo. A novel ozone gas sensor based on one-dimensional (1D) α-Ag2WO4 nanostructures. Nanoscale (Print), 2014, v. 1, p. 1-2. DOI: 10.1039/C3NR05837A

New ozone sensor based on nanorods of silver tungstate

A study carried out by a research group from Brazil, with collaboration from French and Spanish scientists, has reported, for the first time, gas detection properties in nanorods of silver tungstate in its alpha phase (α-Ag2WO4).The study showed that this material can be applied as a resistive sensor, displaying great performance when detecting ozone (O3). The work was and coordinated by Elson Longo, Professor at the São Paulo State University “Júlio de Mesquita Filho” (UNESP).

Resistive gas sensors are basically built from a material capable of changing its electrical properties when molecules of a certain gas are adsorbed in its surface. In the specific case of the silver tungstate, when it is submitted to an oxidant gas such as ozone, there is an increase in its electrical resistance that is proportional to the presence and concentration of the gas.

SEM image of the nanorods inside a diagram showing the sensor performance.

In this work, the Brazilian scientists synthesized nanorods of silver tungstate and assembled a sensor based on such nanoparticles. They had put the sensor in a temperature controlled test chamber, exposed it to different concentrations of ozone gas, from 80 to 930 parts per billion (ppb), and evaluated its capacity to detect the ozone.

Present in high atmospheric layers, the ozone plays an important role protecting living beings by absorbing the solar ultraviolet radiation. The ozone is also used by people in several applications, such as, for example, cleaning water. However, the exposition to the gas in certain concentrations may lead to health issues as headache, burning and irritation in the eyes, and respiratory system problems. The World Health Organization (WHO) recommends avoiding the exposure to ozone gas above 120 ppb.

“Subjecting the compound to low amounts of ozone, we observed a fast response, as well as a very short recovering time, making its properties comparable or even better than traditional sensors as tin dioxide (SnO2), tungsten trioxide (WO3), and indium oxide (In2O3),” says Luís Fernando da Silva, first author of the article and postdoctoral fellow of the São Paulo Research Foundation (Fapesp) at UNESP’s Chemistry Institute of Araraquara.

The results were published online in the peer reviewed journal Nanoscale in the end of January this year.

Background of the paper 

The studies with silver tungstate started in the postdoctoral research of Laécio Cavalcante, currently a Professor at Piauí State University (UESPI). Cavalcante synthesized nanorods of silver tungstate using microwave-assisted hydrothermal technique (process that was also used in the synthesis of nanorods from the paper published by Nanoscale). Performing electronic microscopic analysis with the microscope of the Chemistry Institute of Araraquara, the group of scientists coordinated by Professor Longo noticed that the interaction of the electron beam with the material was stimulating the growth of metallic silver particles on the surface of the nanorods. The result of this paper led to an article published in April last year by Scientific Reports (DOI: 10.1038/srep01676).

“Since then, Professor Elson Longo has researched and encouraged the investigation of the potentiality of the α-Ag2WO4 compound”, comments Luís Fernando da Silva. Longo, his team and partners have already observed that the material holds bactericidal (J. Phys. Chem. A, 2014; Doi:10.1021/jp410564p), photoluminescent (J. Phys. Chem. C, 2014, DOI: 10.1021/jp408167v), and photocatalytic properties, with a series of possible applications.

“Based on these potential applications”, Luís Fernando da Silva adds, “I, Professor Waltir Avansi Junior from the Physics Department of the Federal University of São Carlos (UFSCar), jointly with Professor Valmor Mastelaro from the São Carlos Physics Institute of São Paulo University (USP) and his PhD student, Ariadne Catto, started investigating about the detection properties of the non-irradiated α-Ag2WO4 compound (without nanoparticles of metallic silver)”. During the experiments, Silva says, the team noticed that the material was sensitive to detect ethanol and acetone steam and, ultimately, ozone gas, even in low amounts. Assisted by Professors Khalifa Aguir from Université Aix-Marseille (Marseille, France), and Juan Andrés, from Universitat Jaume I (Castelló, Spain), they prepared the communication published by Nanoscale, a renowned journal in the nanotechnology field.

The studies concerning silver tungstate performed by the team of Professor Longo might not end there. According to Luís Fernando da Silva, the team will assess the capacities of the material to detect other gases. In addition to that, returning to the silver tungstate nanorods with nanoparticles of metallic silver, the scientists are going to study the effects of electron irradiation on the gas detection capacity of the material.

“This paper contributes to the discovering of new materials applied as gas sensors”, states the postdoctoral fellow. “However, complementary examinations are necessary in order to achieve a deeper comprehension of the mechanisms involved in the detection, adsorption and desorption processes of the gas(es)”, he concludes.

Minientrevistas com palestrantes do XII Encontro da SBPMat: Elson Longo da Silva (Unesp).

O professor Elson Longo. Crédito: divulgação.

Elson Longo é professor da pós-graduação na Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) e Professor Emérito da Universidade Federal de São Carlos (UFSCar). Coordena o Centro Multidisciplinar para o Desenvolvimento de Materiais Cerâmicos (CMDMC) e o Instituto Nacional de Ciência e Tecnologia dos Materiais em Nanotecnologia (INCTMN).

Químico formado pela Unesp em 1969, com mestrado e doutorado em Físico-Química pela Universidade de São Paulo (USP), Longo conta com mais de 780 artigos publicados em revistas internacionais, que totalizam mais de 11.180 citações. O professor já foi orientador de mais de 50 mestres e mais de 60 doutores enquanto professor da UFSCar (1989-2005) e da Unesp (a partir de 2005).

Da sua carreira como pesquisador da área de Materiais, Longo destaca uma série de contribuições realizadas nos últimos vinte anos: varistores a base de óxido de zinco, óxido de estanho e titanato de cálcio e cobre; sensores; materiais fotoluminescentes a base de titanatos e tungstato; filmes finos ferroelétricos para utilização em memórias, e materiais fotodegradadores (materiais semicondutores). Também na área de Materiais, Longo participou, junto a empresas da indústria de refratários e siderúrgica, do desenvolvimento de novos tipos de refratários, pisos e azulejos e de cerâmica artística.

É membro titular da Academia Brasileira de Ciências, empossado neste ano, membro da Academia de Ciências do Estado de São Paulo e membro da Academia Internacional de Cerâmica (World Academy of Ceramics).

Atualmente é membro do Conselho da SBPMat. Foi presidente da sociedade de 2004 a 2005.

No XII Encontro da SBPMat, Longo será honrado com a Palestra Memorial “Joaquim Costa Ribeiro”, na qual falará sobre a evolução da pesquisa em Materiais no Brasil.

Segue uma breve entrevista com o palestrante.

Boletim da SBPMat (B.SBPMat): – O senhor tem vasta experiência em projetos realizados junto a empresas. O que teria a comentar sobre a relação da área de Materiais e a indústria no Brasil nesses 40 anos de Engenharia de Materiais? A inserção de engenheiros de Materiais na indústria tem ajudado a melhorar a qualidade, variedade e valor agregado dos produtos brasileiros?

Elson Longo(E.L.): – A área de Materiais evoluiu sobremaneira após a fundação e consolidação da primeira turma de Engenharia de Materiais da UFSCar. Este curso criou no país novas perspectivas para a indústria de um modo geral, pois contemplava três áreas extremamente carentes de especialistas: cerâmica, polímeros e compósitos. Na área de metais já existiam os engenheiros especializados formados em diferentes universidades do país. Vamos tomar somente dois exemplos: a indústria de refratários prosperou e tornou-se competitiva internacionalmente, o mesmo ocorrendo para a indústria de polímeros. Os produtos brasileiros são competitivos no mercado nacional e internacional em função do trabalho dos engenheiros de Materiais e demais categorias de engenharia que trabalham em consonância.

B.SBPMat: – Na sua visão, quais os principais resultados da evolução da formação de recursos humanos na área de Materiais nesses 40 anos no Brasil?

E.L.: – Mais importante que a formação de recursos humanos foi a estruturação de cursos de Engenharia de Materiais em nível de graduação e pós-graduação. Estes cursos hoje estão homogeneamente distribuídos pelo país beneficiando sobremaneira a nossa indústria.

B.SBPMat: – Como você consegue manter uma produtividade científica tão alta e com tantas citações?

E.L.: – A nossa produtividade é fruto de um trabalho em equipe que envolve pesquisadores de São Paulo, Rio Grande do Sul, Paraná, Rio de Janeiro, Minas Gerais, Goiás, Brasília, Sergipe, Paraíba, Rio Grande do Norte, Piauí, Maranhão e Pará. Devo destacar também as interações internacionais que proporcionam grandes oportunidades ao grupo de mostrar o nosso trabalho para a comunidade internacional.

B.SBPMat: – Enquanto participante ativo da história da SBPMat, o que você destacaria dos onze anos de existência da sociedade?

E.L.: – O principal ponto da SBPMat é a harmonia que existe entre os pesquisadores de todos os níveis e a saudável troca de informação entre os mesmos. Por outro lado, a SBPMat desde sua origem tem uma forte participação dos pesquisadores do exterior, o que a coloca na vanguarda do conhecimento.

Informações sobre a palestra de Elson Longo no XII Encontro da SBPMat
Título: “Evolução da pesquisa em Materiais no Brasil”
Resumo: Desde a fundação do curso de Ciência dos Materiais na UFSCar, São Carlos (SP), o país vem evoluindo de modo constante nesta área de conhecimento. É importante ressaltar que esse curso catalisou pesquisadores de Engenharia, Química e Física para o desenvolvimento de materiais cerâmicos, poliméricos e compósitos. Por outro lado, houve também uma ampliação dos cursos de Materiais a nível de graduação e pós graduação, o que contribuiu enormemente para o desenvolvimento da área. Com essa nova estrutura, houve a necessidade da criação da Sociedade Brasileira de Materiais, que vem evoluindo de modo positivo ao longo dos últimos 10 anos.
Quando: 29 de setembro (domingo) das 20h00 às 21h00, após a abertura do evento e antes do coquetel.

XII Encontro da SBPMat: evolução da pesquisa em Materiais no Brasil será tema da palestra memorial.

No Convention Center de Campos do Jordão, logo após a cerimônia de abertura do XII Encontro da SBPMat e antes do coquetel, os participantes do evento poderão assistir à terceira edição da palestra memorial “Joaquim Costa Ribeiro”, na qual o professor Elson Longo falará sobre a evolução da pesquisa em Materiais no Brasil.

Sobre a palestra

Quando: 29 de setembro (domingo), das 20h00 às 21h00.

Título: “Evolução da pesquisa em Materiais no Brasil”

Resumo: Desde a fundação do curso de Ciência dos Materiais na UFSCar, São Carlos (SP), o país vem evoluindo de modo constante nesta área de conhecimento. É importante ressaltar que esse curso catalisou pesquisadores de Engenharia, Química e Física para o desenvolvimento de materiais cerâmicos, poliméricos e compósitos. Por outro lado, houve também uma ampliação dos cursos de Materiais a nível de graduação e pós graduação, o que contribuiu enormemente para o desenvolvimento da área. Com essa nova estrutura, houve a necessidade da criação da Sociedade Brasileira de Materiais, que vem evoluindo de modo positivo ao longo dos últimos 10 anos.


XII Encontro da SBPMat: “Memorial Lecture Joaquim Costa Ribeiro” honrará Elson Longo.

Elson Longo da Silva: o próximo homenageado com a palestra memorial da SBPMat.

Desde 2011, a SBPMat outorga, anualmente, uma distinção a um pesquisador de carreira destacada na área de Materiais, quem profere uma palestra durante o encontro anual da sociedade. O nome desse ato é “Memorial Lecture Joaquim Costa Ribeiro”, em homenagem a esse pioneiro da pesquisa experimental em Materiais no Brasil.

Neste ano, o pesquisador honrado será o professor Elson Longo, que ministrará sua palestra na abertura do evento, no dia 29 de setembro, no Convention Center de Campos do Jordão (SP). O professor Longo foi um dos fundadores da SBPMat e um de seus primeiros presidentes.

A honraria já foi outorgada, em anos anteriores, aos professores Sergio Machado Rezende e Sergio Mascarenhas Oliveira.