Victor C. Pandolfelli receives for the third time the ACerS award for the best paper on refractory ceramics.

Prof. Victor Carlos Pandolfelli (UFSCar).
Prof. Victor Carlos Pandolfelli (UFSCar).

Since the 1980s, The American Ceramic Society (ACerS) has selected and awarded publications on high temperature ceramics that have most contributed knowledge to the field and has honored them with the Alfred Allen Award.

There is no submission for this award, since the choice is based on queries in the journals indexed in the Web of Science, which are analyzed by a team of experts.

This year, in its 18th edition, the award was bestowed to an article published in the journal Ceramics International, authored by three researchers from the Brazilian Federal University of São Carlos (UFSCar), Professor Victor Carlos Pandolfelli and the researchers Ana Paula da Luz and Mariana Braulio, besides Analía Tomba Martinez, a researcher from the Research Institute of Materials Science and Technology (INTEMA), in Argentina. Victor C. Pandolfelli and Mariana Braulio had already received this award in two previous editions, and thus far they have been the only researchers to have been honored three times with the ACERS Alfred Allen Award since it has been created.

The award was received by the authors during the 53rd Annual Symposium on Ceramic Refractories, held in late March in St Louis (United States).

On this occasion, Professor Pandolfelli presented an invited lecture on high temperature ceramics inspired by nature.

  • See the list of award-winning papers in all editions of the Alfred Allen Award, here.
  • See the award-winning paper in the 2017 issue, here.
  • See the article on the ACerS website about the symposium, with an account of Professor Pandolfelli’s lecture, here.

History of materials research in Brazil: 40 years of the first glass research laboratory in Brazil.

boxlamav_enBrazil’s first laboratory dedicated to the study of vitreous materials completes 40 years in December 2016. This laboratory, which began its activities with only a small muffle furnace with temperature up to 1100 °C, today has 18 ovens, 4 which reach 1750 °C, and also thirty instruments to manufacture and characterize glasses distributed over 500 m2. The anniversary in question is LaMaV´s (Vitreous Materials Laboratory), of the Department of Materials Engineering (DEMa) at the Federal University of São Carlos (UFSCar).

On the 40th anniversary of LaMaV, the team declares it is fully satisfied with its achievements [see box beside]. The pioneering work of the laboratory was essential in generating, disseminating and applying scientific knowledge on glass in the country, in academia and in industry. “We prepared about a hundred masters, doctors and post-docs, who now work as professors and researchers at major institutions such as USP, UFSCar, ITA, UEPG, UEMa, UFBa, PUC, IPT, CEFET, UFF, UNESP, UFLavras, UFABC, CTA, UNIOESTE and in other institutions in Brazil and abroad, and in numerous companies. This is a very important legacy! ” said Edgar Dutra Zanotto, one of the founders of SBPMat and the Materials Research journal, who founded LaMaV and heads it until today.

But the efforts and results of LaMaV go beyond national borders, since it always featured internationality. The laboratory has received students and visiting professors from dozens of countries. Its team has brought to Brazil the most important international conferences on glasses, it participates in the editorial boards of almost all major specialized journals on vitreous materials and has received seven of the most prestigious international awards and honors of the area – in addition to more than 20 national awards, including the Almirante Álvaro Alberto* award. The group research, especially that on nucleation and crystallization of glasses and glass ceramics, is recognized worldwide. “A significant part of active researchers in this area have heard, attended a lecture or read an article or patent resulting from our research. We have indeed put the city of São Carlos and Brazil on the world map of glass research!” adds Zanotto.

LaMaV is currently very active on glass crystallization issues, structural relaxation and residual stress processes, glass ceramics, biomaterials, and mechanical, rheological, electrical and biochemical properties of vitreous materials. “Today we have an impressive laboratory and excellent financing, mainly from FAPESP (the São Paulo State research foundation) but also from Capes, CNPq (federal funding agencies) and some companies. However, the endless bureaucracy of the funding agencies for purchasing materials and equipment, the accountability and also the uncertainties related to the future of universities (e.g., austerity measure PEC 55 and others), coupled with the shortage of secretaries, technicians and engineers (lab managers) to assist in the organization and maintenance of laboratories, have always been and continue to be formidable obstacles,” ponders Zanotto.

The making of…

It all began on December 15, 1976, when Zanotto was hired as assistant professor at DEMa-UFSCar. His main objective was to start glass research work in the department.  In 1970, the first undergraduate course in Latin America in Materials Engineering was created, and two years later DEMa was created. By 1976 the department already had research groups in metals, polymers and ceramics, but no one worked with glasses, Zanotto remembers. “The creation of LaMaV was a natural outcome of setting up the undergraduate course in Materials Engineering at UFSCar,” declares Professor Zanotto.

At the end of 1976, Edgar Zanotto was a newly graduated materials engineer (at UFSCar) who had just completed scientific initiation research work under the guidance of visiting Professor Osgood James Whittemore, researcher in the area of ceramic materials of the University of Washington (USA). “My undergraduate research carried out that year, focused on the chemical durability (leach) of candidate glasses for the encapsulation of radioactive waste,” recalls Zanotto. “And, amazingly, this subject is still hot! ”, he adds.

Soon after being hired, Zanotto created LaMaV. The first experiments – carried out by Zanotto himself – consisted of melting glass at low melting point, using a muffle furnace and a platinum crucible (recipient that can be used at high temperatures), borrowed from the chemical analysis laboratory of the university.

In 1977, the founder of LaMaV started the Master’s program in Physics at the Institute of Physics and Chemistry at São Carlos (IFQSC) of USP, under the guidance of Professor Aldo Craievich, who was probably the only scientist active in the glass area in Brazil before 1976. In fact, he is the author of the first two papers on glasses signed by researchers from Brazilian institutions, both published in 1975. During the Master, Zanotto produced and thermally treated glasses (to generate crystallization) at LaMaV, carried out microscopic investigation at the DEMa metallurgy laboratory, and characterized glasses by XRD and SAXS at IFQSC-USP. Zanotto finished his Master’s research work and defended the dissertation a year and a half later. That same year he began his doctorate, also in the area of glasses, at the University of Sheffield (UK), under the supervision of the famous Professor Peter James. In 1982, having defended his doctorate, Zanotto returned to LaMaV.

“In the first 10 to 15 years, isolated work, inexperience and the uncertainties and difficulties associated with the mercurial research funding, in addition to the reduced physical space and little laboratory infrastructure disrupted our activities”, recalls Zanotto. Nearly a decade after the laboratory was created, the second Professor of the group was hired, Oscar Peitl Filho, Zanotto’s former master’s and doctoral student. A few years later, Ana Candida Martins Rodrigues became the third professor of the LaMaV team. Then in 2013, Marcello Andreeta was hired. “Today we are 4 teachers, 1 technician, 1 administrative assistant and about 30 research students and post-docs, 7 from other countries,” says Zanotto.

The year of 2013 was a milestone in the history of LaMaV due to the approval by FAPESP and the beginning of activities of CeRTEV (Center for Research, Technology and Education in Vitreous Materials). Directed by Zanotto, CeRTEV brings together LaMaV (headquarters of the center) and other laboratories from UFSCar, USP and UNESP, to conduct research, development and education activities in the field of vitreous materials, with funding from FAPESP until 2024. “With CeRTEV, we have established one of the largest academic research groups on glass on this planet, with world-class infrastructure, 14 professors and about 60 research students!”, acclaims Zanotto.

“Looking back, if I could return to December 1976, with the experience accumulated over these 40 years, I believe I’d do it all over again, but more efficiently!”, expresses the founder of LaMaV.

Doctoral students from 28 countries attending the "Glass and glass-ceramics school" at LaMaV, August, 2015.
Doctoral students from 28 countries attending the “Glass and glass-ceramics school” at LaMaV, August, 2015.

Recognition of the American Ceramic Society (ACerS) to the Brazilian scientist Edgar Zanotto: elected fellow of the society.

Edgar Dutra Zanotto.

Edgar Dutra Zanotto, Professor at the Federal University of São Carlos (UFSCar), one of the founders of SBPMat and researcher in the Materials area for nearly 40 years, was chosen as a fellow of the American Ceramic Society (ACerS) – a recognition conferred annually upon few select members.

The elevation to fellow is a peer recognition by ACerS members for outstanding contributions to ceramics science or art. In fact, the fellows of ACerS are chosen from the almost 10,000 members of the society, located in 70 countries, in a nomination and election process that has the participation of members, fellows, and with the final approval of the directors of ACerS. For scientists working in academia, scientific and technological production is one of the main points considered in the election.

Professor Zanotto currently has more than 5,500 citations and an H index of 40, according to Google Scholar. Among the other positions he holds, he is director of the Center for Research, Technology and Education in Vitreous Materials (CeRTEV) and editor of the Journal of Non-Crystalline Solids.

The election of the new fellows of ACerS will be celebrated at the awards and recognition banquet of the 118th annual meeting of the society on 24 October 2016 in Salt Lake City, Utah, in the United States.

Interviews with plenary speakers of the XIV SBPMat Meeting: Edgar Zanotto.

Edgar Dutra Zanotto.

Glass-ceramics, discovered in the decade of 1950, are produced by the catalyzed internal crystallization of certain glasses containing nucleating elements, and submitted to temperatures from 500 to 1,100 °C. They can present many properties which make of them interesting materials for many applications in the fields of medicine, odontology and architecture, among others.

In the XIV SBPMat Meeting, glass-ceramics will be addressed in a lecture entitled “60 years of glass-ceramics R&D: a glorious past and bright future”. The lecturer will be Edgar Dutra Zanotto, full professor of the São Carlos Federal University (UFSCar), in Brazil, and director of the Brazilian Center for Research, Technology and Education in Vitreous Materials (CeRTEV).

Zanotto became fascinated by glass-ceramics in 1977, when he read the book Glass Ceramics by Peter McMillan, from Warwick University (United Kingdom), while he was completing the graduation course of Materials Engineering at UFSCar. From that moment on, these materials and their crystallization process have been the focus of his studies, first in his Master’s Degree in Physics (USP São Carlos, Brazil) then in his PhD in Glass Technology (University of Sheffield, United Kingdom) and, until the moment, in the research and development projects that he develops with his group in the Laboratory of Glass Materials (LaMaV) at UFSCar.

“Orchid”. Optical microscopy image of crystallization in eutetic glass. Credits: Vladimir Fokin e Edgar Zanotto (LaMaV-UFSCar).

Edgar Zanotto is author of an important production in science and glass technology. There are more than 200 scientific articles, with approximately 3,500 citations in Web of Science and 5,000 in Google Scholar; 20 book chapters; 17 patent orders; 2 books and 4 prefaces of international books. His H index is 34, according to Web of Science, and 39 according to Google Scholar. Zanotto already received 28 prizes or distinctions from diverse entities, as American Ceramic Society, Elsevier Publishing Company, International Commission on Glass, The World Academy of Sciences and CNPq, the Brazilian Federal Research Foundation. He is Commander of the Brazilian National Order of the Scientific Merit. He was chairman of six of the most important international congresses on the glass area. He gave more than 110 invited lectures and a dozen of plenary lectures. He is editor of the Journal of Non-Crystalline Solids.

Here is a mini interview with this lecturer of the XIV Meeting of SBPMat.

SBPMat newsletter: – What are your most significant contributions or the ones with bigger social impact in the subject of glass-ceramics? Explain them very briefly and comment what was generated from them (papers, books, patents, products, etc.).

Edgar Zanotto: – I believe that the most significant contributions of my research group are referred to tests and improvements of models of nucleation, crystal growth and total crystallization of glasses. Moreover we developed and tested, successfully, models that describe the sintering with concurrent glass crystallization, besides several measurement techniques and theories of dynamic processes (viscous flow, structural relaxation, diffusion and crystallization) in glasses. The numbers of papers, patents and books generated from these researches are described above.

Optical microscopy image of crystal scratch in isochemical glass. Credits:Valmor Mastelaro e Edgar Zanotto (LaMaV – UFSCar).

SBPMat newsletter: – Please, name some products made with glass ceramics that are in the market and some possible promising applications.

Edgar Zanotto; – Throughout the last 39 years we develop glass ceramics from iron and steel slags and from recycled glasses – for application in civil construction and architecture – and also more sophisticated materials for odontological and medical use. These will be presented in the lecture.

SBPMat newsletter: – If you wish, leave a message or an invitation to your plenary talk to the readers who will attend the XIV SBPMat Meeting.

Edgar Zanotto: – In the lecture I intend to revise the main models of nucleation and crystal growth in glasses and to discuss their applicability to the development of new glass ceramics. Everything will be illustrated with colorful figures of innumerable new products. I hope that the lecture will be interesting and motivating for the students and researchers (experimental and theoreticians) of the areas of materials science and engineering, and condense matter physics and chemistry.

Learn more:

Postdoctoral positions available at the Center for Research, Technology and Education in Vitreous Materials in São Carlos, Brazil.

Applications for postdoctoral fellowships are invited for conducting fundamental or applied research at the Center for Research, Technology and Education in Vitreous Materials (CeRTEV) in São Carlos, Brazil.

The period of the fellowships is two years, starting in January 2015, renewable for two additional years upon mutual consent.

CeRTEV is an 11-year, approximately USD$22 million joint effort of the Federal University at São Carlos (UFSCar), the University of São Paulo
(USP) and the State University of São Paulo (UNESP), to conduct fundamental and applied research in the area of Functional Glasses and Glass-Ceramics. The center comprises 14 faculty members, including some of the world experts in vitreous materials and structural characterization techniques. Research will focus on new glasses and glass-ceramics and the development of structure/crystallization/properties correlations (mechanical, optical, electrical, catalytic, biological) for technological applications.

Applicants should have a PhD degree in Physics, Chemistry, Materials Science or Engineering, and have a genuine interest in conducting interdisciplinary research in an international environment. Previous experience in glass science, solid state physics or chemistry is advantageous. The monthly fellowships (non-taxable) include ca. R$ 6.000,-
plus 15% professional expenses. Travel expenses from and to their home countries will also be covered. The three sister universities are equal opportunity employers and are committed to increasing the proportion of women and ethnic minorities in academia.

Please send your application including CV, list of publications, a 2-3 page research proposal, and the names and email addresses of two references by October 15, 2014 to Prof. Edgar D. Zanotto (dedz@ufscar.br).

SBPMat´s community people: interview with Victor Carlos Pandolfelli.

Victor Carlos Pandolfelli, full Professor at the Materials Engineering Department of the Federal University of São Carlos (DEMa – UFSCar), assumed his position as a member of the advisory board of the World Academy of Ceramics (WAC) in a ceremony held on June 11, in Montecatini Termi (Italy), during the International Conference on Modern Materials and Technologies (CIMTEC). In that occasion, there was also the first meeting of the advisory board. Elected for the 2014-2018 term, Pandolfelli is one of the two representatives of the Americas for this period, jointly with a researcher from the United States.

Graduated in Materials Engineering at the DEMa – UFSCar (1979), Victor Carlos Pandolfelli has been researching subjects in the field of ceramic materials since the time of for his master’s thesis, defended in 1984, at DEMa-UFSCar. It was also in that field that he conducted the research for his doctorate, at the University of Leeds (United Kingdom), concluded in 1989, and his postdoctoral scholarship, held from 1996 to 1997 at the Polytechnique Montreal, in Canada.

Pandolfelli is a full member of the Brazilian Academy of Sciences (ABC) and fellow of the American Ceramic Society (ACerS), as well as a member of the WAC. He is or was part of the editorial boards of the journals  InterceramRefractories Manual and Refractories World Forum (Germany), Materials Research, Revista Cerâmica and Journal of Materials Research and Technology (Brazil), China’s Refractories (China),  Cerámica y Vidrio (Spain), Refractory ApplicationsRefractories Applications Transactions  and American Ceramic Society Bulletin (USA), and Ceramics International (Italy).

He is a visiting Professor at the Wuhan University of Science and Technology (China) and Latin American Coordinator of the Federation for International Refractories Research and Education (FIRE), an organization comprising universities in different countries and major companies in the field of refractories. Since 1993, he coordinates the ALCOA (Aluminum Company of America) laboratory at UFSCar.

Holder of a 1A-level fellowship for research productivity in the Brazilian Council for Scientific and Technological Development (CNPq), Professor Pandolfelli is the coauthor of more than 400 peer-reviewed papers, a book and eight deposited patents. He advised 50 master’s theses and 16 doctoral dissertations. Many studies developed or advised by him were awarded by entities such as the German Ceramic Society (Germany), Technical Association of Refractories of Japan, American Ceramic Society, Petrobras, Alcoa Alumínio S.A., Magnesita S.A, Brazilian Industrial Federation, and the Brazilian Associations of Aluminium, Ceramics and Metallurgy, Materials and Mining, among others. In his professional activities, he has interacted with 380 collaborators, coauthoring scientific papers.

Below is our interview with the researcher.

Tell us a little about your history: what led you to become a scientist and work in the field of ceramic materials?

The first aspect I would like to highlight is that life is made of choices that many times are not very logical or well planned. Actually, I studied Materials Engineering and, in the beginning, used to think about working with metals, but throughout the time I held a curricular traineeship in a company, still during my undergraduate studies, I had to meet a demand in ceramic materials. Then, I graduated specializing both in metals and in ceramic materials. In a time when the industry offered more jobs and better wages, I disregarded this scenario and chose to start my master’s studies in ceramics in the recently founded Materials Engineering program offered by UFSCar. Very soon after I enrolled for the master’s, there was a call for an selection to be a lecturer at UFSCar. I applied, was approved, and only then my life was truly dedicated to ceramic materials.

The professional turning point happened in my doctoral and postdoctoral studies abroad, when my network of contacts was tremendously expanded, just as the visibility of the work I was coordinating. Another aspect that collaborated a lot is that, even from the start, I endeavored to establish projects with companies, which taught me how to conduct the research that I consider “use-oriented basic research”. Then, I could really conciliate the fundaments acquired and developed at the university with the needs of the industry, while also creating opportunities so the students could take traineeships, as well as providing jobs.

This “use-oriented basic research” is a road with two ways that constantly interact to build a firm bridge between the university and the industry. We, as researchers, must comprehend the needs of the industry, and use the research and foundation tools we have at the university to help companies solve real issues. Many times, it is through an actual problem that we are motivated to understand the fundaments and use them to perceive new opportunities for applying and creating technologies.

Today, the path I chose enables me to take part in the Federation for International Refractories Research and Education, FIRE, which is a non-profit organization that gathers eleven universities around the world and seventeen companies. FIRE’s goal is to invest in the education of students in their master’s or doctoral years, providing them with a financial aid so they may spend six months to a year in affiliated universities or companies, have an international experience and apply or expand their knowledge in the field.

Therefore, my life as a researcher in the field of ceramic materials started more as an accident, and now, actually, it is focused on Complex System Engineering, considering that, at this moment, there are no materials defined only by a single field of expertise.

What do you consider to be your main contributions to the field of Materials?

Since I became a Professor, my project in the professional field always consisted of establishing three pillars, which feed one another and are the foundations to everything I do: teaching, research and industrial partnerships. This cycle is vital because, through teaching, I can meet good students, have the opportunity to invite them to conduct researches, which may subsequently serve the national and international industry, or the academia. Only by means of a good partnership we detect the needs of the industry and are able to illustrate our lectures, applying those foundations so they don´t become sterile, but may be filled by said needs.

Concerning teaching, it is certain that training people who are now developing great projects in the academic and industrial communities would be the main point of my contribution to education. As the tradition says, good teachers are measured by the number of people they taught, who now are better than them. Fortunately, today I have very well employed students, whether in research, teaching or companies, what proves my contribution.

The main aspect in regard to research, according to my self evaluation, was selecting a complex field to develop, with great opportunities to deepen and test my knowledge.  Once I returned to Brazil, after obtaining my doctoral degree in advanced ceramics, I felt it was very difficult to establish this subject as a research field here; however, the capacities I had acquired could be easily applied to other necessities of the country.  It was then that I realized how what I learned could be useful for the steel, metallurgy, aluminum and refractories industry. So, I adapted my expertise to the local reality, instead of trying to bring the international study to Brazil for a direct application of the advanced ceramics, which still is, up to this date, an incipient market. Within this scenario, my research tried to comprehend the different stages of the production cycle of the refractories. I defined a strategy to commit myself, every four or five years, to one topic related to the cycle of producing and understanding such materials. Throughout the more than 20 years I spent working in this field, it allowed me to know the complete cycle, not just the data collected by the literature.  As a result, we are writing a book to be released until the end of the year, in English, by a German publisher, filled with the product of the research we conducted involving from raw materials and processing to properties and simulations, providing a very clear and deep perspective on the microstructure engineering in refractory ceramic materials.

On the subject of industrial partnerships, which is the third pillar, I would say there is no way to do engineering only in a laboratory. We need to know how the market goes, as well as to learn to work with deadlines, to expose the data to industrial testing, to understand that the material is just one item within the whole. This I really owe to my industrial partnerships, which have always accompanied me, since I concluded my doctorate. We have partnerships that have been lasting for 24 straight years, as is the case with Alcoa Alumínio, where several people earned their master’s and doctoral degrees, and some of them work for the company. Many other companies, in Brazil and abroad, also contributed for the creation of this use-oriented basic research environment. We have solid partnerships with Petrobras, with Magnesita, a refractories company, with FIRE, etc. Thus, a large portion of the resources and opportunities of the group come from industrial partnerships, or federations working on this company-university bridge.

In your opinion, what are the main challenges to Science and Materials Engineering today?

I would highlight two major challenges. The first one would be the “materials genome” initiative. Due to the need to save time and costs with research, it is increasingly necessary to create a database and apply simulations in order to minimize the time spent in laboratorial experiments, reaching the expected result in the fastest way possible. Said “materials genome” consists of detecting their DNA and, by the association of computer tools, trying to conceptualize new materials still unimagined by the current technology, each time sooner. So I predict that the materials laboratory of the future will have less equipment, multidisciplinary teams and more computers with high processing speed, which will provide a more objective idea on what to do in the laboratory to produce new materials.

The other great challenge is 3D printing, comprising the class known as additive manufacturing, which has emerged with a tremendous force, considering that companies have been noticing how labor costs in developing countries are already high. In a first moment, the industries in developed countries started to realize that the manufactured products would be more competitive if produced abroad. So, as a first wave, they brought the manufacturing process to the developing countries, but this environment changed with time, and in countries such as China and Brazil, labor is starting to become very expensive. In addition to that, the legislation ruling exports and taxes only makes the scenario worse. So, countries such as Germany and the United States are once again manufacturing at home, using an entirely automated system, based on 3D printing, which is similar to regular printing, but, instead of printing X Y, prints X Y Z, and, instead of toner, uses materials. 3D printing is simply revolutionizing the whole market, keeping in mind that today it is possible to own a materials printer at home and do the build yourself for jewelry, toys, etc. Furthermore, it is already making implants, using stem cells as a component to create organs in 3D printers.

With this technique, associated with the first item I mentioned, simulation, we will have new materials that we are not able to obtain with the traditional processing methods. The idea I propose to you now was the same I presented in my first meeting of the WAC advisory board. It was so well received by the committee that it became the theme of the forum for members of the academy to be held in two years, which is going to bring together the best researchers and companies in the world dedicated to this field.

Another interesting point to elaborate is that we are experiencing the age of Complex Systems Engineering. No one speaks about specialization fields anymore. What we need, more than ever, is the sum of the knowledge of the different fields. For example, as to materials printed in three dimensions, having the equipment is not enough. We require computer programmers, mechanical engineers, production engineers, materials engineers, chemists, physicists, biologists, managers, all working closely, because we are no longer dealing with knowledge that a single person is able to hold.

In your opinion, how did you build the recognition of the international ceramic research community, attested, for example, by your election as a member of the advisory board of the WAC?

In addition to all that was already said, I would add that every victory is a collective effort. There were 34 years of intense work in national and international partnerships with industries and supporting agencies. I believe that the standard formula to achieve anything is: teamwork, persistence, associating yourself to the best and promoting your name nationally and internationally.

Leave a message for our readers who are starting their careers as scientists.

My answer is going to have some traditional elements, others not so much. The traditional suggestion is widely known: energy and commitment, work and sweat. The part that is not so traditional is about not confusing the opportunities we have today with a convenient life. Living is not easy. The professional life is full of challenges and the current opportunities are here to make competition even more intense. Now, competition is set in a global scale. In any place around the world someone may be doing the same thing I am developing in my laboratory. Because of that, every young scientist must be really aware that companies and financing agencies will seek who can do it in the best, fastest and cheapest way, producing the highest possible amount of return to the society.

One point that I would really like to stress is that the real world is not Facebook, victories are reached after many battles, and many defeats. This virtual universe where we are always surrounded by famous people, enjoying accomplishments and partying does not exist.

Another issue is that, due to the many opportunities we have today, young people take one already looking for another, fulfilling neither. Instead of firmly grabbing a branch, they are always thinking about leaping for the next one. They must be very careful. Do at least one task competently, at a time. If you are studying for your master’s, develop a good productivity rate, establish a network, then you may change your subject, if it is the case. The scientific communities are not as big as we think they are. We need to do a very good job from the very start, with high quality and great respect for the group in which we work.  The world spins quickly, and in a not so distant future, the same people may open or close doors to you. In our professional life, to a certain degree, we may rise based on our own capacities, but then we are seriously going to need to be inserted by the national and international community. It is at that point that I may need those people to whom I gave a bad impression.

Gente da nossa comunidade: prof. Pandolfelli (UFSCar) é “guest professor” em universidade da China.

Victor Pandolfelli junto a equipe da WUST.

O  professor Victor. C. Pandolfelli, do Departamento de Engenharia de Materiais (DEMa) da Universidade Federal de São Carlos (UFSCar), foi eleito guest professor da Wuhan University of Science and Technology (WUST), da China.

De acordo com Pandolfelli, a WUST é a instituição que possui o maior curso de materiais cerâmicos para alta temperatura, formando cerca de 500 alunos por ano nessa área de especialização. Esses materiais são principalmente usados na indústria siderúrgica, de alumínio, petroquímica e para produção de cimento para a construção civil. Como referência, Pandolfelli comenta que a produção de aço na China é de aproximadamente 700 milhões de toneladas por ano enquanto que no Brasil é 20 vezes inferior (35 milhões por ano).

Entre as atividades a serem desenvolvidas em conjunto após esta eleição, será estabelecido um acordo formal de cooperação entre as instituições, intercâmbio de estudantes de pós-graduação, cursos técnicos, projetos conjuntos, publicações e visitas técnicas. Um dos professores da WUST já esta desenvolvendo pesquisas no laboratório coordenado pelo professor Pandolfelli na UFSCar, onde permanecerá por um ano.

Pandolfelli é membro titular da Academia Brasileira de Ciências e da World Academy of Ceramics.