SBPMat´s community people: interview with Victor Carlos Pandolfelli.

Victor Carlos Pandolfelli, full Professor at the Materials Engineering Department of the Federal University of São Carlos (DEMa – UFSCar), assumed his position as a member of the advisory board of the World Academy of Ceramics (WAC) in a ceremony held on June 11, in Montecatini Termi (Italy), during the International Conference on Modern Materials and Technologies (CIMTEC). In that occasion, there was also the first meeting of the advisory board. Elected for the 2014-2018 term, Pandolfelli is one of the two representatives of the Americas for this period, jointly with a researcher from the United States.

Graduated in Materials Engineering at the DEMa – UFSCar (1979), Victor Carlos Pandolfelli has been researching subjects in the field of ceramic materials since the time of for his master’s thesis, defended in 1984, at DEMa-UFSCar. It was also in that field that he conducted the research for his doctorate, at the University of Leeds (United Kingdom), concluded in 1989, and his postdoctoral scholarship, held from 1996 to 1997 at the Polytechnique Montreal, in Canada.

Pandolfelli is a full member of the Brazilian Academy of Sciences (ABC) and fellow of the American Ceramic Society (ACerS), as well as a member of the WAC. He is or was part of the editorial boards of the journals  InterceramRefractories Manual and Refractories World Forum (Germany), Materials Research, Revista Cerâmica and Journal of Materials Research and Technology (Brazil), China’s Refractories (China),  Cerámica y Vidrio (Spain), Refractory ApplicationsRefractories Applications Transactions  and American Ceramic Society Bulletin (USA), and Ceramics International (Italy).

He is a visiting Professor at the Wuhan University of Science and Technology (China) and Latin American Coordinator of the Federation for International Refractories Research and Education (FIRE), an organization comprising universities in different countries and major companies in the field of refractories. Since 1993, he coordinates the ALCOA (Aluminum Company of America) laboratory at UFSCar.

Holder of a 1A-level fellowship for research productivity in the Brazilian Council for Scientific and Technological Development (CNPq), Professor Pandolfelli is the coauthor of more than 400 peer-reviewed papers, a book and eight deposited patents. He advised 50 master’s theses and 16 doctoral dissertations. Many studies developed or advised by him were awarded by entities such as the German Ceramic Society (Germany), Technical Association of Refractories of Japan, American Ceramic Society, Petrobras, Alcoa Alumínio S.A., Magnesita S.A, Brazilian Industrial Federation, and the Brazilian Associations of Aluminium, Ceramics and Metallurgy, Materials and Mining, among others. In his professional activities, he has interacted with 380 collaborators, coauthoring scientific papers.

Below is our interview with the researcher.

Tell us a little about your history: what led you to become a scientist and work in the field of ceramic materials?

The first aspect I would like to highlight is that life is made of choices that many times are not very logical or well planned. Actually, I studied Materials Engineering and, in the beginning, used to think about working with metals, but throughout the time I held a curricular traineeship in a company, still during my undergraduate studies, I had to meet a demand in ceramic materials. Then, I graduated specializing both in metals and in ceramic materials. In a time when the industry offered more jobs and better wages, I disregarded this scenario and chose to start my master’s studies in ceramics in the recently founded Materials Engineering program offered by UFSCar. Very soon after I enrolled for the master’s, there was a call for an selection to be a lecturer at UFSCar. I applied, was approved, and only then my life was truly dedicated to ceramic materials.

The professional turning point happened in my doctoral and postdoctoral studies abroad, when my network of contacts was tremendously expanded, just as the visibility of the work I was coordinating. Another aspect that collaborated a lot is that, even from the start, I endeavored to establish projects with companies, which taught me how to conduct the research that I consider “use-oriented basic research”. Then, I could really conciliate the fundaments acquired and developed at the university with the needs of the industry, while also creating opportunities so the students could take traineeships, as well as providing jobs.

This “use-oriented basic research” is a road with two ways that constantly interact to build a firm bridge between the university and the industry. We, as researchers, must comprehend the needs of the industry, and use the research and foundation tools we have at the university to help companies solve real issues. Many times, it is through an actual problem that we are motivated to understand the fundaments and use them to perceive new opportunities for applying and creating technologies.

Today, the path I chose enables me to take part in the Federation for International Refractories Research and Education, FIRE, which is a non-profit organization that gathers eleven universities around the world and seventeen companies. FIRE’s goal is to invest in the education of students in their master’s or doctoral years, providing them with a financial aid so they may spend six months to a year in affiliated universities or companies, have an international experience and apply or expand their knowledge in the field.

Therefore, my life as a researcher in the field of ceramic materials started more as an accident, and now, actually, it is focused on Complex System Engineering, considering that, at this moment, there are no materials defined only by a single field of expertise.

What do you consider to be your main contributions to the field of Materials?

Since I became a Professor, my project in the professional field always consisted of establishing three pillars, which feed one another and are the foundations to everything I do: teaching, research and industrial partnerships. This cycle is vital because, through teaching, I can meet good students, have the opportunity to invite them to conduct researches, which may subsequently serve the national and international industry, or the academia. Only by means of a good partnership we detect the needs of the industry and are able to illustrate our lectures, applying those foundations so they don´t become sterile, but may be filled by said needs.

Concerning teaching, it is certain that training people who are now developing great projects in the academic and industrial communities would be the main point of my contribution to education. As the tradition says, good teachers are measured by the number of people they taught, who now are better than them. Fortunately, today I have very well employed students, whether in research, teaching or companies, what proves my contribution.

The main aspect in regard to research, according to my self evaluation, was selecting a complex field to develop, with great opportunities to deepen and test my knowledge.  Once I returned to Brazil, after obtaining my doctoral degree in advanced ceramics, I felt it was very difficult to establish this subject as a research field here; however, the capacities I had acquired could be easily applied to other necessities of the country.  It was then that I realized how what I learned could be useful for the steel, metallurgy, aluminum and refractories industry. So, I adapted my expertise to the local reality, instead of trying to bring the international study to Brazil for a direct application of the advanced ceramics, which still is, up to this date, an incipient market. Within this scenario, my research tried to comprehend the different stages of the production cycle of the refractories. I defined a strategy to commit myself, every four or five years, to one topic related to the cycle of producing and understanding such materials. Throughout the more than 20 years I spent working in this field, it allowed me to know the complete cycle, not just the data collected by the literature.  As a result, we are writing a book to be released until the end of the year, in English, by a German publisher, filled with the product of the research we conducted involving from raw materials and processing to properties and simulations, providing a very clear and deep perspective on the microstructure engineering in refractory ceramic materials.

On the subject of industrial partnerships, which is the third pillar, I would say there is no way to do engineering only in a laboratory. We need to know how the market goes, as well as to learn to work with deadlines, to expose the data to industrial testing, to understand that the material is just one item within the whole. This I really owe to my industrial partnerships, which have always accompanied me, since I concluded my doctorate. We have partnerships that have been lasting for 24 straight years, as is the case with Alcoa Alumínio, where several people earned their master’s and doctoral degrees, and some of them work for the company. Many other companies, in Brazil and abroad, also contributed for the creation of this use-oriented basic research environment. We have solid partnerships with Petrobras, with Magnesita, a refractories company, with FIRE, etc. Thus, a large portion of the resources and opportunities of the group come from industrial partnerships, or federations working on this company-university bridge.

In your opinion, what are the main challenges to Science and Materials Engineering today?

I would highlight two major challenges. The first one would be the “materials genome” initiative. Due to the need to save time and costs with research, it is increasingly necessary to create a database and apply simulations in order to minimize the time spent in laboratorial experiments, reaching the expected result in the fastest way possible. Said “materials genome” consists of detecting their DNA and, by the association of computer tools, trying to conceptualize new materials still unimagined by the current technology, each time sooner. So I predict that the materials laboratory of the future will have less equipment, multidisciplinary teams and more computers with high processing speed, which will provide a more objective idea on what to do in the laboratory to produce new materials.

The other great challenge is 3D printing, comprising the class known as additive manufacturing, which has emerged with a tremendous force, considering that companies have been noticing how labor costs in developing countries are already high. In a first moment, the industries in developed countries started to realize that the manufactured products would be more competitive if produced abroad. So, as a first wave, they brought the manufacturing process to the developing countries, but this environment changed with time, and in countries such as China and Brazil, labor is starting to become very expensive. In addition to that, the legislation ruling exports and taxes only makes the scenario worse. So, countries such as Germany and the United States are once again manufacturing at home, using an entirely automated system, based on 3D printing, which is similar to regular printing, but, instead of printing X Y, prints X Y Z, and, instead of toner, uses materials. 3D printing is simply revolutionizing the whole market, keeping in mind that today it is possible to own a materials printer at home and do the build yourself for jewelry, toys, etc. Furthermore, it is already making implants, using stem cells as a component to create organs in 3D printers.

With this technique, associated with the first item I mentioned, simulation, we will have new materials that we are not able to obtain with the traditional processing methods. The idea I propose to you now was the same I presented in my first meeting of the WAC advisory board. It was so well received by the committee that it became the theme of the forum for members of the academy to be held in two years, which is going to bring together the best researchers and companies in the world dedicated to this field.

Another interesting point to elaborate is that we are experiencing the age of Complex Systems Engineering. No one speaks about specialization fields anymore. What we need, more than ever, is the sum of the knowledge of the different fields. For example, as to materials printed in three dimensions, having the equipment is not enough. We require computer programmers, mechanical engineers, production engineers, materials engineers, chemists, physicists, biologists, managers, all working closely, because we are no longer dealing with knowledge that a single person is able to hold.

In your opinion, how did you build the recognition of the international ceramic research community, attested, for example, by your election as a member of the advisory board of the WAC?

In addition to all that was already said, I would add that every victory is a collective effort. There were 34 years of intense work in national and international partnerships with industries and supporting agencies. I believe that the standard formula to achieve anything is: teamwork, persistence, associating yourself to the best and promoting your name nationally and internationally.

Leave a message for our readers who are starting their careers as scientists.

My answer is going to have some traditional elements, others not so much. The traditional suggestion is widely known: energy and commitment, work and sweat. The part that is not so traditional is about not confusing the opportunities we have today with a convenient life. Living is not easy. The professional life is full of challenges and the current opportunities are here to make competition even more intense. Now, competition is set in a global scale. In any place around the world someone may be doing the same thing I am developing in my laboratory. Because of that, every young scientist must be really aware that companies and financing agencies will seek who can do it in the best, fastest and cheapest way, producing the highest possible amount of return to the society.

One point that I would really like to stress is that the real world is not Facebook, victories are reached after many battles, and many defeats. This virtual universe where we are always surrounded by famous people, enjoying accomplishments and partying does not exist.

Another issue is that, due to the many opportunities we have today, young people take one already looking for another, fulfilling neither. Instead of firmly grabbing a branch, they are always thinking about leaping for the next one. They must be very careful. Do at least one task competently, at a time. If you are studying for your master’s, develop a good productivity rate, establish a network, then you may change your subject, if it is the case. The scientific communities are not as big as we think they are. We need to do a very good job from the very start, with high quality and great respect for the group in which we work.  The world spins quickly, and in a not so distant future, the same people may open or close doors to you. In our professional life, to a certain degree, we may rise based on our own capacities, but then we are seriously going to need to be inserted by the national and international community. It is at that point that I may need those people to whom I gave a bad impression.

SBPMat´s community people: interview with the scientist Sergio Mascarenhas.

Sergio Mascarenhas on September 23,  2012, lecturing at the XI SBPMat meeting, in Florianópolis city (Brazil).

Along his path as a scientist, Sergio Mascarenhas Oliveira, currently 85, has provided some important contributions to the improvement of the scientific research, mainly in Brazil, and for the Materials field in particular. Starting from Solid-state physics, pillar of the Materials Science, he covered several domains of knowledge, such as Molecular Biophysics and Medical Physics, to name a few. Impelled by the idea of fulfilling the social role of the scientist, which is related to social development, Mascarenhas promoted advances in science and technology with a significant impact on areas as farming, health and education.

An example that illustrates the work of Professor Mascarenhas is the recent development of a system to measure the intracranial pressure that is minimally invasive. The motivation for this came when the Professor was diagnosed with hydrocephaly in 2005 and, during treatment, had to be subject to skull drilling operations in order to measure his pressure. From this moment on, jointly with students and companies, as well as supported by several entities, he conducted a series of studies, which lead to a cheaper and minimally invasive system, applicable to a large range of patients.

Mascarenhas was born in Rio de Janeiro. From 1947 to 1951, he studied Physics at the Federal University of Rio de Janeiro State (UNIRIO) and Chemistry at the Federal University of Rio de Janeiro (UFRJ). After some time as a researcher for universities in the US, he decided to return to Brazil. In the country, he played a major role in the establishment and coordination of some institutions as, among others, the Physics and Chemistry Institute of São Carlos from São Paulo University (USP), the Federal University of São Carlos (UFSCar) and its Materials Engineering course (the first one to be offered in Latin America), as well as the instrumentation unit of the Brazilian Agricultural Research Corporation (Embrapa) and USP’s Institute of Advanced Studies of São Carlos and its International Studies and Projects Program for Latin America, which he still coordinates until this day.

Sérgio Mascarenhas is a Full Professor, now retired, at USP. He was also a visiting professor in the US at the Universities of Princeton and Harvard, and at MIT; at the National Autonomous University of Mexico, the Institute of Physical and Chemical Research in Japan, the London University (UK), and, in Italy, at the Abdus Salam International Centre for Theoretical Physics and at the University of Rome.

He has advised about 50 theses for master’s degrees and doctorates, and published approximately 200 articles and books. Among many awards and honors, it is worth mentioning the Grand Cross of the National Order of Scientific Merit (given in Brazil, by the President of the Republic); the Guggenheim Award and Fulbright Award (United States); the Yamada Foundation Award (Japan); the Brazilian award from Conrado Wessel Foundation in 2006 in the General Science category, and titles of Emeritus Professor and Honorary Doctorate degrees from several universities in Brazil and abroad. In 2012, it was time for the SBPMat to grant Professor Mascaranhas an award, the memorial lecture Joaquim Costa Ribeiro. Mascarenhas is a member of the Brazilian Academy of Sciences and the American Physical Society, and a founding member of the Latin American Academy of Science, and of the Academy of Science of the São Paulo State.

Below, there is a transcription of the interview Professor Mascarenhas gave us at 08:30 PM on March 26, once a work meeting was closed. The scientist told us a little about his background, the social role of the scientist, and his message to our younger readers.

Main contributions to science, technology and innovation, particularly in the Materials field in Brazil.

As I started doing sciences in Brazil in a moment when there was virtually no Materials, I was lucky enough to introduce this kind of research, both in applied and basic forms. So, I would say that, from the institutional perspective, an important contribution was the creation of the Condensed Matter Physics Group in the Physics Institute at USP São Carlos, in the 1960s. Thanks to a very intense exchange between USP São Carlos and the universities of Princeton and Carnegie Mellon in the United States, as well as groups from England and Germany, mainly from Stuttgart, we managed to establish a very strong researchers training program, which still exists today.

After that, I had the chance to be the first president of the Federal University of São Carlos (UFSCar), and then, I proposed the creation of the Materials Engineering Course. It was the first course of studies in Materials Engineering in Latin America, and was a great success, both on the academic and the business sides. So, these were two institutional contributions that led to the establishment of an actual School of Materials Science and Engineering in Brazil.

From the point of view of the research, there are contributions that I managed to do with the collaboration of many young and senior professors. First, the researches related to the defects in crystals, such as ionic crystals with color centers, through radiation or crystal growth with impurities. These ionic crystals displaying color centers were used later for optical memories. This was the result from a very strong collaboration between our group from São Carlos with the RCA laboratories in Princeton and Bell Labs, in the United States.

Another field we were pleased to see how it developed was the electrets, dielectric materials that can retain an electrical polarization for a very long time, up to 100 years, as we see in teflon. These electrets, then, were studied mainly by the group advised by professor Bernard Gross, who I was happy to bring to São Carlos. He worked with groups from MIT and Bell Labs and they developed the famous electrets microphone, which was used in all cell phones, telephones and many other applications. This was an application that gained a global status, coming from a product that was practically born in São Carlos.

Later, my extension of this concept of electrets to biological materials led to the concept of bioelectrets, which are biological materials also capable to retain an electrical polarization for a very long time. The concept of bioelectrets, I think, was one of the contributions that I was fortunate to do, and today is globally used. There is a book on electrets published by Springer publishing house [MASCARENHAS, S. 1979. Bioelectrets: electrets in biomaterials and biopolymers. Electrets – Topics in Applied Physics., Springer-Verlag, vol. 33 , p. 341 – 346] in which, in one of the chapters, I discuss this notion of biolectrets. The concept applies to proteins, DNA, polysaccharides. I think this concept is very important for being significant in Biology and Medicine.

Finally, we started working with concepts of Materials also in the field of Molecular Biophysics and Medical Physics. It happed due to the fact that I was invited by Nobel laureate Abdus Salam to conduct, in Trieste (Italy), a series of courses, for twelve years, in these two areas. These contributions were capable to spread the idea and the career in Medical Physics in many developing countries in Africa, Asia and Latin America. So, this was one of the contributions that please me the most.

But it all depends on people, especially young people. I always say that professors are only good when they have students that are even better than them. I had the joy of counting with students that were better than me, who went further and continued with the school of Condensed Matter Physics, such as in the case of professor Roberto Faria, who, nowadays, it the president of SBPMat and works in the frontier of conductive polymers – a revolution in the field of electronics, energy, pharmacology etc.

Current occupations and new frontiers of knowledge.

Lately, I have been concerned with examining phenomena under the point of view of complex phenomena, in which there is a great amount of variables and non-linear phenomena. For example, there is the brain, the Internet, the origins of life. So, the engineering of complex systems for Materials results in a number of very important effects, which are going to be gradually explored. This issue of complex systems permeates Engineering, Biology, Education, Agribusiness, which is one of the most important areas for humanity in the production of food, the issue of biomass, which is a very important problem for the production of energy, and the comprehension of the brain.

So, I think my function now it to draw the attention of the youth and of the research centers in developing countries to the importance of studying complex systems, which requires a lot of computer modeling, the understanding of what is artificial intelligence, Game Theory, chaotic systems, fractals… And the research on complex materials holds a crucial importance.

Another area that I think is going to progress more, and is an announced revolution, is the biomimetics field. You look to biological nature, which has worked for millions of years to produce materials as shells, bone, hair, organs, and learn how the evolution of the properties of these materials occurred. It is as we could open the large biological treasure of knowledge.

The social role of the scientist.

I think the social role of the scientist is essential for two reasons. First, if you look at the human history, all great evolutionary leaps in human thought came from basic science, which turned into technology. It is important for the scientist to provide, not only a voice to society, but some kind of self-awareness of the society, which is consolidated in science, technology and education policies. I think one of the best examples for that is looking at the convergence between science and technology. When Faraday’s electric motor was invented, it took about 40 years for it to be fully used. Nowadays, you cannot even think what would happen to society if there were no electric motors. When nuclear energy was discovered, in 10 to 15 years it already had some applications. And in the same year laser was invented, it was applied. Then, the convergence between science and technology is huge. It means that scientists and research are important to produce economic development, which leads to social development, which leads to cultural development, which leads to what Charles Percy Snow said was the third culture. In his book, “The two cultures”, he showed that, by the time of World War II, there was a very long distance from humanism to science and technology, even a lack of respect between these two players of the human development. But said distance has to converge into a third culture, in which it is possible to find a much more holistic view, not only of men, but also of the universe, as in the example of the Gaia theory  of James Lovelock.

So, for the social development, research is the only weapon that men can hold to bring humanity to a stage of respect for nature, humanity itself and its role in the cosmos. I think, if we didn’t have universities producing researches and extension, and then taking their researches out, we wouldn’t see the formation of the virtuous cycle, which transforms knowledge into quality of life and new possibilities for men, for this homo sapiens sapiens that came out of caves and went to space.

A message to our younger readers, starting their careers.

I think this career, in Materials Science, Materials Engineering, Biomaterials, Complex Materials, is a huge world that is at dispose for the future of mankind, but this future depends on today’s youth, who can face its challenges and experience the great pleasure of building a more virtuous humanity through the research with Materials. If you start to think what Materials mean to human life, even in a more straightforward perspective, focused on happiness and wellbeing, our lives depend on materials. Our nutrition depends on materials, as well as communication, health, the manufacturing of equipment, machines, robots, ships and satellites. Thereby, materials really are a great source for innovation and wealth. The young people choosing this career are actually choosing to work for the future of science and technology.