B-MRS announces 2019 and 2020 annual events.

With great satisfaction, the Brazilian Materials Research Society (B-MRS) announces the location, date and chairs of the next two annual events and invites the community to suggest topics for the symposia and speakers for the plenary sessions.

The XVIII B-MRS Meeting will take place in Balneário Camboriú (State of Santa Catarina, Brazil) from September 22 to 26, 2019. The event will be chaired by Professor Ivan H. Bechtold of the Department of Physics of the Federal University of Santa Catarina (UFSC) ) and Professor Hugo Gallardo, from the Chemistry Department of UFSC.

Balneário Camboriú. Por Carlos Eduardo Joos. https://commons.wikimedia.org/w/index.php?curid=45433625

“Balneário Camboriú”. By Carlos Eduardo Joos. https://commons.wikimedia.org/w/index.php?curid=45433625

 

The XIX B-MRS Meeting will be held jointly with the IUMRS – International Conference on Electronic Materials (ICEM-2020) in Foz do Iguaçu (State of Parana, Brazil), from August 30 to September 3, 2020. The chairman of the event will be Professor Gustavo M Dalpian (UFABC).

Cataratas do Iguaçu. By Martin St-Amant (S23678) - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=3946052
“Iguaçu falls”. By Martin St-Amant (S23678) – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=3946052

 

B-MRS listens to the community: suggestions of topics and speakers and call for symposia.

B-MRS has opened a new channel for communication with the scientific community to receive suggestions for the next event, regarding:

  • plenary speakers
  • themes for symposia

The suggestions should be sent by October 15 to the e-mail programa@sbpmat.org.br.

Plenary lectures should address a broad audience (different levels of training and diverse research topics). Plenarists must be outstanding scientists, renowned in the international scientific community, and able to provide a motivational lecture about the progress achieved over time, as well as challenges and perspectives for the future, in a specific research topic.

Thematic symposia are the axis of B-MRS meetings. Scientific contributions, both in oral and poster sessions, are presented by the symposia participants. For the next meeting, the scientific community is invited to to participate  in the choice of thematic symposia that will compose the program in two ways:

  • With previous suggestions: sent by any member of the scientific community to programa@sbpmat.org.br until October 15, 2018.
  • Submission of symposia proposals: submitted through an electronic form by a group of PhD researchers from the scientific community who wish to be symposium organizers, between 1 and 31 October 2018 (please notice the dates, well before the usual period from previous meetings). Go to submission form.

Brief interviews with scientists: You-Lo Hsieh (University of California, Davis – USA).

You-Lo Hsieh
You-Lo Hsieh

Sustainability, bio inspiration and interdisciplinarity have been constants in the scientific work of You-Lo Hsieh, a Distinguished Professor at the University of California, Davis (UC Davis) and Berkeley (UC Berkeley).

This scientist will be at the XVII B-MRS Meeting talking in a plenary lecture about her strategies to overcome the challenges of processing biomass, thus generating new useful nanomaterials.

Professor Hsieh has authored more than 200 papers, some book chapters and several patents. She has also edited a book. Her scientific production has more than 12.000 citations and she has an h-index of 50 (Google Scholar).

Professor Hsieh received her PhD degree in polymer chemistry from the University of Maryland, College Park, in the United States.

See ou mini interview with You-Lo Hsieh.

B-MRS Newsletter: – We want to know more about your work. Please choose a paper of your own (your favorite one) related to the subject of the plenary lecture and briefly describe it, as well as share the reference. Also, give us an example of a nanomaterial generated from biomass. Specify the raw material that is used to produce it and the applications it finds.

You-Lo Hsieh: – My group has derived nanocelluloses from various biomass feedstock, mostly from un- or under-utilized agricultural crop residues or food/beverage processing byproducts, such as wine grape skins, tomato pomace, cotton linter, almond shells and hulls, etc. We have developed new methods to simultaneously functionalize and defibrillate cellulose into surface active or reactive nanocelluloses. The article provided* illustrates the examples of amphiphilic aerogels from cellulose nanofibrils derived from rice straw cellulose. These nanocellulose based aerogels are among the lightest (2-8 mg/cc) and porous (>99.5% porosity) aerogels as well as super-absorbent of both hydrophiphilic and hydrophobic, capable of absorbing up to 350 times of aqueous or organic liquids. Most importantly, these nanocellulose aerogels are highly resilient in the wet state.

* Jiang, F., Y.-L. Hsieh, Amphiphilic superabsorbent cellulose nanofibril aerogels, Journal of Materials Chemistry A, 2: 6337-6342 (2014).

 


For more information on this speaker and the plenary talk she will deliver at the XVII B-MRS Meeting, click on the speaker’s photo and the title of the speech here https://www.sbpmat.org.br/17encontro/home/

 

B-MRS Newsletter. Year 5, issue 8.

 

logo header 400

Newsletter of the
Brazilian Materials
Research Society

Year 5, issue 8. September 5, 2018.

logo-natal_560px

Message from the chair

Dear speakers and panelists,

I take advantage of the forthcoming 17th Annual B-MRS Meeting to welcome, on behalf of the Society and the Organizing Committee of the event, all the participants. From September 16 to September 20, the city of Natal will welcome you with open arms for a journey of technical and scientific dissemination and exchange of experiences.

With the active participation of the community, we have prepared a multidisciplinary, diverse and comprehensive program. We thank the 76 members of the community who organized the 21 symposia of the meeting, divided into 6 major thematic areas. In addition, we will have 1 workshop and 1 challenge proposed by Boeing. The programming of the meeting is composed of 1,666 submissions, resulting from the work of 4,617 authors, reported and approved by 185 reviewers. Approximately 1,000 participants have already confirmed their presence. This is the breadth and strength of our community, whose resilience allowed the 17th Meeting to take shape, even in a period of enormous challenges regarding the promotion of research in the country.

During the meeting, 8 plenary lectures will be presented. There will be two daily lectures, given by internationally renowned researchers, specialists in frontier issues in Materials Science and Engineering.

To mark the opening of the meeting, we have prepared a pleasant cultural and social program. But, the highlight of the night will undoubtedly be the memorial lecture of Prof. Fernando Galembeck, who needs no further introduction. Wednesday night will hold a separate attraction, a party embellished by the sea breeze. The closing ceremony will feature the awards of B-MRS and ACS Publications for the best student works.

Last but not least, I would like to thank B-MRS’s confidence in choosing Natal as the venue for its 17th meeting, the support of our sponsors and the administration of UFRN, the incessant and hard – but very enjoyable work done by the local support team, composed by UFRN students, and by the tireless and competent performance of the B-MRS team.

I look forward to your presence. It will be a pleasure to meet you in Natal.

martinelli

Prof. A. E. Martinelli, chair

Useful information

Registrations. Registrations remain open until the last day of the event. You can join or renew the B-MRS membership during the event’s registration and enjoy the registration with special price for members. Attention: The event registration fee + B-MRS annuity is less than the cost of the event registration for non-members. See here.

Program at a glance. See here.

Detailed program, by symposium. See here.

Poster printing service. You can e-mail the file and, during the event, take the printed poster at the convention center. Know more.

Lodging, transfer and tours. See options of the event’s official tourist agency, Harabello, here.

Venue. The event will be held in the convention center of Hotel Praiamar, located a few meters from the famous beach of Ponta Negra. See adress and Google Map, here.

App of the event. Users can access the event program, create a personal agenda with the presentations that interest them, send questions to the speakers, access the abstracts of the posters capturing their QR code and more. The final version of the event app will soon be available in Apple and Google app stores (name: XVII B-MRS Meeting). Also, it will be available from a link on the event website.

FAPESP Collective support. For the participants included in the FAPESP collective support, there is some important information, here.

Organizers. Meet the organization committee, here.

natal_careca

Program highlights

Sunday, the 16th, from 1:00 p.m. to 5:00 p.m. Workshop. Professor Valtencir Zucolotto (IFSC/USP, Brazil) will conduct a tutorial on the production and publication of scientific articles. After a break, Elsevier professionals will talk about diversity and inclusion of young scientists, and about dissemination of published articles. Those enrolled in the event can participate in this workshop at no additional cost, but must reserve a place in advance in the form used to register for the meeting.

zucolotto

Sunday, the 16th, 7:30 p.m. to 9:00 p.m. Opening of the event and memorial lecture. The Memorial Lecture “Joaquim da Costa Ribeiro”, a distinction awarded by B-MRS to outstanding senior researchers, will be delivered by Professor Fernando Galembeck (Unicamp, Brazil), who will talk about “Materials for a better future”. Learn more about Prof. Galembeck, here.

galembeck

Sunday, the 16th, 9:00 p.m. to 10:00 p.m. Welcome cocktail with a musical presentation.

orquestra

Monday, the 17th, 8:15 a.m. to 9:15 a.m. Plenary lecture. Junbai Li, Professor at the Institute of Chemistry at the Chinese Academy of Sciences and Editor-in-Chief of Colloids & Surfaces, will speak about nanomaterials with biomedical applications based on self-assembled amino acids. Learn more about the speaker and the lecture, here.

li

Monday, the 17th, 4:45 p.m. to 5:45 p.m. Plenary lecture. Christian Polak, Director of the Department for Rapid Solidification Technology at Vacuumschmelze (Germany) will speak about nanocrystalline magnetic materials and their applications, especially in the miniaturized electronics segment. Learn more about the speaker and the lecture, here.

polak

Tuesday, the 18th, 8:15 a.m. to 9:15 a.m. Plenary lecture. Heinz von Seggern, Professor at the Technical University of Darmstadt (Germany) and former principal investigator at Bell Labs and Siemens Research Center, will talk about applications of organic polymers, from electret microphones to energy harvesters.

seggern site

Tuesday, the 18th, 4:45 p.m. to 5:45 p.m. Plenary lecture. Bernhard Keimer, Director of the Max Planck Institute for Solid State Research (Germany) will talk about the study of collective electron behaviors using spectroscopic analyses of nanometric structures composed of various materials. Learn more about the speaker and the lecture, here.

keimer

Wednesday, the 19th, 8:15 a.m. to 9:15 a.m. Plenary lecture. Carlos F. O. Graeff, pro-Rector of Research at UNESP (Brazil) and Professor at the Faculty of Sciences of that university, will give a comprehensive lecture on photovoltaic energy – from the principles of operation to the application perspectives. Learn more about the speaker and the lecture, here.

graeff

Wednesday, the 19th, 4:45 p.m. to 5:45 p.m. Plenary lecture. You-Lo Hsieh, Distinguished Professor at UC Davis and UC Berkeley (USA), will speak about biomass processing strategies to generate new nanomaterials with various applications. Learn more about the speaker and the lecture, here.

hsieh

Thursday, the 20th, 8:15 a.m. to 9:15 a.m. Plenary lecture. Pietro Matricardi, Professor at the University of Rome “La Sapienza” (Italy) will speak about polysaccharide hydrogels – their preparation and applications in biomedicine, mainly as controlled drug delivery systems. Learn more about the speaker and the lecture, here.

matricardi

Thursday, the 20th, 11:30 a.m. to 12:30 p.m. Plenary lecture. Joan Ramón Morante Lleonart, Director of the Catalonia Institute for Energy Research (IREC), Professor at the University of Barcelona and Editor-in-Chief of the Journal of Physics D will talk about scientific efforts to make “circular carbon economy” real. He will specifically address the development of new catalytic materials. Learn more about the speaker and the lecture, here.

morante

Exhibitors. There will be booths representing 20 companies and 1 institution: Boeing, Bruker, Horiba, Tescan, Agilent Technologies, Altmann, Analítica, Anton Paar, Avaco, dp Union, Fischer, Jeol, MBraun, Metrohm, Netzsch, Quantum Design International, Renishaw, Tech Scientific, ThermoFisher, Zeiss e UFRN.

expositores

Tuesday, the 18th, and Wednesday, the 19th, at lunchtime. Technology Challenge for Students. Boeing Challenge “Materials and aerospace manufacturing for the next century”. Learn about this activity and how to participate, here.

boeing_logo

Wednesday, the 19th, morning and afternoon. Technical lectures by exhibitors. Ten technical lectures, offered by scientific instrumentation companies, will address the advances and new applications of various characterization techniques, as well as innovations in laboratory equipment. See the data of the lectures, here.

palestras expositores

Wednesday, the 19th, 9 pm. Conference Party. The party will be by the sea, at the Imirá Plaza Hotel & Convention and will be sponsored by ACS Publications scientific journals. Tickets, limited to 400 people, will be sold at the event venue (secretariat office) starting Monday, the 17th. Cost: R$ 20,00. Know more.

party

Thursday, the 20th, 12:30 p.m. to 2:00 p.m. Students awards and closing ceremony. The works of students selected for the Bernhard Gross Award (B-MRS) and the ACS Publication Prizes will be announced. Prizes will only be awarded to the winners who are in attendance at the ceremony. Know more.

award

News from B-MRS Members

Professor Monica A. Cotta (Unicamp), director of B-MRS, is associate editor of ACS Applied Nano Materials. The journal was released earlier this year. Know more.

monica news

Professors Edgar Dutra Zanotto (UFSCar) and Elson Longo da Silva (UFSCar and Unesp), founding members of B-MRS, are included in the list of new recipients of the Brazilian National Order of Scientific Merit.

condecorados

Follow us on social media. Hashtag for the meeting #sbpmat2018.

You can suggest news, opportunities, events or reading tips in the Materials field to be covered by B-MRS Newsletter. Write to comunicacao@sbpmat.org.br.

 

 

Highlighted scientist: interview with Fernando Galembeck, who will deliver the memorial lecture at the XVII B-MRS Meeting (updated reprint of the interview of May 2015).

Fernando Galembeck
Fernando Galembeck

Fernando Galembeck’s interest in research began in adolescence, when he realized the economic value of scientific knowledge while working in his father’s company in the pharmaceutical segment. Today, at age 75, Fernando Galembeck can look back at his own scientific trajectory and tell many stories about the generation and application of knowledge.

A founding member of B-MRS, Galembeck was chosen this year to deliver the Memorial Lecture “Joaquim da Costa Ribeiro” – a distinction awarded annually by B-MRS to the trajectory of a distinguished researcher in the Materials area. The honor is also a tribute to Joaquim da Costa Ribeiro, pioneer of experimental research in Materials in Brazil. The lecture, titled “Materials for a better future,” will take place at the opening of the XVII B-MRS Meeting on September 16 of this year, and will address issues such as needs, shortages and promises in the Materials area.

Galembeck graduated in Chemistry in 1964 from the University of São Paulo (USP). After getting his degree, he remained at USP working as an instructor (1965-1980) while doing his Ph.D. in Chemistry (1965-1970), in which he developed research on dissociation of a metal-metal bond. After his Ph.D., he completed post-doctoral internships in the United States, at the universities of Colorado, in the city of Denver (1972-1973) and California, in the city of Davis (1974), working in the field of Physical-Chemistry of biological systems. In 1976, back at USP, he had the opportunity to create a laboratory of colloids and surfaces at the Institute of Chemistry, in an agreement that involved the Institute, Unilever, the Brazilian Academy of Sciences and the Royal Society. From that moment on, Galembeck became more and more involved with the development of new materials, especially polymeric materials, and their manufacturing processes.

In 1980, he joined the State University of Campinas (Unicamp), after which he became a full professor in 1988, where he remained until his retirement in 2011. Since then, he has been a contributing professor at the institution. At Unicamp, he held management positions, notably vice-rector of the university, as well as director of the Institute of Chemistry and coordinator of its post-graduate program. In July 2011, he took over the newly created Brazilian National Nanotechnology Laboratory (LNNano), at the National Center for Energy and Materials Research (CNPEM), remaining in this post until 2015.

Throughout his career, he has held direction or coordination positions at the Brazilian Academy of Sciences (ABC), the Ministry of Science, Technology and Innovation (MCT), the National Council for Scientific and Technological Development (CNPq), Sao Paulo Research Foundation (FAPESP), Brazilian Chemical Society, (SBQ), Brazilian Society for the Advancement of Science (SBPC) and the Brazilian Society of Microscopy and Microanalysis (SBMM), among other entities.

Prof. Galembeck is the author of roughly 279 scientific papers published in peer-reviewed journals, with over 3,700 citations, 35 patents and more than 20 books and book chapters. He has supervised nearly 80 master’s and doctoral degrees.

Fernando Galembeck received numerous awards and distinctions, among them the Anísio Teixeira Award, from CAPES, in 2011; the Telesio-Galilei Gold Metal 2011, from the Telesio-Galilei Academy of Science (TGAS), the Almirante Álvaro Alberto Award for Science and Technology 2006, from CNPq and the Conrado Wessel Foundation; the José Pelúcio Ferreira Trophy, from Finep, in 2006; the Grand Cross of the National Order of Scientific Merit, in 2000, and the National Commendation of Scientific Merit, in 1995, both from the Presidency of the Republic of Brazil. He also received a series of acknowledgments from companies and associations, such as CPFL, Petrobrás, Union Carbide do Brasil, the Brazilian Association of Paint Manufacturers, the Brazilian Chemical Industry Association, the Union of Chemical Industry for Industrial Purposes of the State of Rio de Janeiro, Brazilian Polymer Association, Brazilian Chemical Society (which created the Fernando Galembeck Technological Innovation Award), the Union of Engineers in the State of São Paulo and the Electrostatic Society of America.

This scientist has been a fellow of TWAS (The World Academy of Sciences) since 2010 and from the Royal Society of Chemistry since 2014.

In this interview, you will be able to know a little more about this Brazilian researcher and his work.

SBPMat Newsletter: – Tell us what led you to become a scientist and work on issues in the field of Materials.

Fernando Galembeck: – My interest in research work started during my adolescence, when I comprehended the importance of new knowledge, of discovery. I found this when I was working, after school, at my father’s pharmaceutical laboratory, as I could see how the newest, latest products, were important. I also saw how costly it was, for the lab, to depend on imported raw materials, which were not produced in Brazil, and that in the country there was no competence to manufacture them.  Then I realized the value of new knowledge, as well as the importance and the economic and strategic significance of such breakthroughs.

This feeling was increased when I took my major in Chemistry. I enrolled into the Chemistry course because one of my school teachers had suggested that I should seek a career related to research. He must have seen some inclination, some tendency of mine. So I attended the Chemistry course provided by the Philosophy School, in an environment where the research activity was very vivid. Because of that, I decided to conduct my Doctoral studies at USP. At that time, there were no regular graduate studies in Brazil yet. The advisor with whom I defended my dissertation, Professor Pawel Krumholz, was a great researcher, who also had built a very important career working on a company. He was the industrial director of Orquima, a major company by that time. That boosted my interest in research.

I worked with Chemistry for some years and my interest in materials came from a curious occurring. I was almost graduating, in my last vacations during the undergraduate studies.  I was at an apartment, resting after lunch. I remember looking at the walls of this apartment and noticing that, with all I had learned in the Chemistry course, I did not have much to say about the things I could see: the paint, the coverings etc. That was Chemistry, but also Materials, and there was not much interest in Materials in the Chemistry course. Actually, Materials became very important in Chemistry mainly because of plastic and rubber, which, at the time, did not have the importance they have today. I’m talking about 1964, when petrochemicals were practically non-existent, in Brazil.

Well, then I started to work with Physical Chemistry, to later work a little in a field that is more oriented to Biochemistry, that is Biological Physical Chemistry and, in 1976, I received a task from the USP Department, which was to build a colloids and surfaces laboratory.  One of our first projects was to modify plastic surfaces, in that case, Teflon. Then I realized that a major part of the colloids and surfaces Chemistry existed due to Materials, because the subject lends itself to create and develop new materials. From that moment on, I was getting increasingly involved with Materials, mainly polymers, a little less with ceramics, and even less with metals.

SBPMat Newsletter: – What are, in your own opinion, your main contributions to the field of Materials? Consider, in your answer, all aspects of your professional activity, including cases of knowledge transfer to the industry.

Fernando Galembeck: – I will tell the story in order, more or less. I think that the first important result in the field of Materials was exactly a technique intended to modify the surface of Teflon, that material in which it is very difficult to stick something. There is even that expression, “Teflon politicians”, the ones for which does not matter what you throw at them, they do not stick to anything. But, in certain situations, we want the Teflon to have adhesion. So, by a somewhat complicated path, I managed to see that I already knew how to modify Teflon, but I had never realized that is was important. I knew the phenomenon; I had observed it during my PhD defense. I knew that there was a change happening in Teflon. But it was during a visit to a Unilever laboratory in 1976, when I was talking to a researcher, that I saw that there were people striving to modify the surface of Teflon and achieve adhesion. Then, bringing the problem and the solution together, as soon as I returned to Brazil, I tried to see if I what I had previously observed was really useful, and it worked. That led to the first paper I wrote by myself and my first patent application, at a time when almost nobody talked about patents in Brazil, especially in the university environment. I was very enthusiastic about this: I was approached by companies that were interested in applying what I had done; one the modification in Teflon itself, the other in a different polymer. So I felt great, because I had made a discovery, I had a patent, and there were companies which, at least, would like to know what it was to see if there was a way to use it. One more thing:  soon after the paper I wrote was published, I was invited to attend a conference in the United States, which addressed exactly the issue of modifying surfaces. Polymers, plastic and rubber surfaces, a subject with which I was involved for pretty much the rest of my life, up until now.

I will mention a second fact that did not have the same effects, so far.  I discovered a method that enables the characterization and separation of very small particles. That was a very interesting paper. It was released, also produced a patent, but had no practical consequences. Recently, there have been some issues related to nanoparticles, which is a very important subject in Materials now, offering a chance to apply what I did over 30 years ago. The name of the technique is osmosedimentation.

Next there was some work that I did by collaborating in projects with Pirelli Cabos. With all this story of surfaces and polymers, I think I had become more or less known and was approached by Pirelli, which contracted me as a consultant and commissioned projects I had at Unicamp. An outcome of these projects, that I think is the most important, was the development of an insulator for very high voltages. This work was not only mine, but rather of a very large team, in which I took part. There were several people from Pirelli, and several from Unicamp. The result of this project was that the Brazilian Pirelli managed to be hired to provide high voltage cables for the Eurotunnel, back in the ‘80s. I think this was a very important case, as it led to a product and brought substantial economic results. I would like to stress that this was done in Brazil, by a Brazilian team. They were not a Brazilian company, but the team was based here.

Then I worked on several studies with nanoparticles, at a time when we did not even call them nanoparticles; we called them fine particles or simply small colloidal particles. The first work I published on nanoparticles was in 1978. There were other things I did next, which ultimately turned into a work on aluminum phosphate, which gave rise to several theses carried out in the laboratory and publications, and was also licensed by a company of the Bunge group, which basically exploits phosphates. The subject started in my laboratory, stayed in the laboratory for several years, then a company from the Bunge group here in Brazil became interested, started to participate, we collaborated. This became a rather large development project. Bunge later found the project unfeasible in Brazil and today it is the United States. I think it’s a pity that it is there, but there were other issues involved, including disagreements with Unicamp, which owns the patents. Recently, the company of the group that worked with these phosphates was Amorphic Solutions, which offered the product on the Internet, for various applications. From what I understand, they are currently emphasizing its use as an anticorrosive material for steel protection. I have recent information that Bunge has negotiated the rights to these products with a large chemical company, but I do not know the details.

About the same time, in another project on nanoparticles, clay/natural rubber nanocomposites were developed. This was licensed by a Brazilian company called Orbys, which released a product called Imbrik, that showed to be good for rubber rolls for paper manufacturing.

Another case with a product. I had done a project with Oxiteno, which manufactures raw materials for latex, the surfactants. They wanted to get an ideia of how much you can change the latex changing the surfactant. I conducted a project with them that I consider one of the most interesting among those in which I have been involved. In the end, we realized that, by changing the surfactant a bit, we changed the latex a lot. These are used in paints, adhesives, resins. So we realized we had a great versatility. This work was published and promoted. It did not result in a patent because it was a comprehension project. So, another company, Indústrias Químicas Taubaté (IQT) approached me to produce cationic latex, but using a new path. Cationic latex in general is made of quaternary ammonium salts, which have some environmental restrictions. The company wanted an alternative that did not have those restrictions. By the end of the project, we produced cationic latex without environmental restrictions, and the IQT put the product on the market.

My participation in a Navy project of developing carbon fibers was a great challenge that gave me big satisfaction. My group participated by synthesizing copolymers of acrylonitrile, up to the scale of ten liters. The results were transferred to a company that produced pilot scale production at the old Rhodia-Ster and Radicci plant in São José dos Campos. The selected copolymer was spun and then pyrolyzed, at the Technological Center of Marinha, in São Paulo. It resulted in a high performance carbon fiber, which was used in the manufacture of a centrifuge, used in Aramar. The challenge was to find the copolymer that showed good performance in the later stages of fiber production, which was achieved.

There was another case that was also very interesting, even though it was canceled. Here in Brazil, there was a large manufacturer of polyethylene terephthalate, PET, which is used for many things, including bottles. They knew about the work I had done with nanocomposites, the one with Orbys I mentioned before, so they approached me wanting to produce PET nanocomposites. We had to find out how to escape from what was already patented abroad and discovered a whole new path. The company was called Rhodia-Ster, and today it is part of another Italian company, called Mossi e Ghisolfi. The company was enthusiastic and ended up patenting it in Brazil, and then later abroad. At a certain point, they decided that they would conduct the work internally, and so they did for some years. One day, my contact within the company called me to tell this: “look, we were working with two technologies; the one held by Unicamp and another one, in another country. Both are working, but the company has reached a point where it has chosen to complete the development of only one”.  When coming to the final stage in developing materials, the projects costs are too high. One have to use large amounts of materials, run many tests with customers. So, the company decided to take one project further, and, unfortunately, it was not the one in which I had worked. At the end, it was a little frustrating, but I think that it was interesting, because, during this whole time, the company invested a lot in the path we had started here. Not only that, each project brings resources for the laboratory, jobs at the university and the company etc. So, these projects result in many benefits, even when they are not concluded.

Now, fast forwarding, I will arrive at a more recent result of my work at CNPEM, where I was until 2015. A goal of CNPEM is the use of renewable source materials to make advanced materials. It has a whole philosophy behind it, related to the depletion of natural resources, to sustainability… The goal was to do new things with materials derived from biomass, and the main interest is in cellulose. It is the most abundant polymer in the world, but it is a very difficult polymer to work with. You cannot process pulp as you process polyethylene, for example. One of the goals is to plasticize cellulose; that is, to work the cellulose as closely as possible to the one we use to work with synthetic polymers. An initial result within this idea was the creation of cellulose adhesives in which the only polymer is cellulose itself. Then, by then no longer at CNPEM, we obtained graphite exfoliation, which generated a family of paints, pastes and conductive adhesives, which are the object of a PIPE project recently approved by Fapesp.

This is the latest case. In the middle of the way, many other projects were conducted with companies, for issues of their interest. Coating something, gluing another, modifying a polymer to achieve a certain result. But these were answers to demands from companies, instead of researches started at the laboratory.

SBPMat Newsletter: – Leave a message for our readers who are starting their careers as scientists.

Fernando Galembeck: – First of all, in any chosen career, there must be a dose of passion. It does not matter if you are going to work in the Stock Market, Healthcare or whatever you may do; above all, your taste must decide. If a person chooses a career because it will give them money or status… I think it is a bad choice. If you do things with pleasure, with interest, the money, prestige and status will come from other paths. The goal is to do what makes you happy, what makes you feel good when you do it, what makes you feel accomplished. It is true not only for the scientific career, but also to any other career. In science, it is crucial.

Another point is that you must be prepared to work hard. There is no easy way. I know some young people who are constantly seeking the great idea that will bring them success with relatively little work. Well, I’d better not count on it. It may even happen, but waiting for it is almost the same as wait to win the Lottery and get rich.

I’m over 75, therefore I have met many people and seen many things happen. Something that strikes me is how young people who seemed very promising end up not working very well.  Frankly, I think it is bad for youngsters to achieve success too early, because I have the impression they get used to this idea that things will always work out fine. And the problem is that there isn’t anything, anyone, any company that will always work. There will always be the moment of failure, the moment of frustration. If the person is prepared for that, when the times come, he or she will overcome it, while others are crushed – they cannot move one. That is why we must be careful not to be deceived by our success and think that, because it worked once, it will always work. You must be prepared to fight.

When I was in college, thinking about doing research seemed a very strange thing to do, crazy talk. People did not know very well what it was, or why would someone choose to do it. Some people said that research was something like priesthood. I have always worked with research, associated with teaching, consulting and, without having ever sought to become rich, I managed to have an economic status that I deem very comfortable. But I insist, my goal was to enable the development, to produce material, not the money I would receive. Money came, as it does. So, I suggest you to focus on your work, on the results and the contribution that said work may give to other people, to the environment, to the community, to the country, to knowledge. The rest comes as a bonus.

In short, my message is: work seriously, earnestly and passionately.

Finally, I would like to point out that I think the research work, the development work, really helps you to grow as a person. It will depart you from ideas that are not very fruitful and guide you towards attitudes that are really important and helpful. A student asked Galileo once: “Master, what is the method?”, and Galileo’s answer was: “The method is the doubt”. I think it is very important in the research activity, which, for Materials in particular, is especially interesting because the final product is something you can hold in your hands. In the research activity you have to always wonder, “I’m thinking like this, but is this right?”, or “This guy wrote this, but what are his bases to write it?”. This attitude is very different from the dogmatic one, which is common in the realms of politics and religion, and very different from the attitude of someone who has to deceive, as the lawyer who works for a corrupt or drug dealer. The researchers have to commit themselves to the truth. Of course there are also people who call themselves researchers and spread disinformation.  Some years ago, people were talking about something called “Bush science”, an expression referring to President Bush. This Bush science was the arguments fabricated by people who gained money as scientists, but who produced arguments to sustain Bush’s policies. In other words, the problem exists in science as well, but then we get back to what I said earlier. You cannot become a scientist because of money, or to achieve prestige, or to be invited to have dinner with the president; you must enter this field because of your interest in the subject itself.

 

 

Brief interviews with scientists: Christian Polak (Vacuumschmelze GmbH & Co. KG, Germany).

Christian Polak
Christian Polak

Christian Polak first interacted with Vacuumschmelze GmbH & Co when his PhD thesis on amorphous materials, defended in the Technical University of Vienna (TU Wien), aroused the company´s interest. In 1993, he began working in the research and development area of the company, where he remains.

Vacuumschmelze started its activities about 100 years ago with the development of the first vacuum melting furnace (as suggested by its name in German) in the city of Hanau (Germany). Today, the company is a manufacturer of advanced magnetic materials and related products with more than 4,000 employees located in dozens of countries. These materials are present in the daily lives of millions of people, being part of cars, airplanes, elevators, solar and wind energy systems, transformers and more.

Rapid solidification technology.
Rapid solidification technology.

Currently, Dr Christian Polak heads the company’s Department for Rapid Solidification Technology. This process makes it possible to produce micrometric thick metal strips with superior magnetic properties by processing molten metal in only one step. Further processes can transform these amorphous materials into nanocrystalline alloys, whose grains are nanometric.

At the XVII B-MRS Meeting, Dr Polak will offer a plenary lecture on nanocrystalline magnetic materials and their applications, especially in the segment of miniaturized electronic devices.

See some information that Dr Polak provided related to the subject of his plenary lecture.

Nanocrystalline Magnetic Materials.

More than twenty years ago, Yoshizawa, Oguma and Yamauchi introduced a new class of iron-based alloys exhibiting superior soft magnetic behavior. The properties were a unique combination of the low losses, high permeability and near zero magnetostriction achieved by permalloys and Co-based amorphous alloys, but with a saturation magnetization up to 1.2 Tesla – much higher than either of these materials can conventionally offer. The particular about the new material is its ultrafine microstructure of b.c.c. Fe–Si with grain sizes of 10–15 nm from which their soft properties lastly derive. Based on this, this new class of alloys was named “nanocrystalline”. The material id compounded by crystallization of an amorphous Fe–Si–B alloy with small additions of Cu and Nb. This composition is the key for an ultrafine grain structure and the associated soft magnetic properties.

Nanocrystalline structure of VITROPERM material.
Nanocrystalline structure of VITROPERM material.

It is well known that the microstructure, noticeably the grain size, essentially determines the hysteresis loop of a ferromagnetic material. Nevertheless, we had to build up a deeper understanding of the coercivity (Hc) in the whole range of structural correlation lengths starting from atomic distances in amorphous alloys over grain sizes (D) in the nanometer regime up to macroscopic grain sizes. The 1/D-dependence of coercivity for large grain sizes reflects the conventional rule that good soft magnetic properties require very large grains (D>100μm). Thus, the reduction of particle size to the regime of the domain wall width increases the coercivity Hc. On the other hand lowest coercivities are again found for smallest structural correlation lengths like in amorphous alloys and in nanocrystalline alloys for grain sizes D<20nm. The new nanocrystalline material fills in the gap between amorphous metals and conventional poly-crystalline alloys. The combination of small grain size and soft magnetic properties is surprising and fascinating from the classical point of view in magnetic engineering.

Role of Nanocrystalline Soft Magnetic Materials in electronic devices and other applications.

The strip shaped soft magnetic amorphous and nanocrystalline material is used to produce so-called tape wound cores (=magnetic cores). Adding copper windings lead to well-known inductive components for electronic industry.

VACCUMSCHMELZE is the market and technology leader in many applications with years of experience in the international market. The company’s expertise covers the entire development process from knowledge of the characteristics of the alloy to fabrication technology and low cost manufacturing sites.

VAC produces inductive components based on nanocrystalline material for the installation, the automotive and the industrial market.

Examples for the installation market: Total current converters for earth fault current protection switches and current converters for electronic energy meters.

Examples for the automotive market: Chokes and transformers for the power management, flexible antennas for Keyless-Entry-Systems, for hybrid and electric vehicles: Recuperation-Systems, Start-Stop-Systems and DC/DC converters.

Examples for the industrial market: Chokes, transformers and power sensors for power supplies and rectifiers. Common mode chokes and nanocrystalline cores pave the way for compact innovative filter designs with highest efficiency for superior electrical motor drives according to newest international regulations. Gate drive transformers provide highest safety, excellent reliability and long lifetime for specialty (high voltage) applications combining efficiently energy- and signal- transmission in one component resulting in lower total costs. Current sensors offer maximum accuracy.

Newer Developments: High Frequency Applications (size reduction).

Tape wound cores: a nanocrystalline material application.
Tape wound cores: a nanocrystalline material application.

Vacuumschmelze is traditionally a supplier for inductive components. Conventional inductive components, like magnetic cores, inductive components, chokes and transformers, as well as flexible antennas are big and placed on top of PCB’s. All these established products are generally used in the lower frequency range, e.g. at 50Hz or up to some kHz.

Responding to future challenges for electronic circuits we have been faced with new requirements – especially there was a trend to use higher frequencies and consequently the trend for miniaturisation. This enables the use of embedded components where caps, semiconductors, resistors and inductances find a place inside of the PCB, respectively on one layer of a multilayer PCB.

To do first steps in this direction we take part in a joint research project called VISA, which was founded by the German Federal Ministry of Education and Research. Where we had to improve our amorphous or nanocrystalline soft magnetic materials in order to make them ready for high frequencies and embedding. Such inductive components should be flat, the maximum height should not exceed 1mm, the iron losses should be as low as possible and a high quality factor at switching frequency up to the MHz range was requested. For application, we were focused to DC/DC converters for the small power range. In addition, we expected applications for cores, planar inductors, shielding materials and sensors for automotive industry e.g. e-drive systems, for power LED technology or photovoltaic chargers or for shielding applications, like wireless charging systems.

Newer Developments: High Saturation Materials (size reduction).

Nanocrystalline Fe-Cu-Nb-Si-B alloys are well known to exhibit excellent soft magnetic properties (low coercivity flield Hand high permeability µ) combined with low magnetostriction (ls) and high saturation polarization around Js ~ 1.2T. They are meanwhile widely used in magnetic applications.

Since their discovery, a major driving force for further alloy development has been to increase the saturation polarization in order to receive a higher effective flux change after reversing the magnetic excitation. Thus, a higher inductance level could be achieved at simultaneously smaller volume. The most recent development are Fe-Si-B-P-Cu alloys which are reported to show high saturation polarization around J~ 1.8 T as well as reasonably low coercivity (Hc<10 A m).

One problem associated with these new alloys is that they are located near the glass-forming boundary, leading to serious production issues. Newer compositions investigated in the last years have been recently shown to exhibit sufficient glass forming ability for large-scale production. However, the saturation magnetostriction of nanocrystalline Fe-Si-B-P-Cu alloys is still relatively high (ls≈14 ppm). Low magnetostriction, however, is important for good soft magnetic properties and stress insensitivity of the hysteresis loop. The objective of current development is to investigate application capability of such alloy systems and to provide the so far missing behavior of magnetic properties, particularly in the nanocrystalline state.

Brief interviews with scientists: Pietro Matricardi (Sapienza University of Rome, Italy).

Pietro Matricardi
Pietro Matricardi

In his laboratory at the Sapienza University of Rome (Italy), Professor Pietro Matricardi and his group develop new materials based on polysaccharides.

These natural polymers that belong to the carbohydrate family, are long chains of simple sugars, the monosaccharides, and are abundantly present in plants and animals. With them, Professor Matricardi elaborates several types of hydrogels (gels with high water content) that can be introduced into the human body without affecting its normal functions. Among the main applications of these materials are drug delivery systems, in which a particular drug is stored in the hydrogel and released in a controlled manner within the patient’s body.

At the XVII B-MRS Meeting, Professor Matricardi will deliver a plenary lecture about this diversity of polysaccharides hydrogels, their preparation and their pharmaceutical applications.

A graduate of the Sapienza University of Rome, where he obtained his MSc (1989) and PhD (1993), Pietro Matricardi returned to his alma mater in 2004, as Assistant Professor at the Department of Drug Chemistry and Technologies, after some professional experience in companies, including in the pharmaceutical segment. At present he is Associate Professor at Sapienza.

Matricardi is the author of more than 80 articles in peer-reviewed international journals, editor of a book on polysaccharide hydrogels and author of some book chapters. His scientific production counts more than 2,700 citations. He is also president of the Italian chapter of the Controlled Release Society.

See our mini-interview with this Italian scientist.

B-MRS Newsletter: – We would like to know a little more about polysaccharide hydrogel drug delivery systems. What are the characteristics of these drug carriers? Which are the advantages of them over other systems made with other materials? What kind of control do the polysaccharide hydrogels make possible on the release of the drug? Please comment very briefly on these topics.

Cryo-TEM images of a nanohydrogel. Taken from: European Journal of Pharmaceutics and Biopharmaceutics. (2018) 127, 244-249. DOI: 10.1016/j.ejpb.2018.02.015
Cryo-TEM images of a nanohydrogel. Taken from: European Journal of Pharmaceutics and Biopharmaceutics. (2018) 127, 244-249. DOI: 10.1016/j.ejpb.2018.02.015

Pietro Matricardi: – The main features of polysaccharide hydrogels are their general biocompatibility, due to the natural origin of the polymer matrices, and their high water content. The mechanical properties stemming from the combination of the polymer architecture and the water environment, lead to matrices that are highly tolerated by the human body. Moreover, the wide range of polymers available and the great number of tunable parameters to adjust the properties of the matrices, is another very important aspect in tailoring the hydrogels functions. Finally, embedding drugs within these hydrogels leads to drug delivery systems that can be exploited in many pharmaceutical and biomedical applications, already present on the market from a long time, ranging from topical to the internal ones. Just to mention, from hydrogels for wound healing or dermatitis treatment or hyaluronic acid for joints visco-supplementation, aesthetic surgery or tissue regeneration. More recently, polysaccharide nanohydrogels, i.e. hydrogels in the nanoscale, are gaining a great attention for their properties as “intelligent carrier” and some products are almost ready for the market; but these drug delivery systems are just at the beginning of their life.

B-MRS Newsletter: – We want to know more about your work. Please choose two articles / patents / products of your own (your favorites) and describe them briefly.

Macroscopic appearance of baicalin sonicated (S) and autoclaved (A) nanohydrogels. European Journal of Pharmaceutics and Biopharmaceutics. (2018) 127, 244-249. DOI: 10.1016/j.ejpb.2018.02.015
Macroscopic appearance of baicalin sonicated (S) and autoclaved (A) nanohydrogels. Taken from: European Journal of Pharmaceutics and Biopharmaceutics. (2018) 127, 244-249. DOI: 10.1016/j.ejpb.2018.02.015

Pietro Matricardi: – Our group focused the research on polysaccharide nanohydrogels since few years. One of the main result is condensed in two patents in which we describe how it is possible to obtain polysaccharide nanohydrogels, ready for a pharmaceutical formulation, by using a standard autoclaving cycle. In such a way, starting from the drug and the polymer both suspended in water, it is possible to obtain, in one shot, sterile nanohydrogels with the drug embedded inside.

  • WO2014199318 (A2) ― 2014-12-18 MC De Rugeriis, E. Montanari, C. Di Meo, P. Matricardi – METHOD FOR PREPARING NANOHYDROGELS.
  • WO2014199319 (A2) 2014-12-18 G. D’Arrigo, C. Cencetti, C. Di Meo, P. Matricardi – METHOD FOR THE TREATMENT OF NANOHYDROGELS.

Another important work was developed in collaboration with Prof. Torchlin of the Northeastern University, Boston, MA, USA. In that work we explored the possibility to use the nanohydrogels for a dual drug delivery. Specifically, we embedded an anticancer drug (paclitaxel) in a gellan-anti-inflammatory (prednisolone) nanohydrogels, obtaining a synergistic effect of the two drugs in killing cancer cells. This work received the “Best paper award in EJPB 2014”.

  • Giorgia D’Arrigo, Gemma Navarro, Chiara Di Meo, Pietro Matricardi, Vladimir Torchilin. “Gellan gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: a multi-drug delivery system for a combination therapy in cancer treatment”. European Journal of Pharmaceutics and Biopharmaceutics, (2014) 87 (1) 208-216. Doi: 0.1016/j.ejpb.2013.11.001.

Scientific director of B-MRS is the new associate editor of ACS Applied Nano Materials.

Prof. Mônica Cotta.
Prof. Mônica Cotta.

Professor Mônica Alonso Cotta (Gleb Wataghin Institute of Physics, UNICAMP) has undertaken the position of associate editor of ACS Applied Nano Materials, a scientific journal of the American Chemical Society publishing house (ACS Publications), which was launched in early 2018. The journal is interdisciplinary and covers topics related to nanomaterial applications.

Professor Cotta, who holds her second term as scientific director of B-MRS and was chair of the XV B-MRS Meeting, joined in July of this year the team of associate editors of the journal, formed by four other scientists from the United States, South Korea, China and Singapore.

B-MRS Newsletter. Year 5, issue 7.

 

logo header 400

Newsletter of the
Brazilian Materials
Research Society

Year 5, issue 7. August 7, 2018.
Featured Paper

A scientific team at UNESP developed a clay-hydrogel nanocomposite with controlled drug release properties. In this new material, clay lamellae form a physical barrier that determines a controllable rate for the release of the anti-inflammatory sodium diclofenac. The work was reported in the scientific journal ACS Applied Materials & Interfaces. Know more.

imagem hidrogel

From idea to innovation

In the second part of the article on the history of fiber optics, we show the work done in some laboratories of developed countries in the 1960s and 1970s. The report includes the studies by Charles Kao (Nobel Prize in Physics 2009) that showed the way for fiber optics to be a major player in telecommunications, and the work of the three Corning researchers who developed the first low attenuation optical fiber. Know more.

fibra optica 2

B-MRS News

The Annals of the Brazilian Academy of Sciences (AABC) in partnership with the Brazilian Materials Research Society (B-MRS) will launch the special volume “Materials Sciences for a Better Future”. Know more.

aabc-sbpmat

XVII B-MRS Meeting
(Natal, Brazil, September 16 – 20, 2018)

logo-natal_560px

Join us, by the beach, and be part of this great gathering, where science and technology will meet nature to form the ideal learning and exchanging experience!

Registration. Early fee registration was extended until August 10! Know more.

Program. The program is online. See date and time of all oral, poster and invited presentations of every simposium. Here.

Poster printing service. You can e-mail the file and, during the event, take the printed poster at the convention center. Know more.

Tutorial. Those enrolled in the event can participate in the tutorial on scientific writing and editorial process at no additional cost. Free registration in the meeting’s general registration form. Know more.

Conference party. The party will be held on the night of September 19, at the Imirá Plaza Hotel & Convention, and will be sponsored by ACS Publications scientific journals. Know more.

Lodging, transfer and tours. See options of the event’s official tourist agency, Harabello, here.

Plenary lectures. Find out who are the 8 internationally renowned scientists who will deliver the plenary sessions and which are the themes of the lectures, here.

Memorial lecture. The Memorial Lecture “Joaquim da Costa Ribeiro” will be delivered at the opening session by Professor Fernando Galembeck.

Exhibitors and sponsors. 20 companies have already reserved their places in the exhibition and 18 other entities take part in the event throught other kinds of publicity and support.

Organizers. The meeting chair is Professor Antonio E. Martinelli (Brazilian Federal University of Rio Grande do Norte, UFRN). Meet the organization committee.

Venue. The event will be held in the convention center of Hotel Praiamar, located a few meters from the famous beach of Ponta Negra. Know more.

City. A well-known destination for international tourists, Natal also offers a pleasant environment to discuss, interact and learn. Its nice weather (dry with an average temperature of around 25 °C in September), the welcoming people and very refined seafood and local gastronomy create an atmosphere of well-being that goes beyond the natural beauty of the city’s coastline. Watch this short video about Natal.

natal_careca

Reading tips

  • Scientists develop new matrix of collagen and silk for artificial skin growth (Biomaterials). Know more.

  • Biogenic materials: Using genetically modified bacteria coated with nanoparticles, scientists create photovoltaic cells that work even with low light (Small). Know more.
  • Using a natural compound-based gel, scientists create a method to crystallize active drug substances and thus improve medication performance. The material is also promising as a drug delivery system (Small). Know more.

Events

  • International Conference on Electronic Materials 2018 (IUMRS-ICEM). Daejeon (South Korea). August 19 – 24, 2018. Site.
  • Symposium “Nano-engineered coatings, surfaces and interfaces” no “XXVII International Materials Research Congress”. Cancun (Mexico). August 19 – 24, 2018. Site.

  • 8th International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA2018). Maresias, SP (Brazil). August 26 – 31, 2018. Site.

  • 16th International Conference on Molecule-based Magnets (ICMM2018). Rio de Janeiro, RJ (Brazil). September 1 – 5, 2018. Site.

  • XVII Encontro da SBPMat/ B-MRS Meeting. Natal, RN (Brazil). September 16 – 20, 2018. Site.

  • XXXIX Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência (CBrAVIC). Joinville, SC (Brazil). October 8 a-11, 2018. Site.

  • 6ª Edição do Workshop de Pesquisa e Tecnologia em Ciência dos Materiais. Sorocaba, SP (Brazil). October 15 – 17, 2018. Site.

  • São Paulo School of Advanced Science on Colloids (SPSAS Colloids). Campinas, SP (Brazil). October 28 – November 7, 2018. Site.

  • XIII Simpósio de Lasers e Suas Aplicações (XIII SLSA). Recife, PE (Brazil). October 30 -November 2, 2018. Site.

  • International Conference of Young Researchers on Advanced Materials (ICYRAM 2018). Adelaide (Australia). November 4 – 8, 2018. Site.

  • 6th Meeting on Self Assembly Structures In Solution and at Interfaces. São Pedro, SP (Brazil). November 7 – 9, 2018. Site.

  • 3rd International Brazilian Conference on Tribology (TriboBR 2018). Florianópolis, SC (Brazil). December 3 – 5, 2018. Site.

  • II Simpósio Nacional de Nanobiotecnologia (IISNNB). São Bernardo do Campo, SP (Brazil). December 6 – 7, 2018. Site.

Follow us on social media

You can suggest news, opportunities, events or reading tips in the Materials field to be covered by B-MRS Newsletter. Write to comunicacao@sbpmat.org.br.