Interviews with plenary speakers of the XV Brazil-MRS Meeting: Paul S. Weiss (UCLA, USA).

paul-weissTaking precise measurements of atoms and molecules. Accurately control molecules so that they form specific nanostructures or work together to achieve desired results. The nanoscientist Paul Weiss will address this and much more at the XV Brazil-MRS Meeting. Weiss is Professor at the University of California, Los Angeles (UCLA) and editor-in-chief of ACS Nano journal. At the annual SBPMat event, in addition to delivering the plenary lecture, Weiss will also participate in a roundtable to discuss scientific publication along with the public and editors of other journals.

Paul Weiss received his S.B and S.M degrees in Chemistry from the Massachusetts Institute of Technology in 1980, after conducting research in high-resolution laser spectroscopy. His doctoral research, also in Chemistry at the University of California at Berkeley, was about excited atom reactions in crossed molecular beams.

In 1986, the year he concluded his PhD, his advisor, Yuan T. Lee, was awarded the Nobel Prize in Chemistry for his contribution to the study of the dynamics of chemical elementary processes. Soon after his doctorate, Weiss began working at Bell Laboratories as a post-doc studying the effects of surface chemistry and gas-surface collisions on semiconductor surface electronic properties. In 1988, he worked at IBM Almaden Research Center, where he remained as a visiting scientist until the following year. There his work was on scanning tunneling microscopy (STM) with one of the STM pioneers, Donald Eigler. STM, which lead to a major breakthrough in nanotechnology by enabling the manipulation of individual atoms and molecules, would become one of Weiss’s favorite techniques.

In 1989, Weiss joined the faculty of Pennsylvania State University (PennState), where he continued his work with STM, expanding the technique and studying atoms and molecules. From 2001 to 2002 he was the director of the Center for Molecular Nanofabrication and Devices of PennState. In 2005 he was designated Distinguished Professor of Chemistry and Physics departments at the university.

It was also at PennState that Weiss met the scientist Anne Andrews, with whom he is married to this day. Andrews was responsible for convincing Weiss to apply his expertise and knowledge on nanoscience in the study of the human brain. In this field, and in collaboration with Andrews and other scientists, Weiss has been committed to developing tools to study the interactions between neurons, which take place through electrical and chemical signals in nanometric spaces.

Concomitantly, Paul Weiss participated in the creation of the scientific journal ACS Nano (2015 impact factor of 13,334) and has been editor in chief since the journal’s first edition, published in August 2007. In 2008, the journal received a major distinction, the PROSE Award for Best New Journal in Science, Technology, and Medicine from the Association of American Publishers.

In 2009, he joined the University of California, Los Angeles (UCLA), where he was named Distinguished Professor of Chemistry & Biochemistry. Furthermore, he received, until 2014, the Fred Kavli Chair in Nanosystems Sciences and the directorship of the California NanoSystems Institute, a multidisciplinary institute of research and innovation in nanoscience and nanotechnology. Weiss has also been leading at UCLA a research group that gathers together chemists, physicists, biologists, materials scientists, electrical and mechanical engineers and computer scientists.

Paul Weiss was a visiting professor at the University of Washington (1996 – 1997) and at Kyoto University (1998 and 2000). In 2015, he was Distinguished Visiting Professor at the California Institute of Technology, and Visiting Scholar at Harvard University.

Paul Weiss has published over 300 papers and has approximately 20 patents. According to Google Scholar he has an h-index of 60 and more than 16,000 citations. He has given over 600 invited, plenary, keynote, and named lectures. Weiss has received many awards and distinctions for his research, teaching and scientific publishing. He is an elected senior fellow of IEEE, an elected fellow of the American Chemical Society, the American Physical Society, the American Association for the Advancement of Science, and the American Vacuum Society, and an honorary fellow of the Chinese Chemical Society.

He is currently Distinguished Professor in the Department of Chemistry & Biochemistry and the Department of Materials Science & Engineering at UCLA. He is also Visiting Professor at Nanyang Technological University and continues to work as editor in chief of ACS Nano. Paul S. Weiss also holds a UC Presidential Chair at UCLA.

Here is a brief interview with this speaker of the XV Brazil-MRS Meeting:

SBPMat newsletter: – In your opinion, what are your main contributions on the themes of your plenary lecture? Could you also share with us a couple of references pertaining to publications on these subjects?

Paul Weiss: – In our work, we explore the ultimate limits of miniaturization. We have assembled and operated the smallest switches and motors in the world. To do that, we have put together two sets of capabilities. First, we designed and applied new microscopes and microscopies that can simultaneously measure structure, function, and spectra, with submolecular resolution. In the other, we have developed the ability to place individual molecules into precisely controlled environments. We combine these to understand functional mechanisms and to design new molecules and assemblies to test our ideas.

Try these papers:

Controlling Motion at the Nanoscale: Rise of the Molecular Machines, J. M. Abendroth, O. S. Bushuyev, P. S. Weiss, and C. J. BarrettACS Nano 9, 7746 (2015). (Abstract or Article or PDF)

Molecular Switches and Motors on Surfaces, B. K. Pathem, S. A. Claridge, Y. B. Zheng, and P. S. Weiss, Annual Review of Physical Chemistry 64, 605 (2013). (Abstract or PDF)

From the Bottom Up: Dimensional Control and Characterization in Molecular Monolayers, S. A. Claridge, W.-S. Liao, J. C. Thomas, Y. Zhao, H. Cao, S. Cheunkar, A. C. Serino, A. M. Andrews, and P. S. Weiss, Chemical Society Reviews 42, 2725 (2013). (Abstract or Article or PDF)

SBPMat newsletter: –  You are part of the team that created ACS Nano, launched in 2007, right? Could you tell us which elements you attribute to the success of the journal, reflected in its impact factor and the awards received

Paul Weiss: – Yes, I was the founding editor-in-chief and continue in that role.

We decided to create a forward-looking journal in which we would lay out the challenges and opportunities for the field, in order to guide and to accelerate advances. We felt that while there are many journals that published communications in nanoscience and nanotechnology, there was not a strong journal that published comprehensive work, on which others could build. This situation, we decided, was holding back our field. We set out to find the most diverse set of curious editors from different fields and we set the journal up to be extremely fast and fair to all authors. Only scientists make decisions and it takes at least two scientists to make decisions to decline manuscripts. Our editors have conversations every day on where the field is going and what are true advances. We have made it intellectually stimulating for ourselves and we believe also for our readers. The result is that we can see the real impact on the worlds of science, engineering, medicine, and beyond. We published the technology roadmaps proposing the BRAIN Initiative in the US and beyond and the new Microbiome Initiative. Stay tuned for more!

Nanotools for Neuroscience and Brain Activity Mapping, A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, ACS Nano 7, 1850 (2013). (Abstract or Article or PDF)

Tools for the Microbiome: Nano and Beyond, J. S. Biteen, P. C. Blainey, M. Chun, G. M. Church, P. C. Dorrestein, S. E. Fraser, J. A. Gilbert, J. K. Jansson, R. Knight, J. F. Miller, A. Ozcan, K. A. Prather, E. G. Ruby, P. A. Silver, S. Taha, G. van den Engh, P. S. Weiss, G. C. L. Wong, A. T. Wright, and T. D. Young, ACS Nano 10, 6 (2016). (Abstract or Article orPDF)

SBPMat newsletter: –  Please leave an invitation to our readers to attend your plenary lecture “Cooperative Function in Atomically Precise Nanoscale Assemblies” in the XV Brazil-MRS Meeting.

Paul Weiss: – I hope you will join me at the XV Brazil-MRS Meeting for a discussion of how we can explore and understand function at the nanoscale and what it teaches us about the world around us.


Link to the abstract of the XV B-MRS Meeting plenary talk “Cooperative Function in Atomically Precise Nanoscale Assemblies”: http://sbpmat.org.br/15encontro/speakers/abstracts/3.pdf

Public Note of the Brazilian Materials Research Society.

Scientists warn about the need to value investments in science, technology and innovation to resume economic growth.

The board and committee of the Brazilian Research Materials Society (SBPMat) hereby urges the Brazilian Congress to maintain, in the 2017 budget, the investments in Science, Technology and Innovation (STI) at the levels of recent years, before the drastic cuts which took place in 2015 and 2016. We are aware of the joint effort of society to balance the public accounts, but it is unacceptable that the CTI cuts are far heftier than the drop in tax collection and the decline in domestic gross product.

Equally worrying are the cuts in higher education and in the National Post-Graduate System, evidenced by the interruption or reduction of CAPES programs. These are programs that ensure the continuous process of qualified training, leveraging the critical mass of human capital so that the scientific and technological development achieved can effectively influence industrial innovation, increase the added value of national production, and ensure the social and economic well-being of future generations.

In a country like Brazil, which has not yet reached its scientific and technological maturity to be among the developed nations, the contribution of CTI is sometimes overlooked. The extensive production gains in areas such as agriculture and livestock, extraction and mineral processing, which guarantee balancing our trade surpluses, often go unnoticed. Also unnoticed is the excellence of medicine and digital technology, which directly benefits the daily life of society.

Our specific area, research and new materials solutions, is essential for the future of Brazil as a sovereign nation and less susceptible to the interest of other countries. We are the largest producer of quartz and niobium in the world and we are among the largest in rare earths and other strategic minerals of immense commercial value. Our biodiversity offers a countless number of new organic materials that can be applied in health and in industry segments such as energy and electronics.

We know that the consequences of CTI cuts will be devastating. Besides holding back the continuous advances of recent decades, which threaten to scrap laboratories and squander the value already invested, the cuts realized render infeasible the national technology and the formation of human resources, which is vital to promote sustainable development.

Those who believe that cuts in CTI and in higher education have little impact on the lives of ordinary citizens are mistaken. In the short term, these cuts initially have a more apparent effect on the academic communities in the large centers in Brazil. However, the most affected will be the lowest socioeconomic strata in the medium and long term. These strata have no access to imported material, medical treatment and education abroad, which is only available to the privileged class. The underprivileged are the ones who will suffer if Brazil continues with a tenuous and not uneven government policy, which can cripple the structure of science, technology and innovation, arduously built over recent decades.

B-MRS (SBPMat) newsletter. English edition. Year 3, issue 8.

 

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

English edition. Year 3, issue 8. 
XV Brazil-MRS (SBPMat) Meeting - Campinas (SP), Sept 25-29, 2016 

1,909 abstracts have been accepted to be presented at the XV SBPMat/ Brazil-MRS Meeting. 

Registration: Registration for the event is open. Here.

Awards. In addition to the Bernhard Gross Award, this year there will also be an ACS award (American Chemical Society). The winners have to be present at the closing ceremony in order to receive the prizes (Sept 29, from 11h45 to 14h00).

Program. The short and full (symposium by symposium) versions are available on the website. Here.

Special Sessions – Science Lunch “Research in Germany”, Sept 26, from 12h00 to 14h00. This session will bring together scientists and funding agencies from Germany to discuss research opportunities in that country. Limited availability. Learn more and complete your registration free of charge, here.

Special Sessions – Meet the Editors, Sept 27, from 12h00 to 14h00. The round table “Meet the editors” will host Paul Weiss (editor-in-chief of ACS Nano), Susan Sinnott (editor-in-chief of Computational Materials Science), Ifor Samuel (editor-in-chief of Synthetic Metals) and Tim Smith (IOP Publishing director) who will discuss scientific publication. Limited availability. Free registration in the registration form of the meeting, where activities can be selected. 

Special Sessions – Materials Research and Innovation, Sept 28, from 12h00 to 14h00. This panel will bring together representatives of Mahle, Braskem and Inova-Unicamp, who will present cases of university-industry collaboration for R&D in Brazil and discuss the role of materials research in innovation. Limited availability. Free registration in the registration form of the meeting, where activities can be selected. 

Tutorials: Two tutorials will be offered on Sept 25 from 14h00 to 17h00 to those registered at the event, at no extra cost. One tutorial is on computer simulations of atomic systems using Reactive Force Fields (theory and practice). The second, organized by Professor Valtencir Zucolotto, will address the capabilities required to make high-impact science, including scientific writing. Free registration in the registration form of the meeting, where activities can be selected. 

Publication of contributions: The papers presented at the XV Brazil-MRS Meeting may be submitted by their authors for peer review for publication in IOP scientific journals. More info.

Plenary sessions:  View the abstracts of the plenary lectures and the memorial lecture of our event and bios of the scientists presenting them. Here.

Exhibition: It will comprise 43 stands.

Accommodation and tickets: See the list of the travel agency “Follow Up” with hotels, hostels, guesthouses and the forms to book flights. Here. 

Vacation packages: The Follow Up website also suggests tour packages for before and after the event. Here.

Venue: See video of the city of Campinas and folder about the Expo Dom Pedro convention center. 

Organizers: This edition of the event is coordinated by Prof. Ana Flávia Nogueira (Unicamp, Institute of Chemistry) and Prof. Mônica Alonso Cotta (Unicamp, “Gleb Wataghin” Institute of Physics). See who are the members of the local committee and view the photos of the organizers. Here.

SBPMat news
SBPMat is pleased to announce that the XVI SBPMat/ Brazil-MRS Meeting will be held in Gramado (RS) from 24 to 28 10 to 14 September 2017.
Featured paper 

A study developed in Brazil by means of computer simulations showed that a defect in two-dimensional bismuth nanoribbon atom network generates conductive states in regions of the nanoribbons that should be in an insulating state. This work contributes to the study of a class of recently discovered materials, the topological insulators, and it was published in the scientific journal Nano Letters. See our story about the paper. 

People in the Materials Community
Professor Victor Carlos Pandolfelli (DEMa-UFSCar) was chosen to serve as one of the editors-in-chief of the journal Ceramics International (Elsevier). More.
Interviews with plenary speakers of the XV Brazil-MRS Meeting
Imagine yourself inserting in a computer the material properties you desire for a specific application and obtaining the project of the most appropriate material. This is a promise of Computational Materials Science, and it will be addressed by Prof. Susan Sinnott in a plenary lecture of the XV Brazil-MRS Meeting. Sinnott is Professor and Director of the Department of Materials Science and Engineering at Pennsylvania State University (USA) and editor-in-chief of the journal Computational Materials Science. Her scientific production, with more than 10,000 citations, includes important contributions to the development of simulation tools for heterogeneous material systems at the atomic scale. See our interview with the scientist. 

 

Reading tips

Research carried out with the participation of Brazilian scientists advances in the understanding of magnetic noise, which generates imperfections in magnetic materials applications (based on paper of Physical Review Letters). Here.

Events
  • XV Brazil-MRS Meeting (XV Encontro da SBPMat). Campinas, SP (Brazil). September, 25 to 29, 2016. Site. 
  • Aerospace Technology 2016. Stockholm (Sweden). October, 11 to 12, 2016. Site.
  • AutoOrg 2016. 5th Meeting on self-assembly structures in solutions and at interfaces. Florianópolis, SC (Brazil). November, 2 to 4, 2016. Site. 
  • I Simpósio Nacional de Nanobiotecnologia; II Workshop de Nanobiotecnologia da UFMG – Avanços & Aplicações. Belo Horizonte, MG (Brazil). December, 1 to 2, 2016. Site.

To unsubscribe, click here

 

SBPMat newsletter. English edition. Year 3, issue 7.

 

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

English edition. Year 3, issue 7.
XV Brazil-MRS (SBPMat) Meeting - Campinas (SP), Sept 25-29, 2016 

1,909 abstracts have been accepted to be presented at the XV SBPMat/ Brazil-MRS Meeting. 

Registration: Registration for the event is now open. Early registration discount deadline is 31 August. Here.

Awards: Those interested in participating in the event’s student prize competition, the Bernhard Gross Award, which selects one oral and one poster presentation in each symposium, must submit an extended abstract by August 22. Know more in the instructions to authors.  

Special sessions. Organized by the initiative “Research in Germany”, the “Science Lunch” (September 26 from 12 am to 2 pm) will bring together scientists and funding agencies from Germany to discuss research opportunities in that country. Learn more about it. On September 27, also from 12 am to 2 pm,  the round table “Meet the editors” will host Paul Weiss (editor in chief of ACS Nano), Susan Sinnot (editor in chief of the Computational Materials Science) and Tim Smith (IOP Publishing director) who will discuss scientific publication. The links to register (free) for these activities will soon be published in the SBPMat website.

Tutorials: Two tutorials will be offered on the afternoon of September 25 to those registered for the event at no extra cost. One is on computer simulations on atomic systems using Reactive Force Fields (theory and practice). The second, organized by Professor Valtencir Zucolotto, will address capabilities required to make high-impact science, including scientific writing. Reserve your place during registration.  

Publication of contributions: The papers presented at the XV Brazil-MRS Meeting may be submitted by their authors for peer review for publication in IOP scientific journals. More info.

Plenary sessions:  View the abstracts of the plenary lectures and the memorial lecture of our event and bios of the scientists presenting them. Here.

Exhibitors: More than 30 companies have already got places in our exhibition. Companies interested in participating in the event with stands and other forms of dissemination should contact Alexandre, via the e-mail comercial@sbpmat.org.br.

Accommodation and tickets: See the list of the travel agency “Follow Up” with hotels, hostels, guesthouses and the forms to book flights. Here. 

Vacation packages: The Follow Up website also suggests tour packages for before and after the event. Here.

Venue: See video of the city of Campinas and folder about the Expo Dom Pedro convention center. 

Organizers: This edition of the event is coordinated by Prof. Ana Flávia Nogueira (Unicamp, Institute of Chemistry) and Prof. Mônica Alonso Cotta (Unicamp, “Gleb Wataghin” Institute of Physics). See who are the members of the local committee and view the photos of the organizers. Here.

Featured paper 

A team of scientists from Brazilian institutions have made a contribution to the field of hydrogen production, with the aim of using this technology as an alternative fuel. The researchers first developed a new method to produce metal oxide nanoparticles from ionic liquids. The team then tested the performance of the obtained nanoparticles as catalysts of a hydrogen production process from abundant renewable resources. The study was reported in a paper recently published in the Journal of Materials Chemistry A. See our story about the paper.

Interviews with plenary speakers of the XV Brazil-MRS Meeting
Organic semiconductors do not mystify Professor Ifor Samuel, leader and founder of a research group and a R&D center on this subject at the University of St Andrews (Scotland). In his daily routine Prof. Samuel not only strives to thoroughly understand these materials, but also to find new applications for them in different fields, from dermatologic medicine to the detection of explosives. In addition to his hundreds of articles published with over 12,000 citations, Prof. Samuel has several patents which have been licensed to companies. In the XV Brazil-MRS SBPMat Meeting, he will deliver a plenary lecture on optoelectronics based on organic semiconductors. Here.
Reading tips
International science communication

  • Optoelectronic skin: ultrathin, flexible, stretchable and soft film adheres to the skin and functions as sensor and display (based on paper of Science Advances). Here.
  • Brazilian physicists study for the first time the atomic vibrations at the edges of “black phosphorus”, a promising material for application in various devices (based on paper of Nature Communications). Here.
  • After modifying their microstructure, cements receive additives and for the first time they become phosphorescent. Here.

Journals

  • New journal of the series Nature Partner Journals: “npj 2D Materials and Applications”. More.

Metrics

  • A list of 300 researchers of Materials Science and Engineering most cited in the world, based on the Scopus database, includes two plenary speakers at the XV Brazil-MRS SBPMat Meeting: Lei Jiang and Anders Hagfeldt. See list.  

History of Materials Research in Brazil

  • An article in the Pesquisa Fapesp magazine briefly recounts the history of the Chemistry Institute of Araraquara (Unesp) and some of its laboratories, actively engaged in Materials Science and Engineering. Here.
Events
  • Workshop: “Photodynamic processes: shining light on sensing and actuating in biological systems“. Santo André, SP (Brazil). August, 8 to 12, 2016. Site.
  • Primeira Escola de Pesquisadores da USP. São Carlos, SP (Brazil). August, 10 to 11, 2016. Site.
  • XXV International Conference on Raman Spectroscopy (ICORS2016). Fortaleza, CE (Brazil). August, 14 to 19, 2016. Site.
  • 26th LNLS Annual Users´ Meeting (RAU). Campinas, SP (Brazil). August, 24 to 25, 2016. Site.
  • XV Brazil-MRS Meeting (XV Encontro da SBPMat). Campinas, SP (Brazil). September, 25 to 29, 2016. Site.
  • Aerospace Technology 2016. Stockholm (Sweden). October, 11 to 12, 2016. Site.

Cannot see this message? Click here.

To unsubscribe, click here

 

Interviews with plenary speakers of the XV Brazil-MRS Meeting: Ifor Samuel (University of S. Andrews, UK).

ifor samuelOrganic semiconductors are materials that combine useful properties of plastics (easy shaping, flexibility, low weight, low-cost processing) with the possibility of conducting electricity and emitting light. At the University of St Andrews, which lies since 1413 in a beautiful seaside location in Scotland (UK), Prof. Ifor Samuel converts his fascination for organic semiconductors into new materials, devices and applications.

Ifor Samuel received his MA and PhD diplomas from the University of Cambridge (England, UK), after working on optical spectroscopy of organic semiconductors. After his PhD, Samuel moved to Paris for two years to perform postdoctoral work at CNET-France Telecom, investigating the non-linear optical properties of organic materials. Back to England, he carried out research at Cambridge for a year, as research fellow at Christ’s College.  After that, he set his own research group on light-emitting polymers at the University of Durham where he also held a Royal Society University Research Fellowship. In 2000 he joined the University of St Andrews, where he founded, in 2001, the Organic Semiconductor Centre, dedicated to interdisciplinary research on understanding and improving organic semiconductors and exploring their applications in the semiconductor, electronics and optoelectronics industries. In 2004 he founded the company Ambicare Health Ltd that produces wearable light sources for healthcare applications.

Ifor Samuel holds an H-index of 58. He has published more than 400 journal papers. His publications have more than 12,000 citations. He is a Fellow of the Royal Society of Edinburgh, the Institute of Physics, the International Society for Optics and Photonics (SPIE) and the Royal Society of Chemistry. Among other prizes, he won the Chemical Dynamics Award for 2016 of the Royal Society of Chemistry for his contributions to understanding light emission and fundamental photophysical processes in organic semiconductors.

At the University of St Andrews, Ifor Samuel is Professor of Physics, Director of the Organic Semiconductor Centre and head of the Organic Semiconductor Optoelectronics group. He is a member of the editorial board of the Journal of Photonics for Energy, and Editor-in-Chief of Synthetic Metals, a journal of electronic polymers and electronic molecular metals.

Here follows a short interview with Professor Ifor Samuel, who will be in Campinas (Brazil) at the end of September to talk about Organic Semiconductor Optoelectronics in a plenary lecture of the XV Brazil-MRS Meeting.

SBPMat newsletter: – In your opinion, what are your most significant scientific contributions to the organic semiconductors field?  Explain them very briefly and, if possible, share references of resulting publications.

Fluorescence of some organic semiconductors.
Fluorescence of some organic semiconductors.

Ifor Samuel: – There have been two main themes to my research.  One is understanding organic semiconductors with the aim of using that understanding to improve them.  In this direction, I have studied the light emission process in conjugated polymers which is very important for organic light-emitting diodes (OLEDs) [1,2], developed as a new class of OLED material (with P.L. Burn) [3], and measured exciton diffusion which is very important in polymer solar cells [4].

The other major theme has been pushing the boundaries of devices and applications.  Here, instead of developing new materials, I have been exploring what new things can be done with existing materials.  For example, whilst nearly everybody was working on OLEDs for displays, I had a very interesting discussion with James Ferguson, head of dermatology at Ninewells Hospital in Dundee, leading to the development of wearable light sources for treatment of non-melanoma skin cancer [5].  More recently my team developed a wearable organic optoelectronic sensor for muscle contraction [6].  We have also been working with the Belgian Royal Military Academy on using conjugated polymer fluorescence and lasing for explosive detection for humanitarian demining.  Recently we demonstrated (as part of a large project with collaborators in Edinburgh, Strathclyde and Oxford) the use of organic semiconductors for visible light communication, achieving record data rates for white visible light communication [7].

  1. Measurement of Absolute Photoluminescence Quantum Efficiencies in Conjugated Polymers. N.C. Greenham, I.D.W. Samuel, G.R. Hayes, R.T. Phillips, Y.A.R.R. Kessener, S.C. Moratti, and A.B. Holmes. Chem. Phys. Lett241, 89 (1995).
  1. Fluorescent receiver for visible light communications.
    Fluorescent receiver for visible light communications.

    Efficient interchain photoluminescence in a high-electron-affinity conjugated polymer. I.D.W. Samuel, G. Rumbles and C.J. Collison. Physical Review B. 52, 11573 (1995).

  1. A green phosphorescent dendrimer for light-emitting diodes. S.C. Lo, N.A.H. Male, J.P.J. Markham, S.W. Magennis, P.L. Burn, O.V. Salata and I.D.W. Samuel. Adv. Mater. 14, 975 (2002).
  1. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. G.J. Hedley, A.J. Ward, A. Alekseev, C.T. Howells, E.R. Martins, L.A. Serrano, G. Cooke, A. Ruseckas and I.D.W. Samuel. Nature Comm. 4, 2867 (2013).
  1. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. S.K. Attili, A. Lesar, A. McNeill, M. Camacho-Lopez, H. Moseley, S. Ibbotson, I.D.W. Samuel and J. Ferguson. Brit. J. Derm161, 170 (2009).
  1. Conjugated polymer laser.
    Conjugated polymer laser.

    Wearable organic optoelectronic sensors for medicine. A.K. Bansal, S.B. Hou, O. Kulyk, E.M. Bowman and I.D.W. Samuel. Adv. Mater. 27, 7638 (2015).

  1. Visible light communication using a blue GaN µLED and fluorescent polymer color converter. Chun, P.P. Manousiadis, S. Rajbhandari, D.A. Vithanage, G. Faulkner, D. Tsonev, J.J.D. McKendry, S. Videv, E.Y. Xie, E.D. Gu, M.D. Dawson, H. Haas, G.A. Turnbull, I.D.W. Samuel and D.C. O’Brien. IEEE Photonics Technology Letters 26, 2035 (2014).

SBPMat newsletter: – You have authored many patents. Are there products in the market based on our inventions?

Ifor Samuel: – The majority of my patents are licensed to companies that are developing them. There are several patents relating to light-emitting dendrimers as highly efficient solution-processed OLED materials. These were initially licensed to Opsys Ltd in Oxford, who were later acquired by Cambridge Display Technology, who in turn are now wholly owned by Sumitomo Chemical and incorporate aspects of the technology in their products.  For the skin cancer treatment, the patents were licensed to the spin-out company Ambicare Health Ltd.  Ambicare have brought two related products to market – one is a wearable red light source for skin cancer treatment, and the other is a wearable blue light source for acne treatment.

SBPMat newsletter: – The properties of organic semiconductors are different from those of inorganic semiconductors, leading to creation of novel devices. Could you give some examples of existing and not-yet invented devices based on organic semiconductors?

Ifor Samuel: – The advantages of organic semiconductors come from how they combine novel semiconducting optoelectronic properties with simple fabrication and the scope to tune properties by changing their structure. An existing organic semiconductor device is an OLED mobile phone display or television. They give very vivid images, together with outstanding contrast and viewing angle. However, in contrast to inorganic semiconductors which are rigid and brittle, organic semiconductors can be used to make flexible devices – such as light-emitting bandages for medicine. The flexibility has not yet been fully exploited, but also simplifies manufacture which could be by simple roll to roll processes.  This would be an excellent way to make solar cells in Brazil. The laser explosive sensors are completely different from inorganic lasers because the explosive vapour binds to the gain medium and modifies its light emission.

SBPMat newsletter: – If you desire, leave an invitation for our readers to go to your plenary lecture at the XV Brazil-MRS Meeting.

Ifor Samuel: – I have really enjoyed my previous visits to the Brazil MRS meeting and look forward to visiting Campinas. Do come to my lecture to hear about the remarkable world of organic semiconductors and their applications.

Link to the abstract of Ifor Samuel´s plenary lecture at the XV Brazil-MRS Meeting: http://sbpmat.org.br/15encontro/speakers/abstracts/6.pdf

SBPMat newsletter. English edition. Year 3, issue 6.

 

Brazilian Materials Research Society (SBPMat) newsletter
News update from Brazil for the Materials community

English edition. Year 3, issue 6. 

XV Brazil-MRS (SBPMat) Meeting - Campinas (SP), Sept 25-29, 2016 

The XV SBPMat Meeting received approximately 2,000 abstracts.

Registration: Registration for the event is now open. Early registration discount deadline is 31 August. Here.

Program: Two tutorials will be offered on the afternoon of September 25 to those registered for the event at no extra cost. One is on computer simulations on atomic systems using Reactive Force Fields (theory and practice). The second, organized by Professor Valtencir Zucolotto, will address capabilities required to make high-impact science, including scientific writing. Reserve your place during registration. 

Authors: Acceptance notifications will be sent to the authors by July 10. 

Awards: Those interested in participating in the event’s student prize competition, the Bernhard Gross Award, which selects one oral and one poster presentation in each symposium, must submit an extended abstract by August 22. Know more in the instructions to authors.  

Publication of contributions: The papers presented at the XV Brazil-MRS Meeting may be submitted by their authors for peer review for publication in IOP scientific journals. More info.

Exhibitors: More than 30 companies have already got places in our exhibition. Companies interested in participating in the event with stands and other forms of dissemination should contact Alexandre, via the e-mail comercial@sbpmat.org.br.

Plenary sessions:  View the abstracts of the plenary lectures and the memorial lecture of our event and bios of the scientists presenting them. Here.

Accommodation and tickets: See the list of the travel agency “Follow Up” with hotels, hostels, guesthouses and the forms to book flights. Here. 

Vacation packages: The Follow Up website also suggests tour packages for before and after the event. Here.

Venue: See video of the city of Campinas and folder about the Expo Dom Pedro convention center. 

Organizers: This edition of the event is coordinated by Prof. Ana Flávia Nogueira (Unicamp, Institute of Chemistry) and Prof. Mônica Alonso Cotta (Unicamp, “Gleb Wataghin” Institute of Physics). See who are the members of the local committee and view the photos of the organizers. Here.

Featured paper 

A nanomedicine study performed at the Brazilian Federal University of Goias shows that magnetic nanoparticles smaller than 10 nm and composed of more than one material have optimum nano-heating properties for the treatment of cancer by hyperthermia. The two authors of the study reached these conclusions based on diverse evidence, including in vivo studies and results obtained through an innovative theoretical method that they developed. This work was reported in a paper published in Nanoscale. See our story about the study.

People in the Materials community 

We interviewed professor Sidney Ribeiro (UNESP), a full member of the Brazilian Academy of Sciences since May. Ribeiro is a recognized author of impacting studies on materials containing rare earth ions with applications in photonics and biomedicine. He is also active in mentoring and training researchers (having supervised over one hundred studies) and transforming research into products. In his message to younger scientists he spoke about the love of science, which is natural in children and must be preserved by the educational system, and which transforms the researcher’s work into a favorite occupation. See our interview.

Professor Fernando Lázaro Freire Junior, former president of SBPMat, became the director of the Physics Department of PUC-Rio. Here.
Interviews with plenary speakers of the XV Brazil-MRS Meeting
Plants and animals are important sources of knowledge and inspiration for Professor Lei Jiang and his group. In their laboratories at the Technical Institute of Physics and Chemistry in Beijing (China), they develop smart materials, e.g., interfaces that switch between superhydrophilicity and superhydrophobicity. The findings of professor Lei Jiang, in addition to generating publications that received tens of thousands of citations, yielded products which are already widely used. Learn more about this Chinese scientist, his way of doing science, his discoveries and his scientific and also philosophical concept of binary cooperative complementary materials. Here.
Special: Kavli Prize for AFM inventors
Gerd Binnig (IBM Zurich Research Laboratory, Switzerland), Christoph Gerber (University of Basel, Switzerland) and Calvin Quate (Stanford University, USA) received the 2016 Kavli Prize in Nanoscience in recognition of their development of the Atomic Force Microscope (AFM). Since its creation, the AFM advances nanoscience and nanotechnology due to the possibilities it offers to study and modify surfaces with atomic resolution and precision. More. 
Reading tips
  • First stable magnet of only 1 atom provides possibilities to store and process information at the atomic scale (based on paper in Science). Here.
  • Biomineralization: Scientists shed light on the origin of hardness in biominerals as calcite, associated to the incorporation of impurities (based on paper in Nature Materials). Here. 
  • Thomson Reuters released its annual report of scientific journal impact factors. Here are some highlights of materials journals selected by the websites Materials Today (Elsevier) and Materials Views (Wiley)
Events
  • XXV International Conference on Raman Spectroscopy (ICORS2016). Fortaleza, CE (Brazil). August, 14 to 19, 2016. Site.
  • 26th LNLS Annual Users´ Meeting (RAU). Campinas, SP (Brazil). August, 24 to 25, 2016. Site.
  • XV Brazil-MRS Meeting (XV Encontro da SBPMat). Campinas, SP (Brazil). September, 25 to 29, 2016. Site.
  • Aerospace Technology 2016. Stockholm (Sweden). October, 11 to 12, 2016. Site.


To unsubscribe, click here
 

 

Interviews with plenary speakers of the XV Brazil-MRS Meeting: Lei Jiang (Chinese Academy of Science, China).

By studying spider webs, fish scales, lotus leaves and cactus, the Chinese scientist Lei Jiang (Technical Institute of Physics and Chemistry – Chinese Academy of Science) and his group have developed artificial systems that can be extremely useful for human being. For example, surfaces that exhibit superphobic or superphilic properties concerning water, oil and air. Professor Jiang´s surfaces and interfaces can also be intelligent and switch from superhydrophilicity to superhydrophobicity.

Prof. Jiang will come to Brazil at the end of September to present all these discoveries, and also the concept of “binary cooperative complementary nanomaterials” (BCCNMs), in a plenary lecture of the XV Brazil-MRS Meeting.

Lei Jiang obtained a B.S. in solid-state physics in 1987 and a M.S. in physical chemistry in 1990 from Jilin University of China. Then, he embraced doctoral studies in the same university. After a period in the University of Tokyo (Japan), he obtained his Ph.D. diploma in physical chemistry from Jilin University of China. From 1994 to 1996, he was postdoctoral fellow in the Akira Fujishima‘s group at Tokyo University of Science. Then, he remained in Japan as a researcher of Kanagawa Academy of Sciences and Technology. In 1999, he joined, as a Professor, the Institute of Chemistry at CAS. From 2004 to 2006, he also served as Chief Scientist of the National Center for Nanoscience and Technology of China.

Prof. Jiang (H index=92) is author of two books, 8 review papers and book chapters, and over 500 papers including articles in Nature, Nature Nanotechnology, Nature Materials, among many other high-impact journals. He holds dozens of granted patents and patent applications. His publications have been cited more than 38,000 times.

Lei Jiang is academician of CAS since 2009, foreign member of the US National Academy of Engineering since 2016, fellow of the Royal Society of Chemistry since 2010, and fellow of The World Academy of Sciences (TWAS) since 2012. Jiang acts in the boards of scientific journals Small, Advanced Functional Materials, Advanced Materials Interfaces, NPG Asia Materials, Journal of Inorganic Biochemistry and Materials Research Innovations. He has received many awards and honors granted by Chinese entities. His contributions have also been recognized with the TWAS Chemistry Award in 2011 and the MRS Mid-Career Researcher Award in 2014.

Here follows an interview with Professor Jiang.

SBPMat newsletter: – Explain in a few words your approach to learning from nature.

Lei Jiang: – We learn from nature mainly focusing on biological interfaces with superwettability, and then we investigated the correlation between the multiscale structures and superwettability. After that we design target molecules to prepare bioinspired functional materials with promising applications, such as self-cleaning coatings, water/oil separation, water collection, and energy conversion. Finally, by combining two complementary properties and achieving reversible switching between them, we were able to develop bioinspired smart interfacial materials with superwettability.

SBPMat newsletter: – Do you and your group perform nature observation by yourselves?

Lei Jiang: – Yes, we perform nature observation by ourselves.

SBPMat newsletter: – Do you search for specific plants or animals having in mind specific applications?

Lei Jiang: – Yes, we mainly focus on specific plants or animals with superwettability.

SBPMat newsletter: – Do you work in collaboration with biologists and materials engineers from other groups to understand nature and produce the artificial materials systems?

Lei Jiang: – Yes, we always work in collaboration with other groups, who are focused on materials, mechanics, biology etc., to understand nature and produce the artificial materials systems.

SBPMat newsletter: – Are there products in the market, or almost there, based on your discoveries? How were they created (through patent licensing, spinoff companies, joint development)?

Lei Jiang: – We have transferred several research findings in the laboratory to practical products in the market. Until now, we have cofounded 3 technology companies.  As one of the very first commercially available bioinspired material produced in large scale, our superhydrophilic coatings have been applied to landmark buildings such as the China National Grand Theatre, and the Beijing International Airport. Our oil/water separation system has also been applied to more than 630 ships travelling around the world. Based on the materials with special wettability, a bioinspired green printing technology is also currently being used to print newspapers by many publishers.

SBPMat newsletter: – To those readers who may be very curious about your concept of “binary cooperative complementary nanomaterials”, please say a couple of words about it. Is there a philosophical idea behind that concept?

Lei Jiang: – Binary cooperative complementary materials, consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel principle for the design and construct of functional materials. By summarizing recent achievement in materials science, it can be found that the cooperative interaction distance between the pair of complementary properties must be comparable with the scale of related physical or chemical parameter. When the binary components are in the cooperative distance, the cooperation between these building blocks becomes dominant and endows the macroscopic materials with unique properties and advanced functionalities that cannot be achieved by either of building blocks. The law of unity and interpenetration of opposites was proposed in “Dialectics of Nature,” an unfinished 1883 work by Friedrich Engels. He stated “Everywhere we look in nature, we see the dynamic co-existence of opposing tendencies. This creative tension is what gives life and motion.” Dialectic was derived from the works of philosophers G. W. F. Hegel (1831) and Heraclitus (500 BC), who thought that everything was constantly changing and that all things consisted of two opposite elements that could change into each other. Ancient Chinese philosophers also utilized “Yin” and “Yang” as two basic polarities of the universe to interpret the binary cooperative complementary phenomenon in nature and the universe. However, Engels simply thought the idea of “Yin” and “Yang” was just an embryo of dialectics in ancient China. However, Chinese philosophers had already studied the evolution process and unity of two opposite elements quantitatively. For example, “I Ching” (1000–750 BC), an ancient Chinese book of changes, stated that 64 Yin-Yang combinations known as “64-gua” are possible with hexagrams (patterns of 6 broken and unbroken lines).

Please find the details about “binary cooperative complementary materials” in ” Science China Materials, 2016, 59, 239–246, http://link.springer.com/article/10.1007/s40843-016-5051-6 ”

——————-

Link to the abstract of the XV Brazil-MRS Meeting plenary talk “Smart Interfacial Materials from Super-Wettability to Binary Cooperative Complementary Systems”: http://sbpmat.org.br/15encontro/speakers/abstracts/5.pdf