Artigo em destaque: Como fazer nanocristais de perovskita mais estáveis para LEDs mais eficientes.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes. Emre Yassitepe, Zhenyu Yang, Oleksandr Voznyy, Younghoon Kim, Grant Walters, Juan Andres Castañeda, Pongsakorn Kanjanaboos, Mingjian Yuan, Xiwen Gong, Fengjia Fan, Jun Pan, Sjoerd Hoogland, Riccardo Comin, Osman M. Bakr, Lazaro A. Padilha, Ana F. Nogueira, and Edward H. Sargent. Adv. Funct. Mater. 2016. DOI: 10.1002/adfm.201604580.

Como fazer nanocristais de perovskita mais estáveis para LEDs mais eficientes

Nesta imagem ilustrativa, enviada por Emre Yassitepe, pontos quânticos azuis, verdes e vermelhos excitados por radiação ultravioleta exibem uma brilhante luminescência.
Nesta imagem ilustrativa, enviada por Emre Yassitepe, pontos quânticos azuis, verdes e vermelhos excitados por radiação ultravioleta exibem uma brilhante luminescência.

Os pontos quânticos de perovskita vem sendo enxergados como ótimos candidatos para compor uma próxima geração de telas e dispositivos para iluminação. De fato, essas nanopartículas luminescentes são capazes de emitir luz de alto brilho e em cores muito vívidas e puras ao receberem energia externa. Mas o uso tecnológico dos pontos quânticos de perovskita esbarra ainda em algumas limitações, principalmente ligadas à sua instabilidade, pois essas minúsculas partículas rapidamente podem reagir com o meio, aglomerar-se ou aumentar de tamanho, por exemplo.

Uma equipe de cientistas de instituições do Canadá, Brasil e Arábia Saudita encontrou uma solução a um dos problemas que limitam o avanço da pesquisa e desenvolvimento na área, a degradação dos pontos quânticos de perovskita durante sua fabricação. O estudo foi reportado em artigo recentemente publicado no periódico Advanced Functional Materials (fator de impacto: 11,38).

A fabricação dos pontos quânticos de perovskita é tradicionalmente realizada colocando num frasco uma solução com uma série de compostos que, ao reagirem sob determinadas condições, geram nanopartículas de perovskita revestidas (passivadas) com ácido oleico (C18H34O2) e oleilamina (C18H35NH2).

A equipe realizou experimentos e simulações computacionais para compreender como ocorria, passo a passo, a formação dos pontos quânticos de perovskita e, dessa maneira, formular um método de fabricação que evitasse o problema da degradação. Os cientistas perceberam que a chave da solução residia em reformular os “ingredientes” do processo para poder retirar a oleilamina que acabava criando as condições para a degradação dos pontos quânticos, os quais precipitavam para o fundo do frasco.

“Nós focamos no desenvolvimento de uma nova técnica de síntese para passivar pontos quânticos de perovskita com ácido oleico”, diz Emre Yassitepe, pós-doc no Laboratório de Nanotecnologia e Energia Solar do Instituto de Química da Unicamp, que assina o artigo como primeiro autor. “O ácido oleico é um dos ligantes mais usados até o momento para estabilizar pontos quânticos e queríamos ver o impacto na estabilização e no desempenho do LED de diferentes ligantes”, completa.

Seguindo a nova “receita”, a equipe conseguiu produzir pontos quânticos de cerca de 8 nm, revestidos unicamente com ácido oleico, compostos por césio, chumbro e elementos do grupo dos halogêneos e tendo uma estrutura perovskita (que é uma determinada organização dos átomos). Foram produzidos e caracterizados pontos quânticos verdes, de fórmula CsPbBr3), azuis (CsPb(Br,Cl)3) e vermelhos (CsPb(Br,I)3).

Um dos principais ganhos obtidos com o novo método foi a estabilidade coloidal dos pontos quânticos: diferentemente dos pontos quânticos revestidos com oleilamina, eles permaneceram intatos após a etapa da purificação, que remove dos nanocristais os compostos residuais que costumam remanescer do processo de fabricação.

A equipe foi além da fabricação e análise experimental dos pontos quânticos e construiu com eles dispositivos LED (diodos emissores de luz, hoje amplamente utilizado em lâmpadas e telas) emissores de luz verde, azul e vermelha para conferir sua eficiência. Fizeram filmes finos com os pontos quânticos de perovskita conseguidos e colocaram uma camada desse material “sanduichada” entre uma camada de dióxido de titânio, encarregada de transportar elétrons (portadores de carga negativa) e uma camada polimérica, destinada ao transporte dos chamados “buracos” (portadores de carga positiva). Nesse LED, ao se aplicar um campo elétrico, elétrons e buracos se deslocam para a camada de pontos quânticos e acabam excitando-os, fazendo que emitam fótons e gerem, assim, a luz desejada.

O uso de camadas de transporte poliméricas processadas a partir de solução, em vez de camadas processadas a partir de evaporação para fabricar LEDs de perovskita foi uma inovação também possibilitada pela nova “receita”, que tornou os pontos quânticos mais robustos frente a esse tipo de processamento.

Como resultado final, os cientistas conseguiram LEDs azuis e verdes brilhantes e eficientes. Os LEDs de perovskita feitos com pontos quânticos sem oleilamina demonstraram um desempenho melhor, em alguns aspectos, do que os LEDs de perovskita convencionais contendo oleilamina.

autores
Fotos dos autores do artigo de instituições brasileiras. A partir da esquerda: Ana Flávia Nogueira e Emre Yassitepe (Instituto de Química da Unicamp), Juan Andrés Castañeda e Lázaro Padilha (Instituto de Física Gleb Wataghin, Unicamp).

“Demonstramos um novo método de síntese que aumenta a estabilidade coloidal dos pontos quânticos de perovskita ao revesti-los com ácido oleico”, resume Yassitepe. “Esse aumento da estabilidade viabilizou a remoção do excesso de conteúdo orgânico nos filmes finos, o qual atua como isolante entre os pontos quânticos, reduzindo seu desempenho. Ao reduzir os ligantes que estavam em excesso, conseguimos fazer LEDs mais eficientes e processáveis em solução”, conclui o pós-doc.

O trabalho foi realizado com financiamento de agências canadenses, da FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) e da Universidade de Ciência e Tecnologia King Abdullah (Arábia Saudita).  Na Unicamp, foram realizados os experimentos de absorção transiente ultrarrápida e análises por microscopia eletrônica de transmissão para caracterizar os pontos quânticos. A síntese dos nanocristais e a fabricação dos LEDs foi realizada na Universidade de Toronto, no grupo do professor Edward H. Sargent, onde Yassitepe realizou um estágio de um ano dentro de seu pós-doutorado na Unicamp. “Agradeço à FAPESP- Bolsa Estágio de Pesquisa no Exterior for ter me dado esta oportunidade”, diz Yassitepe.

Inscrições abertas para concurso docente no IQ/Unicamp, na área de Química Orgânica.


Estão abertas as inscrições para o concurso público de provas e títulos, para provimento de 01 (um) cargo de Professor Doutor na área de Química Orgânica, do Departamento de Química Orgânica do IQ/Unicamp.

Inscrições até 21 de março de 2017

Edital: http://www.sg.unicamp.br/dca/concursos/abertos/concursos-para-professor-doutor/instituto-de-quimica

Artigo em destaque: Nanofitas isolantes com regiões condutoras.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Topologically Protected Metallic States Induced by a One-Dimensional Extended Defect in the Bulk of a 2D Topological Insulator. Erika N. Lima, Tome M. Schmidt, and Ricardo W. Nunes. Nano Lett., 2016, 16 (7), pp 4025–4031. DOI: 10.1021/acs.nanolett.6b00521

Nanofitas isolantes com regiões condutoras

Uma pesquisa realizada no Brasil faz uma relevante contribuição ao estudo dos isolantes topológicos, classe de materiais cuja existência foi prevista teoricamente em 2005 e confirmada experimentalmente em 2007. O estudo foi reportado em um artigo recentemente publicado na Nano Letters (fator de impacto 2015: 13,779).

Os isolantes topológicos possuem a interessante propriedade de se comportarem como isolantes em seu interior e como condutores em sua superfície ou borda. Conforme detalha Ricardo Wagner Nunes, professor da Universidade Federal de Minas Gerais (UFMG) e autor correspondente do artigo, “isolantes não-topológicos também podem ter superfícies condutoras, mas no caso dos isolantes topológicos é possível identificar que a condução de carga e spin na superfície é muito robusta, por ser “protegida” pela simetria de reversão temporal”.

No artigo da Nano Letters, o professor Nunes e seus colaboradores, Erika Lima, da Universidade Federal do Mato Grosso (UFMT) – campus Rondonópolis, e Tome Schmidt, da Universidade Federal de Uberlândia (UFU), reportaram seu trabalho sobre um isolante topológico bidimensional, uma nanofita de bismuto formada por apenas duas camadas de átomos de bismuto, sobrepostas e ligadas, de um átomo de espessura cada uma. Usando métodos computacionais, os cientistas mostraram que o interior da nanofita de bismuto, em vez de ser totalmente isolante, pode ter estados condutores (também chamados de estados metálicos) gerados a partir de um determinado tipo de irregularidade na rede de átomos do material, conhecido como defeito estendido 558.

Representação da nanofita de bismuto bicamada com o defeito 558, vista de cima (esquerda) e de lado (direta). As bolinhas verdes representam os átomos da camada superior do material e as azuis, os átomos da camada inferior. No centro da figura da esquerda, nota-se facilmente o defeito: pentágonos e um octógono interrompem a repetição de hexágonos.
Representação da nanofita de bismuto bicamada com o defeito 558, vista de cima (esquerda) e de lado (direta). As bolinhas verdes representam os átomos da camada superior do material e as azuis, os átomos da camada inferior. No centro da figura da esquerda, nota-se facilmente o defeito: pentágonos e um octógono interrompem a repetição de hexágonos.

“Em nosso trabalho, mostramos que um defeito linear no interior de um isolante topológico bidimensional pode gerar estados quânticos eletrônicos unidimensionais que conduzem carga e spin no interior do material”, precisam os autores.

Os autores chegaram aos resultados que sustentam essa conclusão por meio de cálculos feitos em supercomputadores, simulando o que aconteceria com os estados quânticos dos elétrons no material com a presença de defeitos. “Utilizamos cálculos de primeiros princípios dentro da Teoria do Funcional da Densidade”, detalham os autores. Para se ter uma ideia, a simulação computacional de defeitos em nanoestruturas de bismuto, relatam os autores, demandou um custo computacional de aproximadamente 400 horas em supercomputadores localizados no Departamento de Física da UFMG e no Centro Nacional de Processamento de Alto Desempenho em São Paulo (Cenapad), na UNICAMP.

A figura mostra a curva de dispersão dos estados topológicos metálicos, localizados no defeito 558, marcados em azul e vermelho.
A figura mostra a curva de dispersão dos estados topológicos metálicos, localizados no defeito 558, marcados em azul e vermelho.

No artigo, os autores também propõem a existência do pentaoctite, um novo isolante topológico bidimensional. Esse material, que ainda não foi sintetizado, seria uma bicamada de bismuto, com uma rede cristalina formada por átomos dispostos em pentágonos e octógonos. “Em nossos cálculos mostramos que essa nova “fase” do bismuto bidimensional tem baixa energia de formação, o que abre a possibilidade de ser sintetizada em laboratório”, afirmam os autores.

De acordo com os autores, o trabalho reportado na Nano Lettters suscita diversas questões do âmbito da pesquisa fundamental, como a influência de impurezas magnéticas e não-magnéticas sobre o transporte de carga e de spin nos estados topológicos propostos, e a conexão entre as simetrias da rede e a natureza dos estados topológicos de borda no pentaoctite. “Sob um ponto de vista aplicado, seria interessante se nosso trabalho viesse a motivar estudos experimentais sobre isolantes topológicos bidimensionais baseados em bismuto e outros materiais, que possibilitassem uma colaboração teórico-experimental nesse tema”, comentam os autores, deixando um convite aberto aos grupos de pesquisa experimental.

A história do trabalho de pesquisa

“O trabalho se originou de um casamento de meus interesses em defeitos topológicos estendidos em materiais bidimensionais e tridimensionais, com a experiência do professor Tome Mauro Schmidt (UFU) e da Erika Lima, que foi sua orientanda de doutorado no tema de isolantes topológicos”, relata Nunes.

Em 2012, Nunes e outros colaboradores tinham publicado um artigo na Nano Letters sobre estados magnéticos (não topológicos) gerados por defeitos estendidos lineares em uma monocamada de grafeno. Posteriormente, em conversas com Schmidt, foi definida uma colaboração visando investigar se um defeito estendido com a mesma morfologia levaria à formação dos estados topológicos em um isolante topológico bidimensional de bismuto.

Em seu pós-doutorado no grupo do professor Nunes, realizado em 2015, Erika Lima fez todos os cálculos computacionais. A interpretação dos resultados e a redação do artigo foram realizados pelos três pesquisadores, que são os autores do artigo.

A pesquisa que gerou o artigo contou com financiamento da CAPES, CNPq, FAPEMIG e do INCT de Nanomateriais de Carbono.

autores
Montagem de fotos dos autores do artigo. Começando pela esquerda do leitor, Erika Lima, atualmente professora da UFMT, Tome Schmidt, professor da UFU, e Ricardo Nunes, professor da UFMG.

Concurso para professor do IQ – Unicamp (área de Ensino de Química): inscrições prorrogadas.


Estão prorrogadas as inscrições para o concurso público de provas e títulos, para provimento de 01 (um) cargo de Professor Doutor, nível MS-3.1, na área de Ensino de Química, nas disciplinas QG-101 – Química I e QG-760 – Projetos de Ensino em Química, do Instituto de Química da Universidade Estadual de Campinas.

As inscrições terminam em 21 de março de 2016.

Mais detalhes estão no edital em http://www.sg.unicamp.br/dca/concursos/abertos/concursos-para-professor-doutor/instituto-de-quimica

Concurso para professor do Departamento de Química Orgânica do Instituto de Química da Unicamp.


Estão abertas as inscrições para o concurso público de provas e títulos, para provimento de 01 cargo de Professor Doutor, nível MS-3.1, em RTP, com opção preferencial para o RDIDP, na área de Química Orgânica, nas disciplinas QO321 – Química Orgânica I e QO521 – Química Orgânica II, do Departamento de Química Orgânica do Instituto de Química, da Universidade Estadual de Campinas.

Edital:
http://www.sg.unicamp.br/dca/concursos/abertos/concursos-para-professor-doutor/instituto-de-quimica

Inscrições: 07/01/2016 a 22/02/2016

Best Poster Award do IUMRS-ICAM para trabalho do Brasil.


Dentre os cerca de 1.300 trabalhos aceitos para apresentação na Conferência Internacional de Materiais Avançados, IUMRS-ICAM 2015, realizada na bela ilha de Jeju (Coreia) no final de outubro, oito trabalhos foram realizados no Brasil e um deles foi premiado pela organização do evento com o Best Poster Award.

O trabalho, intitulado “Flame Aerosol nanostructured titanium dioxide for coating: a control of crystallite size and phase by oxy-hydrogen flame”, foi apresentado em forma de poster por Mirella Nagib de Oliveira Boery, professora do Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA). Ela desenvolveu a pesquisa junto a colaboradores da Universidade Federal da Bahia (UFBA) e da Universidade Estadual de Campinas (UNICAMP). “A ideia de elaborar esta pesquisa surgiu durante o mestrado na UNICAMP, diante das minhas inquietações em relação à vasta utilização do TiO2, desde tintas até protetor solar”, diz Mirella, que atualmente prossegue sua formação acadêmica na UNICAMP, no curso de doutorado em Engenharia Mecânica.

Mirella no evento. À direita, o certificado do prêmio de melhor poster.

Concurso para professor no Instituto de Química da Unicamp.


Estão abertas as inscrições para o concurso público de provas e títulos, para provimento de 01 (um) cargo de Professor Doutor, nível MS-3.1, na área de Ensino de Química, do Instituto de Química da Universidade Estadual de Campinas.

As inscrições terminam em 21/01/2016.

Mais detalhes estão no edital acessível em http://www.sg.unicamp.br/dca/concursos/abertos/concursos-para-professor-doutor/instituto-de-quimica.

Concurso para professor de Físico-Química do Instituto de Química da Unicamp.


Estão abertas as inscrições para o concurso público de provas e títulos, para provimento de um cargo de Professor Doutor na área de Físico-Química, nas disciplinas QF 431 – Físico-Química I e QF 531 – Físico-Química II, do Departamento de Físico-Química, do Instituto de Química da Universidade Estadual de Campinas.

Edital: http://www.sg.unicamp.br/dca/concursos/abertos/concursos-para-professor-doutor/instituto-de-quimica

Inscrições até 17/12/2015.

Artigo em destaque: Átomos unidos, filmes aderidos.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:  Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer. F. Cemin, L. T. Bim, L. M. Leidens, M. Morales, I. J. R. Baumvol, F. Alvarez, and C. A. Figueroa. ACS Appl. Mater. Interfaces, 2015, 7 (29), pp 15909–15917. DOI: 10.1021/acsami.5b03554.

Átomos unidos, filmes aderidos

Partindo de um olhar inovador lançado sobre um problema acadêmico e industrial, uma pesquisa integralmente realizada no Brasil trouxe avanços significativos no entendimento da adesão de filmes de DLC (diamond-like carbon) a aços. Os resultados do trabalho, que foram recentemente publicados na revista Applied Materials and Interfaces da American Chemical Society (ACS), podem ajudar a otimizar essa adesão, prolongando assim a vida útil dos filmes de DLC e ampliando seu uso na indústria.

A equipe de cientistas se interessou, em particular, no potencial do DLC para aumentar a eficiência energética de motores de combustão interna. De fato, se todos os componentes do motor de um automóvel fossem revestidos com filmes de DLC, o dono desse carro gastaria de 5 a 10 % menos com combustível e pouparia o meio ambiente de uma boa dose de emissões de gases de efeito estufa e outros poluentes, entre outras vantagens. O motivo de tal economia reside no ultrabaixo atrito que o DLC apresenta, desde que o atrito é a força culpada por desperdiçar combustível ao oferecer resistência ao movimento que as peças do motor a combustão realizam entre si.

Entretanto, o DLC tem uma desvantagem: não adere ao aço, fazendo com que os filmes se soltem do substrato rapidamente. Para contornar esse problema, tanto no laboratório quanto na indústria, costuma-se depositar em cima do aço uma camada contendo silício, conhecida como camada intermediária. O filme de DLC deposita-se em cima dela. Como resultado, é obtido um “sanduíche” que não se desmancha facilmente.

No trabalho publicado no periódico da ACS, os autores analisaram experimentalmente um “sanduíche” formado por um substrato de aço, uma intercamada de carbeto de silício (SiC) e um filme de DLC. Tanto a intercamada quanto o filme foram depositados por um rápido processo, que gerou camadas muito finas, de alguns nanometros (até 10). Duas questões, principalmente, diferenciaram este estudo de outros trabalhos similares encontrados na literatura científica. Em primeiro lugar, o foco da equipe foi analisar o que ocorria em duas regiões, correspondentes às interfaces que a intercamada apresenta com o filme (superior) e com o aço (inferior). Em segundo lugar, os cientistas lançaram um olhar químico sobre a questão da adesão.

“Neste trabalho foi identificada a estrutura química que gera adesão nas interfaces inferior (SiCx:H/aço) e superior (a-C:H/SiCx:H) que compõem a estrutura sanduíche de a-C:H/SiCx:H/aço”, resume Carlos A. Figueroa, professor da Universidade de Caxias do Sul (UCS) e autor correspondente do artigo. “Os mecanismos encontrados na bibliografia levantavam aspectos físicos ou mecânicos, mas não químicos”, relata Figueroa, que se formou em Ciências Químicas pela Universidade de Buenos Aires (UBA) e fez doutorado em Física pela Universidade Estadual de Campinas (Unicamp). “Entretanto, a adesão é gerada pela somatória de todas as ligações químicas individuais que existem entre o DLC, a intercamada e o aço”, completa.

Os cientistas mantiveram constante a temperatura de deposição do filme, mas variaram a temperatura de deposição da intercamada, gerando amostras depositadas a 100° C e outras a mais de 300° C. Após analisá-las por meio de uma série de técnicas, principalmente, a de espectroscopia de fotoelétrons excitados por raios X, conhecida como XPS, os pesquisadores identificaram que a interface inferior da intercamada, independentemente da temperatura de deposição, era amplamente composta por átomos de silício (da intercamada) ligados a átomos de ferro (do substrato). Na interface superior da intercamada, a equipe notou diferenças conforme a temperatura de deposição da intercamada. Nas amostras depositadas a 100° C, átomos de oxigênio apareciam ligados a muitos dos átomos de silício e carbono, impedindo que o carbono do filme se una fortemente ao silício da intercamada, e resultando num filme sem boa adesão. Já nas amostras depositadas a mais de 300° C, os cientistas não encontraram oxigênio na interface, e sim ligações entre átomos de carbono e de silício, as quais deixaram o filme bem aderido à intercamada.

Ilustração esquemática das ligações químicas presentes nas interfaces superior e inferior da intercamada depositada a 100° C (esquerda) e a mais de 300° C (direita). No centro, um pino de motor real exibe, na metade esquerda, um filme de DLC (em cor preta) delaminado sobre intercamada depositada a 100° C e, na metade direita, o mesmo filme bem aderido sobre a intercamada depositada a mais de 300° C.

Além de Figueroa e estudantes do grupo de pesquisa que ele lidera na UCS, assinam o artigo pesquisadores do Instituto de Física da Unicamp, onde foram realizadas as medidas de XPS, e um cientista da Universidade Federal do Rio Grande do Sul (UFRGS) que, junto aos demais, participou da discussão dos resultados.

O trabalho recebeu financiamento de agências de fomento à ciência brasileiras (Capes, CNPq por meio do INCT Instituto Nacional de Engenharia de Superfícies, Fapergs), da Petrobras, UCS, da Comissão Europeia (Marie Skłodowska – Curie Actions) e da empresa Plasmar Tecnologia. Essa empresa está desenvolvendo, por meio de um projeto aprovado no edital TECNOVA RS, um reator industrial para depositar DLC sobre aço visando aumentar a eficiência energética de motores de automóveis.

Gente da nossa comunidade: entrevista com o cientista Marcelo Knobel.


Marcelo Knobel. Créditos: Antonio Scarpinetti – Ascom – Unicamp.

Pesquisa científica, materiais magnéticos, divulgação científica e ensino superior seriam, talvez, as expressões maiores numa nuvem de tags que representasse o professor Marcelo Knobel.

Nascido em Buenos Aires (Argentina) em 1968, Marcelo Knobel veio morar no Brasil, mais precisamente em Campinas (SP), aos 8 anos de idade, acompanhando os pais dele, a psicóloga Clara Freud de Knobel e o psiquiatra Maurício Knobel. A família estava escapando do golpe de estado que acabara de instaurar no poder, na Argentina, uma ditadura militar que demitira Maurício da Universidade de Buenos Aires (UBA). No Brasil, que também estava governado por uma ditadura militar, Maurício tinha sido contratado pela Universidade Estadual de Campinas (Unicamp).

Dez anos depois da chegada a Campinas, Marcelo Knobel ingressou na Unicamp para fazer a graduação em Física. Em paralelo aos estudos, começou a trabalhar com propriedades magnéticas de materiais como bolsista de iniciação científica. Finalizado o bacharelado, Knobel permaneceu na Unicamp para realizar o doutorado na mesma área, obtendo o diploma de doutor em Física ao defender sua tese sobre magnetismo e estrutura de materiais nanocristalinos em 1992. Na sequência, partiu para a Europa, onde realizou dois estágios de pós-doutorado; um deles no Istituto Elettrotecnico Nazionale Galileo Ferraris, da Itália, e o outro no Instituto de Magnetismo Aplicado, na Espanha.

De volta ao Brasil e à Unicamp, em 1995, Marcelo Knobel começou sua carreira de professor e pesquisador do Instituto de Física Gleb Wataghin (IFGW). De 1999 a 2009 foi coordenador do Laboratório de Materiais e Baixas Temperaturas, onde atua como pesquisador até o presente, sempre investigando magnetismo e materiais magnéticos. Junto a seus colaboradores do laboratório, Knobel realizou trabalhos pioneiros no estudo da magnetorresistência e magnetoimpedância gigante em determinados materiais – dois conceitos diferentes que se referem à oposição que um material oferece à passagem da eletricidade em consequência da aplicação de um campo magnético externo. Em 2008, Knobel tornou-se professor titular do Departamento de Física da Matéria Condensada do IFGW.

Na área de divulgação científica, Marcelo Knobel começou no ano 2000 a colaborar com as atividades de ensino e pesquisa do Laboratório de Estudos Avançados em Jornalismo (LABJOR), da Unicamp. Além disso, Knobel foi um dos criadores da NanoAventura, uma exposição interativa e itinerante sobre nanotecnologia que foi lançada em 2005 e foi visitada por mais de 50 mil pessoas, principalmente crianças, até o presente. A NanoAventura recebeu menções honrosas no Festival de Cine e Vídeo Científico do Mercosul (2006) e no Prêmio Mercosul de Ciência e Tecnologia (2015), além de um prêmio, em 2009, da Rede de Popularização da Ciência e da Tecnologia na América Latina e no Caribe (RedPOP). De 2006 a 2008, Knobel foi o primeiro diretor do Museu Exploratório de Ciências, ligado à Unicamp. Em 2008, tornou-se editor-chefe da revista Ciência & Cultura da Sociedade Brasileira para o Progresso da Ciência (SBPC), posição que ocupa até o presente. No campo editorial, Knobel coordena uma coleção de livros de divulgação científica da Editora Unicamp, chamada Meio de Cultura, lançada em 2008.

Em 2007 Marcelo Knobel recebeu o Young Scientist Prize da TWAS-ROLAC (escritório da América Latina e Caribe da academia mundial para o avanço da ciência em países em desenvolvimento), destinado a jovens cientistas da região. No mesmo ano, foi selecionado, junto a cerca de 50 pessoas de diferentes áreas de atuação e diversos países do mundo, para participar do programa Eisenhower Fellowships, que visa a reforçar o potencial de liderança de seus fellows. O grupo viajou pelos Estados Unidos durante 7 semanas cumprindo com uma agenda de reuniões e seminários. Em 2009, foi escolhido fellow da John Simon Guggenheim Memorial Foundation, recebendo recursos dessa fundação para o desenvolvimento de pesquisa.

De 2009 a 2013, foi pró-reitor de Graduação da Unicamp. Nesse cargo, foi responsável pela implantação do Programa Interdisciplinar de Educação Superior (ProFIS). O ProFIS é um curso de nível superior de 4 semestres que proporciona uma formação geral, multidisciplinar e crítica, e possibilita a seus egressos (ex-alunos de escolas públicas selecionados por suas boas notas no ENEM) que ingressem em cursos de graduação da Unicamp sem passar pelo vestibular. O programa foi distinguido em 2013 com o Prêmio Péter Murányi – Educação, destinado a ações que aumentem o bem-estar de populações do hemisfério sul.

Em 2010, com 42 anos de idade, Knobel foi laureado Comendador da Ordem do Mérito Científico pela Presidência da República.

Bolsista de produtividade 1A do CNPq, Marcelo Knobel publicou cerca de 300 artigos científicos em revistas internacionais com revisão por pares e 15 capítulos de livros sobre materiais e propriedades magnéticas, popularização da ciência, percepção pública da ciência e ensino superior. Também é autor de artigos sobre ciência e educação publicados em diversas mídias. Conta com 6.370 citações, segundo o Google Scholar.

Marcelo Knobel acaba de assumir, no dia 3 de agosto, o cargo de diretor do Laboratório Nacional de Nanotecnologia (LNNano), do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM).

Segue uma breve entrevista com o cientista.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um pesquisador e a trabalhar na área de Materiais.

Marcelo Knobel: – Escolhi a área de Física pela curiosidade, sem saber direito o que isso significava. Mas já no primeiro semestre percebi que era aquilo mesmo que eu queria para a minha vida, tentando entender a natureza. Logo no início da graduação tive aula de laboratório com a professora Reiko Sato, que posteriormente me convidou para fazer iniciação científica em seu laboratório. Ela trabalhava com propriedades magnéticas de metais amorfos, e foi o tema de início de minha pesquisa. Depois, fiz o doutorado direto com ela também, já trabalhando com nanocristais, e posteriormente segui o pós-doutoramento na mesma área.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais?

Marcelo Knobel: – Venho atuando em sistemas magnéticos nanoscópicos, investigando principalmente as interações dipolares em nanossistemas magnéticos, utilizando diversas técnicas experimentais, modelos teóricos e simulações computacionais. Esses sistemas, além do interesse em pesquisa básica, possuem diversas aplicações possíveis, principalmente em sistemas de gravação magnética e nanomedicina. O grupo de pesquisa que ajudei a consolidar desenvolve novos materiais nanocristalinos e realiza estudos através do desenvolvimento de novas técnicas magnéticas, estruturais e de transporte. No âmbito dessas pesquisas, fomos pioneiros no estudo da magnetorresistência gigante em sistemas granulares e na investigação da magnetoimpedância gigante em fios e fitas amorfos e nanocristalinos. Mas tenho me dedicado também à divulgação científica, sendo um dos responsáveis pela criação do Museu Exploratório de Ciências da Unicamp.  Fui o coordenador do projeto NanoAventura, que é uma exposição interativa e itinerante sobre nanociência e nanotecnologia para crianças e adolescentes. Atuo ainda em pesquisas na área de percepção pública da ciência, coordeno a série “Meio de Cultura” da Editora da Unicamp e atuo como editor chefe da revista Ciência & Cultura, da SBPC. Fui recentemente Pró-Reitor de Graduação da Unicamp, onde destaco a implantação do Programa Interdisciplinar de Educação Superior (ProFIS). Atualmente, estou iniciando um novo desafio, como Diretor do Laboratório Nacional de Nanotecnologia (LNNano).

Boletim da SBPMat: –  Você tem uma atuação especialmente forte em divulgação da ciência e da cultura científica. Comente com os nossos leitores estudantes e pesquisadores qual é, para você, a importância de realizar esse tipo de atividade.

Marcelo Knobel: – Eu me tornei um cientista após ler livros e revistas de divulgação, e de visitar museus de ciências. Creio que devemos incentivar as novas gerações a pensar criticamente, a ter curiosidade, a buscar desvendar os mistérios que nos cercam. Para o Brasil é fundamental estimular jovens talentos para a ciência. Sem eles não teremos futuro… Além disso, é nossa obrigação prestar contas com a sociedade, que é quem financia a pesquisa científica nas universidades públicas e nos institutos de pesquisa. É importante mostrar a ciência que é realizada em nosso país, e a importância de seguir investindo, cada vez mais, em ciência e tecnologia.

Boletim da SBPMat: – Se desejar, deixe uma mensagem para os leitores que estão iniciando suas carreiras científicas.

Marcelo Knobel: – Não tenho dúvidas que é a paixão que deve guiar as carreiras de todos, e principalmente dos cientistas. Mas além da paixão, é necessária uma formação sólida, não só no conteúdo específico, mas também em habilidades pessoais, como trabalho em equipe, comunicação (incluindo português e inglês, redação científica) e cultura geral. A atividade científica exige esforço e dedicação, mas é recompensada, penso eu, por uma vida repleta de novos desafios e oportunidades.