Artigo em destaque: Desvendando a desordem estrutural de nanomateriais.


O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Decreasing Nanocrystal Structural Disorder by Ligand Exchange: An Experimental and Theoretical Analysis. Gabriel R. Schleder, Gustavo M. Azevedo, Içamira C. Nogueira, Querem H. F. Rebelo, Jefferson Bettini, Adalberto Fazzio, Edson R. Leite. J. Phys. Chem. Lett. 2019 10 1471-1476. https://doi.org/10.1021/acs.jpclett.9b00439

Desvendando a desordem estrutural de nanomateriais

Sabe-se que é muito importante conhecer e controlar a estrutura de um material (ou seja, a forma como seus átomos se organizam tridimensionalmente no espaço) porque ela é, em grande parte, responsável pelas propriedades do material e, portanto, pelas suas aplicações. Um exemplo: regiões de desordem em materiais cristalinos (cujos átomos, idealmente, estão ordenados em padrões regulares) mudam alguns dos comportamentos esperados para esses materiais. Infelizmente, conhecer em detalhe a estrutura de alguns materiais pode ser uma tarefa difícil. Principalmente quando se trata de nanomateriais.

Reunindo diversas competências e recursos experimentais e teóricos, uma equipe brasileira desenvolveu um método que permite estabelecer o grau e a localização de desordem na estrutura de nanomateriais cristalinos e não cristalinos, interfaces e superfícies. O método, baseado na combinação de uma técnica experimental (microscopia eletrônica de transmissão), uma técnica de análise de dados (pair distribution function) e simulações computacionais, já está disponível para uso da comunidade científica no Laboratório Nacional de Nanotecnologia (LNNano), e deverá ajudar a desenvolver materiais que desempenhem melhor suas funções.

Além de desenvolver a técnica, a equipe a aplicou inicialmente no estudo da desordem estrutural de nanocristais, elementos básicos da nanotecnologia, presentes, por exemplo, em células solares e dispositivos eletrônicos. Apesar de terem, por definição, estruturas ordenadas, esses cristais de dimensão nanométrica podem apresentar, na prática, regiões com desordem estrutural.

Para realizar o estudo, os cientistas produziram nanocristais facetados, de cerca de 3,2 nm de diâmetro, formados por um núcleo de dióxido de zircônio (ZrO2), material inorgânico, e por uma casca composta por substâncias orgânicas conhecidas como ligantes. Os ligantes, cujos átomos estabelecem ligações químicas com os átomos que estão na superfície do núcleo inorgânico, têm a importante função de estabilizar os nanocristais e evitar que se aglomerem.

A equipe produziu uma primeira série de nanopartículas com ligantes contendo um anel aromático e a analisou usando o método desenvolvido. Depois, as amostras foram submetidas a um processo conhecido como troca de ligantes, no qual reações químicas acontecem no material na presença de um solvente a uma temperatura superior à da sua ebulição. Nessas reações, algumas ligações se quebram e novas ligações ocorrem. Como resultado da troca de ligantes, a equipe conseguiu produzir nanopartículas com cascas contendo ácido oleico, as quais também foram analisadas usando o método desenvolvido.

Esta figura mostra uma nanopartícula de ZrO2 antes e depois da troca de ligante. A figura inclui imagens de microscopia eletrônica de transmissão de alta resolução (acima), modelos estruturais (no meio) e padrões obtidos pela técnica de PDF.
Esta figura se refere a um nanocristal de ZrO2 antes e depois da troca de ligante. A figura inclui imagens de microscopia eletrônica de transmissão de alta resolução, modelos estruturais e padrões de PDF obtidos pelo método desenvolvido.

Os cientistas concluíram que, diferentemente do nanocristal ideal de dióxido de zircônio, os dois tipos de nanocristais analisados apresentavam um certo grau de desordem estrutural localizado na superfície do núcleo. Além disso, no segundo grupo de nanopartículas, a desordem era significativamente menor. Os pesquisadores interpretaram que essa redução se devia à alta temperatura do processo de troca de ligantes, que alterava as tensões da rede de átomos.

“Em nosso trabalho conseguimos avaliar diretamente o grau e localização da desordem em nanocristais, o que até então era tecnicamente inviável”, diz Gabriel Schleder, doutorando no Programa de Pós-Graduação em Nanociências e Materiais Avançados da Universidade Federal do ABC (UFABC).

Ao compreender melhor a desordem estrutural e suas causas, os pesquisadores puderam apontar um caminho para controla-la. “Qualquer propriedade que dependa sensivelmente da desordem estrutural localizada na superfície poderia ser, em princípio, controlada por esse tipo de processo de troca de ligantes”, diz Schleder. “Propriedades mecânicas, fotoluminescência, transporte eletrônico e propriedades catalíticas são algumas delas”, completa.

A pesquisa foi reportada em artigo recentemente publicado em The Journal of Physical Chemistry Letters (fator de impacto= 8,709).

Desafio superado por meio de colaborações

A ideia inicial do trabalho surgiu em uma reunião realizada no final de 2017 no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), localizado na cidade paulista de Campinas. Na reunião, discutiu-se a implementação no Sirius (próxima fonte de luz síncrotron brasileira) de uma técnica que permitisse analisar localmente questões estruturais tais como desordem e defeitos. Chamada de “pair distribution function” (PDF), a técnica escolhida descreve as distâncias entre pares de átomos por meio de uma função matemática. Para aplicar essa técnica, o especialista geralmente utiliza os resultados de medidas de difração de raios X – técnica experimental que traz informações sobre a estrutura dos materiais. Só que, para poder implementar a análise por PDF, o feixe de raios X incidido na amostra deve ser de energia muito alta – mais alta do que a proporcionada pela atual fonte de luz síncrotron brasileira.

Naquela reunião no CNPEM, o professor Gustavo de Medeiros Azevedo, pesquisador do Laboratório Nacional de Luz Síncrotron (LNLS), e o professor Edson Leite, diretor científico do LNNano, decidiram, então, começar a aplicar PDF usando resultados de difração de elétrons, especialidade do pesquisador do LNNano Jefferson Bettini. Os feixes de elétrons seriam gerados pelo microscópio eletrônico de transmissão do LNNano. De fato, esse instrumento possibilita o controle do feixe de elétrons de modo que incida em uma diminuta área da amostra, permitindo a desejada análise local da estrutura. Por outro lado, ao alternar entre o “modo imagem” e o “modo difração” do microscópio, seria possível escolher com precisão a área da amostra a ser analisada.

Simulação de um nanocristal "ideal" de ZrO2.
Simulação de um nanocristal “ideal” de ZrO2.

A equipe de trabalho envolveu também as professoras Içamira Costa Nogueira, da Universidade Federal do Amazonas (UFAM) e Querem Hapuque Felix Rebelo, da Universidade Federal do Oeste do Pará (UFOPA), que contribuíram com a síntese dos nanocristais que seriam estudados e no desenvolvimento da metodologia de análise.

No desenvolvimento da técnica, mais um desafio precisou ser enfrentado. Para interpretar os resultados de PDF, seria necessário contar com a simulação de um nanocristal ideal – um modelo de nanocristal sem desorganização estrutural que pudesse ser usado como referência. Novas competências foram então incorporadas à equipe, que passou a contar com o professor Adalberto Fazzio, diretor geral do LNNano e líder de um grupo de pesquisa da UFABC dedicado a técnicas computacionais aplicadas a materiais, e seu estudante de doutorado Gabriel Schleder. Baseados na Teoria do Funcional da Densidade (DFT), método de modelagem computacional do âmbito da Física Quântica, os pesquisadores conseguiram simular o nanocristal ideal que serviu de modelo para a análise.

“Algo muito positivo que percebemos é que os principais resultados surgiram do processo de interação, discussão e troca de informações principalmente entre teoria/simulação computacional e experimentos. Sem isso, certamente não teríamos boas conclusões finais”, diz Schleder.

Autores do artigo. A partir da esquerda: Gabriel R. Schleder, Gustavo M. Azevedo, Içamira C. Nogueira, Querem H. F. Rebelo, Jefferson Bettini, Adalberto Fazzio e Edson R. Leite.
Autores do artigo. A partir da esquerda: Gabriel R. Schleder, Gustavo M. Azevedo, Içamira C. Nogueira, Querem H. F. Rebelo, Jefferson Bettini, Adalberto Fazzio e Edson R. Leite.

 

Sócios da SBPMat são autores de livro sobre Teoria do Funcional da Densidade.


Prof Sérgio Ricardo de Lázaro (esquerda) e Luis Henrique da Silveira Lacerda.
Prof Sérgio Ricardo de Lázaro (esquerda) e Luis Henrique da Silveira Lacerda.

Os sócios da SBPMat Sérgio Ricardo de Lázaro (professor da UEPG) e Luis Henrique da Silveira Lacerda (doutorando no UEL/UEPG/UNICENTRO) são autores do livro “Teoria do Funcional da Densidade e Propriedades dos Materiais”, publicado pela editora CRV. O livro tem coautoria de Renan Augusto Pontes Ribeiro, também doutorando do programa. A Teoria do Funcional da Densidade é baseada na Mecânica Quântica e foi aplicada na área de Química de Materiais.

Artigo em destaque: Nanofitas isolantes com regiões condutoras.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Topologically Protected Metallic States Induced by a One-Dimensional Extended Defect in the Bulk of a 2D Topological Insulator. Erika N. Lima, Tome M. Schmidt, and Ricardo W. Nunes. Nano Lett., 2016, 16 (7), pp 4025–4031. DOI: 10.1021/acs.nanolett.6b00521

Nanofitas isolantes com regiões condutoras

Uma pesquisa realizada no Brasil faz uma relevante contribuição ao estudo dos isolantes topológicos, classe de materiais cuja existência foi prevista teoricamente em 2005 e confirmada experimentalmente em 2007. O estudo foi reportado em um artigo recentemente publicado na Nano Letters (fator de impacto 2015: 13,779).

Os isolantes topológicos possuem a interessante propriedade de se comportarem como isolantes em seu interior e como condutores em sua superfície ou borda. Conforme detalha Ricardo Wagner Nunes, professor da Universidade Federal de Minas Gerais (UFMG) e autor correspondente do artigo, “isolantes não-topológicos também podem ter superfícies condutoras, mas no caso dos isolantes topológicos é possível identificar que a condução de carga e spin na superfície é muito robusta, por ser “protegida” pela simetria de reversão temporal”.

No artigo da Nano Letters, o professor Nunes e seus colaboradores, Erika Lima, da Universidade Federal do Mato Grosso (UFMT) – campus Rondonópolis, e Tome Schmidt, da Universidade Federal de Uberlândia (UFU), reportaram seu trabalho sobre um isolante topológico bidimensional, uma nanofita de bismuto formada por apenas duas camadas de átomos de bismuto, sobrepostas e ligadas, de um átomo de espessura cada uma. Usando métodos computacionais, os cientistas mostraram que o interior da nanofita de bismuto, em vez de ser totalmente isolante, pode ter estados condutores (também chamados de estados metálicos) gerados a partir de um determinado tipo de irregularidade na rede de átomos do material, conhecido como defeito estendido 558.

Representação da nanofita de bismuto bicamada com o defeito 558, vista de cima (esquerda) e de lado (direta). As bolinhas verdes representam os átomos da camada superior do material e as azuis, os átomos da camada inferior. No centro da figura da esquerda, nota-se facilmente o defeito: pentágonos e um octógono interrompem a repetição de hexágonos.
Representação da nanofita de bismuto bicamada com o defeito 558, vista de cima (esquerda) e de lado (direta). As bolinhas verdes representam os átomos da camada superior do material e as azuis, os átomos da camada inferior. No centro da figura da esquerda, nota-se facilmente o defeito: pentágonos e um octógono interrompem a repetição de hexágonos.

“Em nosso trabalho, mostramos que um defeito linear no interior de um isolante topológico bidimensional pode gerar estados quânticos eletrônicos unidimensionais que conduzem carga e spin no interior do material”, precisam os autores.

Os autores chegaram aos resultados que sustentam essa conclusão por meio de cálculos feitos em supercomputadores, simulando o que aconteceria com os estados quânticos dos elétrons no material com a presença de defeitos. “Utilizamos cálculos de primeiros princípios dentro da Teoria do Funcional da Densidade”, detalham os autores. Para se ter uma ideia, a simulação computacional de defeitos em nanoestruturas de bismuto, relatam os autores, demandou um custo computacional de aproximadamente 400 horas em supercomputadores localizados no Departamento de Física da UFMG e no Centro Nacional de Processamento de Alto Desempenho em São Paulo (Cenapad), na UNICAMP.

A figura mostra a curva de dispersão dos estados topológicos metálicos, localizados no defeito 558, marcados em azul e vermelho.
A figura mostra a curva de dispersão dos estados topológicos metálicos, localizados no defeito 558, marcados em azul e vermelho.

No artigo, os autores também propõem a existência do pentaoctite, um novo isolante topológico bidimensional. Esse material, que ainda não foi sintetizado, seria uma bicamada de bismuto, com uma rede cristalina formada por átomos dispostos em pentágonos e octógonos. “Em nossos cálculos mostramos que essa nova “fase” do bismuto bidimensional tem baixa energia de formação, o que abre a possibilidade de ser sintetizada em laboratório”, afirmam os autores.

De acordo com os autores, o trabalho reportado na Nano Lettters suscita diversas questões do âmbito da pesquisa fundamental, como a influência de impurezas magnéticas e não-magnéticas sobre o transporte de carga e de spin nos estados topológicos propostos, e a conexão entre as simetrias da rede e a natureza dos estados topológicos de borda no pentaoctite. “Sob um ponto de vista aplicado, seria interessante se nosso trabalho viesse a motivar estudos experimentais sobre isolantes topológicos bidimensionais baseados em bismuto e outros materiais, que possibilitassem uma colaboração teórico-experimental nesse tema”, comentam os autores, deixando um convite aberto aos grupos de pesquisa experimental.

A história do trabalho de pesquisa

“O trabalho se originou de um casamento de meus interesses em defeitos topológicos estendidos em materiais bidimensionais e tridimensionais, com a experiência do professor Tome Mauro Schmidt (UFU) e da Erika Lima, que foi sua orientanda de doutorado no tema de isolantes topológicos”, relata Nunes.

Em 2012, Nunes e outros colaboradores tinham publicado um artigo na Nano Letters sobre estados magnéticos (não topológicos) gerados por defeitos estendidos lineares em uma monocamada de grafeno. Posteriormente, em conversas com Schmidt, foi definida uma colaboração visando investigar se um defeito estendido com a mesma morfologia levaria à formação dos estados topológicos em um isolante topológico bidimensional de bismuto.

Em seu pós-doutorado no grupo do professor Nunes, realizado em 2015, Erika Lima fez todos os cálculos computacionais. A interpretação dos resultados e a redação do artigo foram realizados pelos três pesquisadores, que são os autores do artigo.

A pesquisa que gerou o artigo contou com financiamento da CAPES, CNPq, FAPEMIG e do INCT de Nanomateriais de Carbono.

autores
Montagem de fotos dos autores do artigo. Começando pela esquerda do leitor, Erika Lima, atualmente professora da UFMT, Tome Schmidt, professor da UFU, e Ricardo Nunes, professor da UFMG.