Vaga para Pós-Doutorado na UFABC – Bolsa FAPESP.

Área de conhecimento: Física/Química de materiais

Nº do processo FAPESP: 2017/02317-2

Título do projeto: Síntese e caracterização de propriedades físicas de perovskitas de haletos

Pesquisador: Dr. Jose Antonio Souza

Unidade/Instituição: Universidade Federal do ABC – Campus Santo André

Data limite para inscrições: 30/04/2020

Localização: Avenida dos Estados, 5001 – Bairro Santa Terezinha – Santo André, São Paulo.

E-mails para inscrições: (joseantonio.souza@ufabc.edu.br)

As atividades de pesquisa estão relacionadas ao projeto temático “Interfaces em Materiais: Propriedades Eletrônicas, Magnéticas, Estruturais e de Transporte”, sob coordenação do Prof. Adalberto Fazzio (LNNano, CNPEM – Campinas). O supervisor do pós-doutorado será o Prof. Jose Antonio Souza da Universidade Federal do ABC (UFABC), Santo André – São Paulo.

Pretende-se desenvolver pesquisas envolvendo síntese e caracterização das propriedades físicas de perovskitas híbridas orgânico/inorgânico de haletos do tipo ABX3 (onde A = Cs, CH3NH3, etc.; B = Pb, Sn, etc.; e X = Cl, Br ou I). Esses materiais vêm sendo amplamente estudados devido às suas propriedades favoráveis à conversão de energia solar. A compreensão dos fenômenos físicos envolvendo as propriedades estruturais, morfológicas, ópticas e elétricas são de grande interesse científico neste projeto. Dessa forma, síntese desses materiais na forma de bulk e/ou filmes finos e/ou heteroestruturas e/ou quantum dots e o estudo das propriedades físicas são de interesse. A pesquisa será desenvolvida na Universidade Federal do ABC – Campus Santo André.

A oportunidade está aberta igualmente a candidatos brasileiros e estrangeiros com título de doutor, no Brasil ou no exterior, em áreas relacionadas ao tema proposto. É imprescindível que o candidato tenha alguma experiência internacional, além de publicações nas áreas correlatadas ao projeto em revistas de relevante impacto internacional.

Os seguintes documentos são necessários para candidatura:

  1. Carta solicitando inscrição no processo e contextualizando o interesse na pesquisa/grupo.
  2. Curriculum vitae, apresentando a experiência acadêmica do candidato e a lista de trabalhos publicados em periódicos. O currículo deve ser submetido em formato eletrônico pdf (Portable Document Format), onde os artigos devem ser identificados pelo DOI;
  3. Documento que comprove que é portador de título de doutor;

Para avaliação das propostas será levado em consideração o histórico de pesquisa do candidato. No que se refere à análise curricular, não será considerado somente o número de publicações do candidato, mas também sua qualidade e relevância. Adicionalmente, os candidatos serão convocados para uma entrevista presencial ou online com o supervisor para avaliar aderência das áreas de experiência do candidato aos temas de pesquisa relacionados ao projeto.

A implantação da bolsa está condicionada à aprovação do candidato selecionado pela FAPESP. Caso a decisão seja referendada pela FAPESP, o candidato selecionado receberá bolsa no valor de R$ 7.174,80 mensais e reserva técnica equivalente a 15% do valor anual da bolsa, destinada a realizar apenas despesas diretamente relacionadas à atividade de pesquisa. Mais informações sobre a bolsa podem ser obtidas no endereço eletrônico: www.fapesp.br/bolsas/pd.

O candidato deverá enviar toda a documentação via e-mail para o endereço eletrônico acima com o título “Fellowship PD – Application”. O prazo para envio das inscrições se encerra em 30/04/2020. Serão consideradas as inscrições em que todos os documentos tenham sido recebidas impreterivelmente até a meia-noite do dia 30/04/2020, no horário de Brasília (UTC-3, horário de brasileiro de verão).

 

Artigo em destaque: Desvendando a desordem estrutural de nanomateriais.

O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Decreasing Nanocrystal Structural Disorder by Ligand Exchange: An Experimental and Theoretical Analysis. Gabriel R. Schleder, Gustavo M. Azevedo, Içamira C. Nogueira, Querem H. F. Rebelo, Jefferson Bettini, Adalberto Fazzio, Edson R. Leite. J. Phys. Chem. Lett. 2019 10 1471-1476. https://doi.org/10.1021/acs.jpclett.9b00439

Desvendando a desordem estrutural de nanomateriais

Sabe-se que é muito importante conhecer e controlar a estrutura de um material (ou seja, a forma como seus átomos se organizam tridimensionalmente no espaço) porque ela é, em grande parte, responsável pelas propriedades do material e, portanto, pelas suas aplicações. Um exemplo: regiões de desordem em materiais cristalinos (cujos átomos, idealmente, estão ordenados em padrões regulares) mudam alguns dos comportamentos esperados para esses materiais. Infelizmente, conhecer em detalhe a estrutura de alguns materiais pode ser uma tarefa difícil. Principalmente quando se trata de nanomateriais.

Reunindo diversas competências e recursos experimentais e teóricos, uma equipe brasileira desenvolveu um método que permite estabelecer o grau e a localização de desordem na estrutura de nanomateriais cristalinos e não cristalinos, interfaces e superfícies. O método, baseado na combinação de uma técnica experimental (microscopia eletrônica de transmissão), uma técnica de análise de dados (pair distribution function) e simulações computacionais, já está disponível para uso da comunidade científica no Laboratório Nacional de Nanotecnologia (LNNano), e deverá ajudar a desenvolver materiais que desempenhem melhor suas funções.

Além de desenvolver a técnica, a equipe a aplicou inicialmente no estudo da desordem estrutural de nanocristais, elementos básicos da nanotecnologia, presentes, por exemplo, em células solares e dispositivos eletrônicos. Apesar de terem, por definição, estruturas ordenadas, esses cristais de dimensão nanométrica podem apresentar, na prática, regiões com desordem estrutural.

Para realizar o estudo, os cientistas produziram nanocristais facetados, de cerca de 3,2 nm de diâmetro, formados por um núcleo de dióxido de zircônio (ZrO2), material inorgânico, e por uma casca composta por substâncias orgânicas conhecidas como ligantes. Os ligantes, cujos átomos estabelecem ligações químicas com os átomos que estão na superfície do núcleo inorgânico, têm a importante função de estabilizar os nanocristais e evitar que se aglomerem.

A equipe produziu uma primeira série de nanopartículas com ligantes contendo um anel aromático e a analisou usando o método desenvolvido. Depois, as amostras foram submetidas a um processo conhecido como troca de ligantes, no qual reações químicas acontecem no material na presença de um solvente a uma temperatura superior à da sua ebulição. Nessas reações, algumas ligações se quebram e novas ligações ocorrem. Como resultado da troca de ligantes, a equipe conseguiu produzir nanopartículas com cascas contendo ácido oleico, as quais também foram analisadas usando o método desenvolvido.

Esta figura mostra uma nanopartícula de ZrO2 antes e depois da troca de ligante. A figura inclui imagens de microscopia eletrônica de transmissão de alta resolução (acima), modelos estruturais (no meio) e padrões obtidos pela técnica de PDF.
Esta figura se refere a um nanocristal de ZrO2 antes e depois da troca de ligante. A figura inclui imagens de microscopia eletrônica de transmissão de alta resolução, modelos estruturais e padrões de PDF obtidos pelo método desenvolvido.

Os cientistas concluíram que, diferentemente do nanocristal ideal de dióxido de zircônio, os dois tipos de nanocristais analisados apresentavam um certo grau de desordem estrutural localizado na superfície do núcleo. Além disso, no segundo grupo de nanopartículas, a desordem era significativamente menor. Os pesquisadores interpretaram que essa redução se devia à alta temperatura do processo de troca de ligantes, que alterava as tensões da rede de átomos.

“Em nosso trabalho conseguimos avaliar diretamente o grau e localização da desordem em nanocristais, o que até então era tecnicamente inviável”, diz Gabriel Schleder, doutorando no Programa de Pós-Graduação em Nanociências e Materiais Avançados da Universidade Federal do ABC (UFABC).

Ao compreender melhor a desordem estrutural e suas causas, os pesquisadores puderam apontar um caminho para controla-la. “Qualquer propriedade que dependa sensivelmente da desordem estrutural localizada na superfície poderia ser, em princípio, controlada por esse tipo de processo de troca de ligantes”, diz Schleder. “Propriedades mecânicas, fotoluminescência, transporte eletrônico e propriedades catalíticas são algumas delas”, completa.

A pesquisa foi reportada em artigo recentemente publicado em The Journal of Physical Chemistry Letters (fator de impacto= 8,709).

Desafio superado por meio de colaborações

A ideia inicial do trabalho surgiu em uma reunião realizada no final de 2017 no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), localizado na cidade paulista de Campinas. Na reunião, discutiu-se a implementação no Sirius (próxima fonte de luz síncrotron brasileira) de uma técnica que permitisse analisar localmente questões estruturais tais como desordem e defeitos. Chamada de “pair distribution function” (PDF), a técnica escolhida descreve as distâncias entre pares de átomos por meio de uma função matemática. Para aplicar essa técnica, o especialista geralmente utiliza os resultados de medidas de difração de raios X – técnica experimental que traz informações sobre a estrutura dos materiais. Só que, para poder implementar a análise por PDF, o feixe de raios X incidido na amostra deve ser de energia muito alta – mais alta do que a proporcionada pela atual fonte de luz síncrotron brasileira.

Naquela reunião no CNPEM, o professor Gustavo de Medeiros Azevedo, pesquisador do Laboratório Nacional de Luz Síncrotron (LNLS), e o professor Edson Leite, diretor científico do LNNano, decidiram, então, começar a aplicar PDF usando resultados de difração de elétrons, especialidade do pesquisador do LNNano Jefferson Bettini. Os feixes de elétrons seriam gerados pelo microscópio eletrônico de transmissão do LNNano. De fato, esse instrumento possibilita o controle do feixe de elétrons de modo que incida em uma diminuta área da amostra, permitindo a desejada análise local da estrutura. Por outro lado, ao alternar entre o “modo imagem” e o “modo difração” do microscópio, seria possível escolher com precisão a área da amostra a ser analisada.

Simulação de um nanocristal "ideal" de ZrO2.
Simulação de um nanocristal “ideal” de ZrO2.

A equipe de trabalho envolveu também as professoras Içamira Costa Nogueira, da Universidade Federal do Amazonas (UFAM) e Querem Hapuque Felix Rebelo, da Universidade Federal do Oeste do Pará (UFOPA), que contribuíram com a síntese dos nanocristais que seriam estudados e no desenvolvimento da metodologia de análise.

No desenvolvimento da técnica, mais um desafio precisou ser enfrentado. Para interpretar os resultados de PDF, seria necessário contar com a simulação de um nanocristal ideal – um modelo de nanocristal sem desorganização estrutural que pudesse ser usado como referência. Novas competências foram então incorporadas à equipe, que passou a contar com o professor Adalberto Fazzio, diretor geral do LNNano e líder de um grupo de pesquisa da UFABC dedicado a técnicas computacionais aplicadas a materiais, e seu estudante de doutorado Gabriel Schleder. Baseados na Teoria do Funcional da Densidade (DFT), método de modelagem computacional do âmbito da Física Quântica, os pesquisadores conseguiram simular o nanocristal ideal que serviu de modelo para a análise.

“Algo muito positivo que percebemos é que os principais resultados surgiram do processo de interação, discussão e troca de informações principalmente entre teoria/simulação computacional e experimentos. Sem isso, certamente não teríamos boas conclusões finais”, diz Schleder.

Autores do artigo. A partir da esquerda: Gabriel R. Schleder, Gustavo M. Azevedo, Içamira C. Nogueira, Querem H. F. Rebelo, Jefferson Bettini, Adalberto Fazzio e Edson R. Leite.
Autores do artigo. A partir da esquerda: Gabriel R. Schleder, Gustavo M. Azevedo, Içamira C. Nogueira, Querem H. F. Rebelo, Jefferson Bettini, Adalberto Fazzio e Edson R. Leite.

 

Artigo em destaque: Filmes com sinergia anticancerígena.

O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications. Wallace R. Rolim, Joana C. Pieretti, Débora L. S. Renó, Bruna A. Lima, Mônica H. M. Nascimento, Felipe N. Ambrosio, Christiane B. Lombello, Marcelo Brocchi, Ana Carolina S. de Souza, and Amedea B. Seabra. ACS Appl. Mater. Interfaces, 2019, 11 (6), pp 6589–6604. DOI: 10.1021/acsami.8b19021. 

Filmes com sinergia anticancerígena 

Uma equipe de pesquisadores da UFABC e da UNICAMP desenvolveu um novo material, em forma de filme, que contém e libera, de forma simultânea, nanopartículas de prata (AgNPs) e óxido nítrico (NO) – dois ativos conhecidos pela sua atividade antimicrobiana e anticancerígena. Testado pela equipe científica, o material mostrou-se eficiente para eliminar vários tipos de bactérias e células de determinados tipos de câncer. As características do filme o tornam promissor para tratar tumores malignos ou lesões infecciosas de forma tópica.

Autores principais do trabalho: Wallace Rosado Rolim (doutorando UFABC), Amedea Barozzi Seabra (professora UFABC) e Joana Claudio Pieretti (mestranda UFABC).
Autores principais do trabalho: Wallace Rosado Rolim (doutorando UFABC), Amedea Barozzi Seabra (professora UFABC) e Joana Claudio Pieretti (mestranda UFABC).

O estudo, recentemente publicado no ACS Applied Materials & Interfaces (fator de impacto 8,097), foi desenvolvido ao longo da pesquisa de mestrado de Wallace Rosado Rolim, orientado pela professora Amedea Barozzi Seabra, e defendido neste ano no programa de pós-graduação em Ciência e Tecnologia Química da Universidade Federal do ABC (UFABC). O trabalho também envolveu, por meio de colaborações científicas, conhecimento e técnicas experimentais das áreas de Biologia e Biomedicina. “Destaco a importância da interdisciplinaridade e trabalho em equipe para o sucesso da pesquisa científica e tecnológica” afirma a professora Seabra, autora correspondente do artigo.

A ideia de desenvolver esse biomaterial (material planejado para interagir com um sistema biológico para fins de diagnóstico ou tratamento médico) surgiu em discussões entre Rolim e sua orientadora. “Buscávamos novas estratégias para a liberação controlada, localizada e sustentada de ativos, como moléculas de óxido nítrico aliadas a nanopartículas de prata, para aplicações biomédicas”, relata a professora Seabra. A dupla teve a ideia de reunir os dois ativos terapêuticos em um único material que fosse capaz de liberá-los de maneira tópica. “Ansiávamos por uma ação sinérgica desses dois ativos”, conta Seabra.

Dessa maneira, a professora Seabra e Rolim, com a colaboração da mestranda Joana Claudio Pieretti, dedicaram-se ao desenvolvimento do material. A equipe conseguiu preparar filmes feitos de um material compósito, cuja matriz é constituída de um polímero conhecido como PVA, e aditivada com um outro polímero, chamado de PEG, que tornou a matriz mais flexível. Ambos os polímeros são atóxicos e biocompatíveis. Durante a preparação dos filmes, foram adicionadas as nanopartículas de prata e uma substância doadora do gás óxido nítrico (a molécula GSNO, que, espontaneamente, decompõe-se e gera óxido nítrico).

As nanopartículas de prata foram preparadas pelo mesmo grupo, utilizando um método simples, barato e muito amigável com o meio ambiente e os seres vivos, também desenvolvido dentro do mestrado de Rolim. No método, que foi reportado em artigo publicado no início deste ano (https://doi.org/10.1016/j.apsusc.2018.08.203), utiliza-se extrato de chá verde para gerar as nanopartículas a partir de nitrato de prata, como mostra esta figura:

Método de preparação de nanopartículas de prata.

Para poder comparar os efeitos antimicrobianos e anticancerígenos, a equipe preparou diversos tipos de filmes: alguns formados pela matriz em estado puro (PVA/PEG), outros contendo na matriz nanopartículas de prata em diferentes concentrações ou doadores de óxido nítrico, e os últimos contendo ambos os agentes terapêuticos na mesma matriz. Depois de analisar todos os filmes usando várias técnicas de caracterização para determinar com precisão sua composição e morfologia, a professora Seabra e seus alunos estudaram como ocorria a liberação, a partir dos filmes, do óxido nítrico e das nanopartículas de prata.

Finalmente, os filmes foram encaminhados a colaboradores de outros grupos de pesquisa para fazer os ensaios biológicos, que foram realizados in vitro (ou seja, fora de organismos vivos e dentro de ambientes com condições controladas). Na UFABC, mais precisamente nos grupos das professoras Ana Carolina Santos de Souza Galvão e Christiane Bertachini Lombello, focou-se na ação anticancerígena do biomaterial, usando células de câncer de colo do útero e de câncer de próstata. Por outro lado, os ensaios referentes à atividade antibacteriana dos filmes foram realizados na UNICAMP, no grupo do professor Marcelo Brocchi, e envolveram testes com diversos tipos de bactérias, inclusive as conhecidas Escherichia coli e Staphylococus aureus.

Os ensaios mostraram que os filmes contendo ambos os ativos terapêuticos apresentaram os melhores resultados na eliminação de bactérias e, principalmente, de células cancerígenas, como ilustra esta figura:

O óxido nítrico e as nanopartículas de prata liberadas simultaneamente pelo filme agiram em sinergia provocando um importante efeito antimicrobiano e anticancerígeno.

Dessa maneira, ficou provada a sinergia entre nanopartículas de prata e óxido nítrico que Seabra e Rolim buscavam no início da pesquisa de mestrado. Em um dos ensaios, para citar um exemplo, menos de 25% das células cancerígenas permaneceram vivas (viáveis) depois de serem tratadas com esses filmes durante 24 horas.

O material desenvolvido pela equipe da UFABC traz a possibilidade de se implementar uma nova estratégia terapêutica para alguns tumores cancerígenos e lesões infecciosas, baseada na liberação simultânea de óxido nítrico e nanopartículas de prata, diretamente no local afetado, a partir de um filme. “Na prática, esse filme pode ser aplicado, por exemplo, em um tecido (como a pele ou a mucosa) ou um órgão, visando ações antimicrobianas ou antitumorais”, explica Seabra. Ao liberar quantidades terapêuticas dos agentes diretamente no local de interesse, evita-se a liberação indesejada em órgãos e/ou tecidos saudáveis e, dessa forma, previnem-se possíveis efeitos colaterais, completa a cientista.

Este trabalho recebeu apoio financeiro das agências brasileiras CNPq, FAPESP e CAPES. O primeiro autor do artigo, Wallace Rosado Rolim, desenvolveu sua pesquisa de mestrado com bolsa da UFABC.

Pós-Doutorado na UFABC com bolsa FAPESP.

Área de conhecimento: Física/Química de materiais

Nº do processo FAPESP: 2017/02317-2

Título do projeto: Síntese e caracterização de propriedades físicas de perovskitas de haletos

Pesquisadores: Dr. Gustavo Dalpian e Dr. Jose Antonio Souza

Unidade/Instituição: Universidade Federal do ABC – Campus Santo André

Data limite para inscrições: 30/12/2018

Localização: Avenida dos Estados, 5001 – Bairro Santa Terezinha – Santo André, São Paulo.

E-mails para inscrições: (gustavo.dalpian@ufabc.edu.br); (joseantonio.souza@ufabc.edu.br)

 

As atividades de pesquisa estão relacionadas ao projeto temático “Interfaces em Materiais: Propriedades Eletrônicas, Magnéticas, Estruturais e de Transporte”, sob coordenação do Prof. Adalberto Fazzio (LNNano, CNPEM – Campinas). O supervisor do pós-doutorado será o Prof. Gustavo Dalpian em colaboração com Prof. Jose Antonio Souza da Universidade Federal do ABC (UFABC), Santo André – São Paulo.

Pretende-se desenvolver pesquisas envolvendo síntese e caracterização das propriedades físicas de perovskitas híbridas orgânico/inorgânico de haletos do tipo ABX3 (onde A = Cs, CH3NH3, etc.; B = Pb, Sn, etc.; e X = Cl, Br ou I). Esses materiais vêm sendo amplamente estudados devido às suas propriedades favoráveis à conversão de energia solar. A compreensão dos fenômenos físicos envolvendo as propriedades estruturais, morfológicas, ópticas e elétricas são de grande interesse científico neste projeto. Dessa forma, síntese desses materiais na forma de bulk e/ou filmes finos e/ou heteroestruturas e/ou quantum dots e o estudo das propriedades físicas são de interesse. A pesquisa será desenvolvida na Universidade Federal do ABC – Campus Santo André.

A oportunidade está aberta igualmente a candidatos brasileiros e estrangeiros com título de doutor, no Brasil ou no exterior, em áreas relacionadas ao tema proposto. É imprescindível que o candidato tenha alguma experiência internacional, além de publicações nas áreas correlatadas ao projeto em revistas de relevante impacto internacional.

Os seguintes documentos são necessários para candidatura:

  1. Curriculum vitae, apresentando a experiência acadêmica do candidato e a lista de trabalhos publicados em periódicos. O currículo deve ser submetido em formato eletrônico pdf (Portable Document Format), onde os artigos devem ser identificados pelo DOI;
  2. Documento que comprove que é portador de título de doutor;
  3. Pelo menos duas cartas de recomendação as quais devem ser enviadas diretamente para os e-mails cotados acima.

Para avaliação das propostas serão levados em consideração os seguintes aspectos: histórico de pesquisa do candidato e análise das cartas de recomendação recebidas. No que se refere à análise curricular, não será considerado somente o número de publicações do candidato, mas também sua qualidade e relevância. Adicionalmente, os candidatos serão convocados para uma entrevista presencial ou online com o supervisor para avaliar aderência das áreas de experiência do candidato aos temas de pesquisa relacionados ao projeto.

A implantação da bolsa está condicionada à aprovação do candidato selecionado pela FAPESP. Caso a decisão seja referendada pela FAPESP, o candidato selecionado receberá bolsa no valor de R$ 7.174,80 mensais e reserva técnica equivalente a 15% do valor anual da bolsa, destinada a realizar apenas despesas diretamente relacionadas à atividade de pesquisa. Mais informações sobre a bolsa podem ser obtidas no endereço eletrônico: www.fapesp.br/bolsas/pd.

O candidato deverá enviar toda a documentação via e-mail para o endereço eletrônico acima com o título “Fellowship PD – Application”. O prazo para envio das inscrições se encerra em 30/12/18. Serão consideradas as inscrições em que todos os documentos (inclusive as cartas de recomendação) tenham sido recebidas impreterivelmente até a meia-noite do dia 30/12/2018, no horário de Brasília (UTC-3, horário de brasileiro de verão).

 

Concursos para docentes em Engenharia de Materiais na UFABC (SP).

Concursos abertos para docentes na área de Engenharia de Materiais, na Universidade Federal do ABC em Santo André (SP):

– Edital 148/2015 – Materiais elastoméricos e processamento de polímeros
http://www.ufabc.edu.br/index.php?option=com_content&view=article&id=9406
http://www.ufabc.edu.br/index.php?option=com_content&view=article&id=9525

– Edital 145 / 2015 – Processamento de metais e ligas
http://www.ufabc.edu.br/index.php?option=com_content&view=article&id=9403
http://www.ufabc.edu.br/index.php?option=com_content&view=article&id=9525

– Edital 224 / 2015 – Síntese e Caracterização de Polímeros
http://www.ufabc.edu.br/index.php?option=com_content&view=article&id=9561

UFABC abre inscrições para Pós-Graduação em Nanociências e Materiais Avançados.

O aumento da importância e competitividade tecnológica no domínio de nanomateriais e na ciência de materiais é reconhecido como um dos grandes pilares do desenvolvimento científico, tecnológico e social no século XXI. A possibilidade de desenvolver moléculas e materiais que podem substituir os materiais tradicionais terá um profundo impacto em muitos aspectos do desenvolvimento de diversos produtos. O campo emergente de materiais funcionais é, portanto uma tecnologia estratégica para o futuro.

Diante desta realidade o programa de Pós-Graduação em Nanociências e Materiais Avançados da Universidade Federal do ABC (UFABC) busca capacitar profissionais com formação interdisciplinar que apresente uma visão abrangente e diferenciada, qualificando-o para a pesquisa de ponta e as inovações tecnológicas nas áreas do programa.

As inscrições para o processo seletivo para o Mestrado e Doutorado estão abertas até o dia 24 de Junho.

Mais informações em http://nano.ufabc.edu.br.