Artigo em destaque: Como fazer nanocristais de perovskita mais estáveis para LEDs mais eficientes.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes. Emre Yassitepe, Zhenyu Yang, Oleksandr Voznyy, Younghoon Kim, Grant Walters, Juan Andres Castañeda, Pongsakorn Kanjanaboos, Mingjian Yuan, Xiwen Gong, Fengjia Fan, Jun Pan, Sjoerd Hoogland, Riccardo Comin, Osman M. Bakr, Lazaro A. Padilha, Ana F. Nogueira, and Edward H. Sargent. Adv. Funct. Mater. 2016. DOI: 10.1002/adfm.201604580.

Como fazer nanocristais de perovskita mais estáveis para LEDs mais eficientes

Nesta imagem ilustrativa, enviada por Emre Yassitepe, pontos quânticos azuis, verdes e vermelhos excitados por radiação ultravioleta exibem uma brilhante luminescência.
Nesta imagem ilustrativa, enviada por Emre Yassitepe, pontos quânticos azuis, verdes e vermelhos excitados por radiação ultravioleta exibem uma brilhante luminescência.

Os pontos quânticos de perovskita vem sendo enxergados como ótimos candidatos para compor uma próxima geração de telas e dispositivos para iluminação. De fato, essas nanopartículas luminescentes são capazes de emitir luz de alto brilho e em cores muito vívidas e puras ao receberem energia externa. Mas o uso tecnológico dos pontos quânticos de perovskita esbarra ainda em algumas limitações, principalmente ligadas à sua instabilidade, pois essas minúsculas partículas rapidamente podem reagir com o meio, aglomerar-se ou aumentar de tamanho, por exemplo.

Uma equipe de cientistas de instituições do Canadá, Brasil e Arábia Saudita encontrou uma solução a um dos problemas que limitam o avanço da pesquisa e desenvolvimento na área, a degradação dos pontos quânticos de perovskita durante sua fabricação. O estudo foi reportado em artigo recentemente publicado no periódico Advanced Functional Materials (fator de impacto: 11,38).

A fabricação dos pontos quânticos de perovskita é tradicionalmente realizada colocando num frasco uma solução com uma série de compostos que, ao reagirem sob determinadas condições, geram nanopartículas de perovskita revestidas (passivadas) com ácido oleico (C18H34O2) e oleilamina (C18H35NH2).

A equipe realizou experimentos e simulações computacionais para compreender como ocorria, passo a passo, a formação dos pontos quânticos de perovskita e, dessa maneira, formular um método de fabricação que evitasse o problema da degradação. Os cientistas perceberam que a chave da solução residia em reformular os “ingredientes” do processo para poder retirar a oleilamina que acabava criando as condições para a degradação dos pontos quânticos, os quais precipitavam para o fundo do frasco.

“Nós focamos no desenvolvimento de uma nova técnica de síntese para passivar pontos quânticos de perovskita com ácido oleico”, diz Emre Yassitepe, pós-doc no Laboratório de Nanotecnologia e Energia Solar do Instituto de Química da Unicamp, que assina o artigo como primeiro autor. “O ácido oleico é um dos ligantes mais usados até o momento para estabilizar pontos quânticos e queríamos ver o impacto na estabilização e no desempenho do LED de diferentes ligantes”, completa.

Seguindo a nova “receita”, a equipe conseguiu produzir pontos quânticos de cerca de 8 nm, revestidos unicamente com ácido oleico, compostos por césio, chumbro e elementos do grupo dos halogêneos e tendo uma estrutura perovskita (que é uma determinada organização dos átomos). Foram produzidos e caracterizados pontos quânticos verdes, de fórmula CsPbBr3), azuis (CsPb(Br,Cl)3) e vermelhos (CsPb(Br,I)3).

Um dos principais ganhos obtidos com o novo método foi a estabilidade coloidal dos pontos quânticos: diferentemente dos pontos quânticos revestidos com oleilamina, eles permaneceram intatos após a etapa da purificação, que remove dos nanocristais os compostos residuais que costumam remanescer do processo de fabricação.

A equipe foi além da fabricação e análise experimental dos pontos quânticos e construiu com eles dispositivos LED (diodos emissores de luz, hoje amplamente utilizado em lâmpadas e telas) emissores de luz verde, azul e vermelha para conferir sua eficiência. Fizeram filmes finos com os pontos quânticos de perovskita conseguidos e colocaram uma camada desse material “sanduichada” entre uma camada de dióxido de titânio, encarregada de transportar elétrons (portadores de carga negativa) e uma camada polimérica, destinada ao transporte dos chamados “buracos” (portadores de carga positiva). Nesse LED, ao se aplicar um campo elétrico, elétrons e buracos se deslocam para a camada de pontos quânticos e acabam excitando-os, fazendo que emitam fótons e gerem, assim, a luz desejada.

O uso de camadas de transporte poliméricas processadas a partir de solução, em vez de camadas processadas a partir de evaporação para fabricar LEDs de perovskita foi uma inovação também possibilitada pela nova “receita”, que tornou os pontos quânticos mais robustos frente a esse tipo de processamento.

Como resultado final, os cientistas conseguiram LEDs azuis e verdes brilhantes e eficientes. Os LEDs de perovskita feitos com pontos quânticos sem oleilamina demonstraram um desempenho melhor, em alguns aspectos, do que os LEDs de perovskita convencionais contendo oleilamina.

autores
Fotos dos autores do artigo de instituições brasileiras. A partir da esquerda: Ana Flávia Nogueira e Emre Yassitepe (Instituto de Química da Unicamp), Juan Andrés Castañeda e Lázaro Padilha (Instituto de Física Gleb Wataghin, Unicamp).

“Demonstramos um novo método de síntese que aumenta a estabilidade coloidal dos pontos quânticos de perovskita ao revesti-los com ácido oleico”, resume Yassitepe. “Esse aumento da estabilidade viabilizou a remoção do excesso de conteúdo orgânico nos filmes finos, o qual atua como isolante entre os pontos quânticos, reduzindo seu desempenho. Ao reduzir os ligantes que estavam em excesso, conseguimos fazer LEDs mais eficientes e processáveis em solução”, conclui o pós-doc.

O trabalho foi realizado com financiamento de agências canadenses, da FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) e da Universidade de Ciência e Tecnologia King Abdullah (Arábia Saudita).  Na Unicamp, foram realizados os experimentos de absorção transiente ultrarrápida e análises por microscopia eletrônica de transmissão para caracterizar os pontos quânticos. A síntese dos nanocristais e a fabricação dos LEDs foi realizada na Universidade de Toronto, no grupo do professor Edward H. Sargent, onde Yassitepe realizou um estágio de um ano dentro de seu pós-doutorado na Unicamp. “Agradeço à FAPESP- Bolsa Estágio de Pesquisa no Exterior for ter me dado esta oportunidade”, diz Yassitepe.

Artigo em destaque: Mudando as propriedades e a morfologia de nanofitas de grafeno com nitrogênio.

O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

Josue Ortiz-Medina, M. Luisa García-Betancourt, Xiaoting Jia, Rafael Martínez-Gordillo, Miguel A. Pelagio-Flores, David Swanson, Ana Laura Elías, Humberto R. Gutiérrez, Eduardo Gracia-Espino, Vincent Meunier, Jonathan Owens, Bobby G. Sumpter, Eduardo Cruz-Silva, Fernando J. Rodríguez-Macías, Florentino López-Urías, Emilio Muñoz-Sandoval, Mildred S. Dresselhaus, Humberto Terrones, Mauricio Terrones. Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials 2013, 23, 3755-3762. DOI: 10.1002/adfm.201202947

Texto de divulgação:

Mudando as propriedades e a morfologia de nanofitas de grafeno com nitrogênio

Várias camadas de grafeno com forma de fitas (estreitas e compridas) são chamadas de nanofitas grafíticas. Esses materiais têm sido objeto de estudos para controlar suas propriedades por diversos métodos, como por exemplo a dopagem, na qual se introduzem, na rede de carbono que forma o grafeno, átomos de elementos “estrangeiros”.

Em um trabalho liderado por cientistas da Pennsylvania State University com a participação de pesquisadores de instituições dos Estados Unidos, México, Espanha e Brasil, nanofitas grafíticas dopadas com nitrogênio foram fabricadas pelo método de deposição química de vapor (CVD) e mostraram características novas, ligadas à introdução do nitrogênio: maior comportamento semicondutor, promissor para aplicações em dispositivos eletrônicos, reatividade química e uma morfologia muito particular em suas bordas. A pesquisa foi publicada na prestigiada Advanced Functional Materials.

“Este artigo mostrou pela primeira vez que é possível fazer dopagem com nitrogênio na mesma síntese por CDV das nanofitas de grafite, e que é possível controlar o nível de dopagem durante a síntese”, destaca Fernando Rodríguez-Macías, professor visitante estrangeiro na Universidade Federal de Pernambuco (UFPE) e um dos autores do artigo científico. De nacionalidade mexicana, Rodríguez-Macías chegou à UFPE em 2012, durante seu ano sabático, para trabalhar como professor visitante estrangeiro no Departamento de Química Fundamental e no Programa de Pós-graduação em Ciência de Materiais da universidade, com apoio da Rede Nanobiotec-Brasil da CAPES. “Prolonguei a minha estada por mais um ano, para continuar até 2014 fazendo colaboração em estudos de produção de nanoestruturas de carbono, de bionanotecnologia e de toxicidade de nanomateriais”, diz o professor. “Também estou dando aulas de preparação e caracterização de materiais”, completa.

As nanofitas dopadas

Os autores do artigo mostraram que diferentes concentrações de nitrogênio geram mudanças controladas no comportamento do material. Particularmente, os cientistas provaram que, quanto mais nitrogênio introduzido na estrutura do grafeno, mais predominante o comportamento semicondutor das nanofitas. Como explicação a esse fenômeno, os pesquisadores sugeriram, com base em cálculos teóricos, que os átomos de nitrogênio das nanofitas dopadas agem como centros espalhadores de elétrons e acabam diminuindo o comportamento condutor do grafeno não dopado. “O controle do nível de dopagem permite mudar as propriedades elétricas das nanofitas, o que pode ser útil para aplicações em transistores e outros dispositivos eletrônicos”, diz Rodríguez-Macías.

Além disso, o artigo mostra que também a reatividade das nanofitas pode mudar com o nível de dopagem. O grafeno puro, explica o professor visitante da UFPE, é muito inerte e tem interações limitadas com muitas substancias químicas; já as nanofitas dopadas com nitrogênio são mais reativas, o que as torna mais úteis para aplicações em sensores e em catálise.

Quanto à morfologia, os autores do artigo observaram que as nanofitas dopadas com nitrogênio apresentam laços em suas bordas, unindo diferentes folhas de grafeno. “Esta morfologia não é apresentada por nanofitas de grafite não dopadas”, afirma Rodríguez-Macías.

Esta figura, enviada pelo professor Fernando Rodríguez-Macías, mostra as nanofitas grafíticas dopadas com nitrogênio em três escalas. A microscopia eletrônica de varredura (canto superior esquerdo) mostra como estas fitas estão formadas por várias camadas e apresentam uma superfície curva e com rugosidade. A microscopia eletrônica de transmissão (canto inferior esquerdo) mostra que as camadas da nanofita são folhas de grafeno. A microscopia eletrônica de transmissão de alta resolução (direita) mostra que as camadas de grafeno nas bordas das nanofitas formam laços unindo diferentes folhas de grafeno.

As colaborações

Quase todo o trabalho de síntese de materiais do artigo da Advanced Functional Materials foi desenvolvido na Pennsylvania State University; já a caracterização foi feita em colaboração com outros pesquisadores e laboratórios, relata o professor visitante da UFPE.
A participação da UFPE no artigo ocorreu por meio do estudante de doutorado Miguel Angel Pelagio-Flores, do Programa de Pós-Graduação em Química, na análise e modelagem teórica das nanofitas dopadas, e através do próprio professor Fernández-Macías, que, além de ter participado da discussão de resultados e revisão do artigo desde sua sala na UFPE, foi orientador de doutorado do primeiro autor do artigo, Josué Ortiz-Medina, enquanto professor de uma instituição mexicana, o IPICYT. “Ele fez a maior parte do trabalho experimental do artigo, além de parte importante da caracterização e os estudos teóricos destes novos nanomateriais, quando ele esteve em intercambio em Penn State no laboratório do professor Terrones”, contextualiza o professor.

No total, 19 autores assinam o artigo; entre eles, a professora do MIT Mildred Dresselhaus, referência em ciência do carbono.

Artigo científico em destaque: Interação entre ouro e eumelanina – um material promissor para o desenvolvimento de dispositivos bioeletrônicos.

O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

Julia Wünsche, Luis Cardenas, Federico Rosei, Fabio Cicoira, Reynald Gauvin, Carlos F. O. Graeff, Suzie Poulin, Alessandro Pezzella, Clara Santato. In Situ Formation of Dendrites in Eumelanin Thin Films between Gold Electrodes.  Advanced Functional Materials, 2013. Article first published online : 10 JUN 2013, DOI: 10.1002/adfm.201300715.

Texto de divulgação:

Interação entre ouro e eumelanina – um material promissor para o desenvolvimento de dispositivos bioeletrônicos

Olhos e ouvidos artificiais e dispositivos que realizem a interface entre o corpo humano e braços robóticos são algumas das aplicações que a Bioeletrônica promete. Ainda em estágio inicial, o desenvolvimento dessa área da pesquisa depende em boa parte do desenvolvimento de materiais que sejam semicondutores e biocompatíveis ao mesmo tempo. Um dos materiais mais promissores e mais estudados no contexto da Bioeletrônica é a eumelanina (um tipo de melanina determinante, por exemplo, na definição da cor dos cabelos dos seres humanos). A eumelanina começou a ser estudada sob a perspectiva da Ciência de Materiais na década de 1960, quando suas características semicondutoras foram descobertas. O problema é que a melanina, tanto a natural quanto a sintetizada por métodos tradicionais, não produz filmes finos de boa qualidade que viabilizem seu uso como material para dispositivos bioeletrônicos.

No ano 2004, no Brasil, mais precisamente na cidade de Ribeirão Preto (SP), na Universidade de São Paulo (USP), o grupo de pesquisa do professor Carlos Graeff desenvolveu uma forma de produzir melanina solúvel em dimetilsulfóxido (DMSO), o que possibilitou a produção de filmes finos de alta qualidade. A descoberta foi publicada no Journal of Non-Crystalline Solids (http://dx.doi.org/10.1016/j.jnoncrysol.2004.03.058). “A partir desta publicação e outras subsequentes recebemos o contato da professora Clara Santato, uma especialista na produção de dispositivos eletrônicos orgânicos da Escola Politécnica de Montréal (Canadá), para desenvolvermos um projeto comum”, relata o professor Graeff, atualmente professor da Universidade Estadual Paulista (Unesp) – campus de Bauru.

A colaboração então iniciada continuou ao longo dos anos e gerou uma pesquisa que demonstrou a existência de peculiares interações entre a eumelanina e o ouro. Os resultados desse trabalho foram publicados online no dia 10 de junho deste ano na prestigiada revista Advanced Functional Materials. O artigo agregou as competências em síntese de DMSO-melanina do professor Graeff, os recursos humanos e materiais para produção e caracterização de dispositivos eletrônicos a base de melanina do grupo da professora Santato e contribuições de outros grupos do Canadá e da Itália.

Dendritos
Dispositivos bioeletrônicos a base de filmes de eumelanina precisam, a princípio, de eletrodos para gerar uma corrente elétrica que flua através da eumelanina. Pensando nisso, os autores do artigo construíram um sistema composto por um substrato de dióxido de silício (SiO2) texturizado com partículas de ouro (os eletrodos) e, entre duas partículas do metal, depositaram o filme de eumelanina. Num contexto de 90% de umidade do ar e temperatura ambiente, aplicaram uma tensão de 1 volt, gerando um eletrodo positivo e outro negativo nas partículas de ouro e um fluxo de corrente elétrica entre elas.

Com o auxílio de um microscópio de força atômica, o experimento permitiu a observação de uma paulatina formação de nanoestruturas sobre o filme. Inicialmente, essas nanoestruturas surgiram próximas ao eletrodo positivo em forma de nanoagregados, compostos basicamente por ouro e por algo de eumelanina. Ao aplicar tensão por mais alguns minutos, novos nanoagregados foram surgindo e se aproximando do eletrodo negativo, até chegar a ele. Nesse momento, começou a nucleação dos nanoagregados, a qual gerou estruturas em forma de dendritos (as ramificações dos neurônios) com alto conteúdo de ouro, surgidas a partir da região de contato com o eletrodo negativo. Enquanto a tensão continuou a ser aplicada, os dendritos continuaram a se formar, chegando a unir o eletrodo negativo ao positivo por meio de suas ramificações.

Além de terem formato parecido, as nanoestruturas dendríticas e os dendritos neuronais se assemelham no papel que desempenham, o de transmitir impulsos elétricos. De fato, os dendritos crescidos no filme de eumelanina demonstraram ser altamente condutores.

Esta imagem de microscopia de força atômica mostra o filme de DMSO-eumelanina hidratado, de 30 nm de espessura, após receber tensão de 1 V durante 3 horas:

A imagem permite ver que os nanoagregados de ouro e eumelanina se formam na região próxima ao eletrodo positivo, avançam pelo filme e se depositam nas proximidades do eletrodo negativo, levando, finalmente, à formação dos dendritos.