Boletim da SBPMat – 54ª edição.

 

Saudações !

Edição nº 54 – 27 de fevereiro de 2017

Notícias da SBPMat
  • Young Researcher Award. SBPMat lança prêmio para pós-docs em parceria com a E-MRS. A submissão de candidaturas está aberta. Aqui.
  • Isenção na inscrição do Encontro da E-MRS. Conheça os estudantes selecionados, que vão participar do E-MRS 2017 Spring Meeting sem pagarem taxa de inscrição. Aqui.
  • Campanha de sócios SBPMat. Ainda está aberto o período de desconto na anuidade 2017. Veja motivos e benefícios de ser sócio da SBPMat e saiba como pagar a anuidade. Aqui. 
  • Sócios pessoa jurídica. Empresas e organizações de todos os tipos também são bem-vindas à comunidade de sócios da SBPMat. Conheça os novos sócios institucionais da SBPMat: Altmann e Interprise. Aqui.
XVI Encontro da SBPMat/ XVI B-MRS Meeting
  • Simpósios. A lista de simpósios aprovados estará no site do evento no início de março. 
  • Organização. Conheça o comitê organizador. Aqui.
  • Expositores. Veja no site do evento as 14 empresas que já confirmaram participação. Empresas interessadas em participar do evento com estandes e outras formas de divulgação devem entrar em contato com Alexandre, no e-mail comercial@sbpmat.org.br.
      
Artigo em destaque

Uma equipe com participação de pesquisadores da Unicamp desenvolveu uma “receita” inovadora para fabricar nanocristais de perovskita luminescentes (pontos quânticos) que podem ser purificados sem se degradarem. Com os robustos nanocristais, a equipe fabricou LEDs brilhantes e eficientes de arquitetura inovadora. O trabalho foi reportado em paper publicado na Advanced Functional Materials.  Veja nossa matéria de divulgação.

Gente da comunidade

Entrevistamos Aloísio Nelmo Klein, professor da UFSC, onde foi um dos introdutores da pesquisa e ensino em Materiais. Com mais de 60 patentes e um histórico de interação com empresas, Klein se define como um pesquisador convencido de que a ciência é uma das principais forças motrizes para o desenvolvimento de uma nação. Saiba mais sobre a história deste pesquisador, desde sua infância numa vila de descentes de alemães no Rio Grande do Sul até o presente, e veja a mensagem que deixou para os leitores mais jovens. Veja a entrevista.

Ex-presidentes da SBPMat Elson Longo (UNESP, UFSCar) e José Arana Varela (in memoriam) são homenageados por meio dos nomes de dois novos laboratórios da UFPel. Saiba mais.

Dicas de leitura
  • Inovações tecnológicas feitas no Brasil em aços usados em motores elétricos e transformadores melhoram a eficiência energética. Aqui.
  • Colaboração do LNNano (CNPEM) com usina de álcool gera tecnologia de transformação do bagaço de cana em carvão ativo, que pode ser usado na purificação de água e ar. Aqui.
  • Visando a aplicações aeroespaciais, equipe com participação brasileira estuda o que acontece com nanotubos durante impactos em alta velocidade e melhora o material. Aqui.
Oportunidades
  • Oportunidades para pesquisadores no CNPEM. Aqui.
  • Inscrições abertas para o Young Research Award, prêmio da SBPMat em parceria com a E-MRS para pós-docs. Aqui.
Próximos eventos da área
  • Pan-American Polymer Science Conference (PanPoly). Guarujá, SP (Brasil). 22 a 24 de março de 2017. Site.
  • 9th International Conference on Materials for Advanced Technologies. Suntec (Cingapura). 18 a 23 de junho de 2017. Site. 
  • XXXVIII Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência (CBRAVIC) + III Workshop de Tratamento e Modificação de Superfícies (WTMS). São José dos Campos, SP (Brasil). 21 a 25 de agosto de 2017. Facebook.
  • IUMRS-ICAM 2017. Kyoto (Japão). 27 de agosto a 1º de setembro de 2017. Site.
  • XVI Encontro da SBPMat/ XVI B-MRS Meeting. Gramado, RS (Brasil). 10 a 14 de setembro de 2017. Site.

Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails.

 
 

 

 

Plenárias do XIII Encontro da SBPMat: ciência de alto nível com impacto social.

Muitos participantes assistiram às palestras plenárias.

A cena se repetiu diariamente enquanto durou o evento: por volta das 8h30 e cerca das 14h00, sob o forte sol de João Pessoa, filas de centenas de participantes ingressavam ao centro de convenções e se instalavam na refrigerada sala das plenárias. Nela, cientistas de carreiras muito destacadas, atestadas por seus índices H de valores entre 40 e 73, vindos da França, Portugal, Alemanha, Inglaterra, Estados Unidos e Itália, compartilharam com os participantes do encontro da SBPMat o conhecimento deles sobre temas nos quais são, sem sombra de dúvida, qualificados especialistas.

A última plenária do evento, a cargo de Robert Chang, professor do primeiro departamento de Ciência de Materiais do mundo, na Northwestern University, retomou dois assuntos que tinham sido explicitados pelo professor Arana Varela na palestra memorial e que permeariam quase todas as plenárias. O primeiro é o papel essencial da área de Materiais e, em particular, da nanotecnologia, no atendimento às necessidades e demandas da humanidade em saúde, alimentação, transporte, segurança e comunicação, e, simultaneamente, na preservação do equilíbrio do meio ambiente.  Quanto ao segundo assunto, Arana Varela e Chang, que foi presidente da sociedade estadunidense de pesquisa em Materiais, a MRS, e fundador em 1991 da União Internacional de Sociedades de Pesquisa em Materiais (IUMRS), destacaram a necessidade da colaboração para enfrentar esse duplo desafio do século XXI. Nesse contexto, Chang convocou os jovens brasileiros [vídeo abaixo] a formarem parte de uma rede global lançada em 2012, a qual promove a interação de jovens pesquisadores da área em torno desses desafios mundiais por meio de uma conferência bienal e plataformas virtuais.

Mas a colaboração científica entre físicos, químicos, engenheiros, matemáticos, biólogos e outros pesquisadores para desenvolver as tecnologias necessárias, disse Chang, é insuficiente. Também é preciso, acrescentou, contar com o esforço conjunto e global de governos, empresas, comunidades, famílias e indivíduos para implantar essas tecnologias no dia-a-dia das pessoas. “Isso requer educação”, completou Chang. Nos últimos 20 anos, o cientista tem conduzido o programa Materials World Modules, que desenvolveu material interativo de ensino sobre Materiais e Nanotecnologia destinado a estudantes pré-universitários.

Nanomedicina

Luís Carlos

O português Luís Carlos, da Universidade de Aveiro, trouxe ao XIII Encontro da SBPMat muitos exemplos de aplicações da nanotecnologia na área da saúde que estão fazendo diferença, ou podem fazê-la no curto prazo.

Especialista em materiais luminescentes, aqueles emissores de luz não resultante do calor, o cientista mostrou em sua palestra plenária que esses materiais já são de grande utilidade no diagnóstico médico. Complexos orgânicos luminescentes, por exemplo, são comercializados como agentes de contraste para imagens por ressonância magnética e como marcadores para fluoroimunoensaios (utilizados em exames pré e neonatais e na detecção de proteínas, vírus, anticorpos, resíduos de fármacos etc.).

Por sua vez, nanopartículas luminescentes (pontos quânticos e nanocristais com íons lantanídeos) despontam tanto em técnicas de diagnóstico quanto no tratamento de doenças. No último grupo se insere o processo de hipertermia, que consiste na exposição de tecidos biológicos, geralmente células cancerosas, a temperaturas superiores a 45°C, provocando sua morte, com lesões colaterais mínimas nos tecidos normais circundantes.  Acompanhada de um monitoramento e controle adequado da temperatura, a técnica poderia se popularizar.

Nos últimos anos, tem sido realizados esforços por desenvolver nanotermómetros que meçam a temperatura intracelular para atender essa e outras aplicações, não só em Nanomedicina, mas também em áreas comoa Microeletrônica, Fotônica e Microfluídica. Um exemplo bem sucedido, apresentado por Luís Carlos na plenária, é o do desenvolvimento de uma plataforma nanométrica formada por nanobastões, os quais funcionam como termômetros, com nanopartículas de ouro na sua superfície, as quais funcionam como aquecedores. Uma plataforma que, em contraste com seu pequeno tamanho, pode trazer grandes benefícios ao aprimoramento da técnica de hipertermia e ao estudo dos processos de transferência de calor na nanoescala.

LEDs e outros dispositivos de nitreto de gálio: economia de 25% no consumo mundial de eletricidade

Sir Colin Humphreys

Quem participou do XIII Encontro da SBPMat certamente se lembrou da palestra plenária do professor da University of Cambridge, Sir Colin Humphreys, quando foi anunciado o Prêmio Nobel de Física de 2014 para três cientistas japoneses cujos trabalhos foram essenciais para o desenvolvimento das lâmpadas de LED de luz branca. O material escolhido pelos laureados quando decidiram enfrentar o desafio de criar o LED azul que viabilizaria o LED emissor de luz branca foi o nitreto de gálio, objeto da palestra de Sir Colin.

De fato, o professor é especialista nesse material. Criador e diretor de um centro de pesquisa em Cambridge dedicado ao nitreto de gálio, Humphreys também criou dois empreendimentos para explorar comercialmente a tecnologia desenvolvida por seu grupo de pesquisa para fabricação de LEDs para iluminação de baixo custo, crescidos sobre “wafers” de silício relativamente grandes, de uns 15 cm. Em 2012, as spinoffs foram compradas pela Plessey, fabricante de produtos baseados em materiais semicondutores com mais de 50 anos no mercado, que hoje está fabricando esses LEDs no Reino Unido.

A lâmpada LED de nitreto de gálio hoje oferece uma das maiores durabilidades do mercado – 100.000 horas de uso, o equivalente a 69 anos sem trocar a lâmpada, contra 1.000 horas de vida da lâmpada incandescente e  10.000 da fluorescente. Esses LEDs também apresentam alta eficiência energética, de 100 a 200 lumens (quantidade de luz emitida em um segundo) por watt de potência consumida.

Na plenária, Sir Colin mostrou que a ampla utilização de LEDs em iluminação (um dos poucos segmentos em que ainda não se universalizou o uso de dispositivos de alta eficiência energética) resultaria numa economia de cerca de 15% no total de eletricidade consumida no planeta e, portanto, numa notória redução nas emissões de dióxido de carbono.

Mais energia pode ser economizada, disse o professor de Cambridge, substituindo o silício por nitreto de gálio, também nestes casos mais eficiente no uso da eletricidade, em diversos dispositivos eletrônicos. No total, concluiu Humphreys, até 25% de toda a eletricidade usada hoje no mundo poderia ser economizada. Motivo que, acrescido a outras aplicações do nitreto de gálio no campo da saúde, foi suficiente para o cientista britânico afirmar que esse material criado pelo homem é um dos mais importantes.

Semicondutores orgânicos: OLEDs e células solares em destaque

Karl Leo

Da mesma forma que os LEDs, os OLEDs, que são fabricados com materiais orgânicos que justificam a letra “O” da sigla, convertem diretamente a eletricidade em luz e são, portanto, dispositivos de alta eficiência potencial, a qual vem sendo efetivamente melhorada ano a ano. LEDs e OLEDs, cada um com seus diferenciais, já concorrem em alguns mercados, como o de displays e, de maneira mais incipiente no caso dos orgânicos, no de iluminação.

Junto com as células solares orgânicas, os OLEDs foram foco da palestra plenária de Karl Leo, professor da universidade alemã TU Dresden e da árabe-saudita KAUST, autor de mais de 550 papers com 23.000 citações e 50 famílias de patentes, além de fundador de 8 empresas spinoff, como as hoje consolidadas Heliatek e a Novaled, que fabricam células solares orgânicas e OLEDs, respectivamente.

O professor Leo compartilhou com o público uma importante quantidade de resultados conseguidos por seus grupos de pesquisa no que diz respeito a melhorar o desempenho de dispositivos semicondutores orgânicos. Junto a seus colaboradores, Karl Leo tem desenvolvido um extenso trabalho sobre a dopagem de semicondutores orgânicos das camadas de transporte de OLEDs e células solares para aumentar significativamente sua condutividade elétrica – trabalho que resultou, por exemplo, na obtenção de OLEDs emissores de luz branca com eficiência energética mais alta do que a dos tubos fluorescentes.

A partir da esquerda: A. Salleo, F. So, R. Faria, H. von Seggern e J. Nelson.

Karl Leo não foi o único cientista destacado internacionalmente presente em João Pessoa representando a área de semicondutores orgânicos. Na quarta-feira à tarde, uma mesa redonda organizada pelo Simpósio D reuniu quatro desses renomados especialistas: Alberto Salleo (Stanford University), Franky So (University of Florida), Heinz von Seggern (TU Darmstadt) e Jenny Nelson (Imperial College London). Moderada por um destacado cientista brasileiro da área, Roberto Mendonça Faria, professor do Instituto de Física de São Carlos da USP e presidente da SBPMat, o painel congregou dezenas de participantes do encontro, de diversas idades, que participaram ativamente do debate. Em torno do tema dos desafios da eletrônica orgânica, da pesquisa básica à produção em massa (ou produção individual, conforme apontou um jovem do público chamando a atenção para as técnicas de impressão em 3D), diversos assuntos dos campos científico, industrial e social foram abordados pelos membros do painel a partir das perguntas do público. “Felizmente, existem desafios para a Ciência dos Materiais. Infelizmente, desafios existem para a produção em massa”, resumiu o professor Faria, retomando, de alguma maneira, uma das primeiras falas da mesa redonda, em que a professora Jenny lamentou que a comunidade científica celebrasse muito mais o desenvolvimento de um dispositivo que funciona do que a compreensão dos motivos pelos quais determinado dispositivo não funcionou.

Alberto Salleo na plenária

Alberto Salleo, criador em Stanford de um grupo que vem estudando a relação entre estrutura e propriedades em semicondutores poliméricos para melhor compreender a geração e transporte de cargas nesses materiais, também proferiu uma plenária no evento. Na palestra, Salleo colocou em dúvida a universalidade de um pressuposto difundido no ambiente científico que relaciona um alto grau de cristalinidade (ou ordem) na microestrutura desses polímeros a uma mobilidade de cargas mais alta ou a um melhor desempenho dos dispositivos. O cientista mostrou que a desordem é boa para as células solares orgânicas e citou exemplos de polímeros semicondutores quase amorfos de desempenho similar a outros de estrutura muito mais ordenada.

O professor de Stanford apresentou um modelo desenvolvido no seu grupo para mostrar como funciona o transporte de cargas nos semicondutores orgânicos, materiais de microestruturas heterogêneas, caracterizadas pela coexistência de agregados ordenados e desordenados e de longas cadeias poliméricas. Para que exista uma alta mobilidade de cargas, revelou Salleo, o importante é que os agregados se conectem entre si, o que acontece por meio dos “spaghetti” poliméricos.

Ordem sim, mas sem periodicidade

Muito longe da desordem, mas também fora da ordem cristalina tradicional estão os quasicristais, tema geral da plenária do francês Jean-Marie Dubois, do Institut Jean Lamour, cuja experiência no assunto foi reconhecida pela comunidade científica por meio da criação do “Prêmio Internacional Jean-Marie Dubois”, outorgado a cada três anos a pesquisas relacionadas a quasicristais.

Jean-Marie Dubois

Dubois apresentou uma introdução sobre quasicristais, materiais nos quais os átomos estão agrupados em células unitárias de padrões ordenados (podem ser determinados por algoritmos), mas não periódicos (nunca se repetem). Belas imagens científicas e artísticas entremeadas na apresentação de Dubois permitiram visualizar essa ordem aperiódica.

O palestrante homenageou Dan Shechtman, que descobriu os quasicristais em 1982 e, após muitas brigas e resistências na comunidade científica, acabou ganhando o Prêmio Nobel de Química em 2011 e gerando uma grande mudança na visão da ciência sobre a matéria condensada ordenada. Hoje, materiais quasicristalinos são sintetizados e utilizados em diversos produtos, como autopeças e panelas, para melhorar sua condutividade térmica, adesão, atrito, resistência à corrosão etc. Vale destacar que Dubois consta entre os pioneiros no depósito de patentes visando aplicações dos quasicristais.

A ordem quasicristalina pode ser observada nos mais diversos tipos de materiais. Na palestra do XIII Encontro, Dubois abordou, em particular, ligas metálicas formadas por três elementos (A, B e C), nas quais A – B e B – C formam ligações químicas, enquanto B e C se repelem. Denominados por Dubois “ligas puxa-empurra” (push-pull alloys), esses materiais podem formar compostos intermetálicos muito complexos, de até centenas de átomos por célula unitária. Dentre esses, só alguns podem aumentar ainda mais sua complexidade até formar uma ordem quasicristalina, que resulta em propriedades únicas e abrem possibilidades para novas aplicações.

Simulação computacional

Roberto Dovesi

Em mais uma plenária do XIII Encontro da SBPMat, adeptos e interessados no uso de simulação computacional como complemento ao trabalho experimental na investigação das propriedades dos materiais puderam ouvir do professor Roberto Dovesi (Università di Torino) que essa dupla abordagem vale a pena.

Dovesi é um dos criadores de CRYSTAL, uma ferramenta computacional que permite caracterizar sólidos cristalinos do ponto de vista da Mecânica Quântica, por meio de cálculos ab initio. A primeira versão do programa foi desenvolvida a partir de 1976 e lançada em 1988, transformando o CRYSTAL no primeiro código periódico distribuído publicamente para a comunidade científica. Atualmente em sua sétima versão, o programa permite estudar propriedades elásticas, piezoelétricas, fotoelásticas, dielétricas, polarizabilidade e tensores de hiperpolarizabilidade, espectro IR e RAMAN, estrutura de bandas eletrônicas e fonônicas, entre outras propriedades.

O químico italiano destacou o preço acessível e alta velocidade de trabalho dos computadores atuais que são adequados para rodar programas desse tipo. Como exemplo, citou o computador mais recentemente adquirido por seu grupo de pesquisa para simulação computacional, que, tendo custado cerca de 6.500 euros (o equivalente hoje a uns 20.000 reais), é capaz de fazer longos cálculos em poucas horas com seus 64 “cores”. Supercomputadores não são necessários, disse Dovesi, além de serem menos robustos. Quanto ao software, Dovesi remarcou que hoje a área de Materiais conta com programas poderosos, robustos, fáceis de usar e de preços acessíveis (a licença básica da última versão do CRYSTAL, por exemplo, custa a partir de 600 euros – uns 1.900 reais).

Boletim SBPMat – edição 25 – setembro 2014 – especial XIII Encontro da SBPMat.

Edição nº 25 – Setembro de 2014

Especial XIII Encontro da SBPMat – João Pessoa, 28 de setembro a 2 de outubro

Saudações, .

Últimos preparativos para o encontro de João Pessoa!

– Veja a mensagem dos coordenadores do evento, que neste ano conta com 2.141 trabalhos aceitos e cerca de 2.000 inscrições de 28 países até o momento. Na mensagem, os professores Ieda Garcia e Severino de Lima apontam os destaques da programação do encontro deste ano! Aqui.

– Depois do almoço a antes das plenárias da tarde, você poderá assistir em João Pessoa às palestras técnicas de patrocinadores do encontro: a Shimadzu falará sobre MEV com feixe de íons e detector TOF SIMS, e a FEI abordará DualBeam TEM. Saiba mais.
João Pessoa, a “porta do sol”. Saiba mais sobre a cidade, uma das mais antigas do Brasil, e suas atrações naturais e culturais. E prepare-se para mergulhar em águas verdes a 28° C! Leia sobre João Pessoa.
– O que levar na mala? Acompanhe a previsão do tempo, cujas temperaturas devem ficar entre os 22° C e os 30° C. Mas atenção, a organização adverte que, no Centro de Convenções, o ar condicionado deixará o ambiente friozinho… Link para clima em João Pessoa.
Inscrições para participar do evento: aqui.
– Panorama geral da programação: aqui.
– Busca de horários e locais das apresentações dos simpósios: aqui.

–  Algumas opções de hospedagem, locação de carros, transporte desde aeroportos da região, transporte hotéis-centro de convenções e passeios: veja na página inicial do site do evento. Aqui.

– E a festa? Neste ano, será realizada na noite da quarta-feira no Espaço da Caixa Econômica Federal no Cabo Branco. Os ingressos poderão ser comprados na secretaria a partir da segunda-feira às 13h00.

Entrevistas com plenaristas (em português)

Entrevistamos Robert Chang, professor do primeiro departamento de Ciência de Materiais do mundo, na Northwestern University. Além de possuir uma notória carreira como pesquisador (seu índice H é de 56), “Bob” tem se dedicado, nos últimos 20 anos, a conduzir o desenvolvimento do programa Materials World Modules, que desenvolve material educativo de caráter interativo e lúdico (por exemplo, jogos de cartas) sobre Materiais e Nanotecnologia para estudantes do Ensino Básico e seus professores. Na sua palestra plenária no XIII Encontro da SBPMat, o professor Chang tentará mobilizar cidadãos do mundo a solucionar problemas globais, juntos. Veja nossa entrevista com o cientista.

Também falamos com o professor Colin Humphreys, professor da University of Cambridge.  Entre outras honrarias, o cientista recebeu da Rainha de Inglaterra o título de “Sir”, por seus serviços prestados à ciência. Além de ser autor de mais de 600 publicações, o professor desenvolveu materiais para a indústria que hoje voam em motores de aviões e criou LEDs de baixo custo baseados em nitreto de gálio, material no qual é especialista. Em João Pessoa, mostrará, entre outras questões, como o nitreto de gálio poderia reduzir o consumo de eletricidade do mundo em 25%. Veja nossa entrevista com Colin Humphreys.
Entrevistamos o físico alemão Karl Leo, especialista em semicondutores orgânicos. Além de ser autor de mais de 550 papers com mais de 23.000 citações e de 50 famílias de patentes, o cientista já participou da criação de 8 empresas spinoff. Na sua palestra plenária no XIII Encontro da SBPMat, Karl Leo falará sobre dispositivos orgânicos de alta eficiência, como OLEDs e células solares. Veja nossa entrevista com Karl Leo.
Também falamos com o físico português Luís António Ferreira Martins Dias Carlos, da Universidade de Aveiro, que dará uma palestra plenária em nosso encontro de João Pessoa sobre luminescência aplicada à nanomedicina. Na entrevista, o professor compartilhou conosco seus trabalhos mais destacados na área de Materiais. Ele também nos falou sobre alguns desafios da área de luminescência para aplicações médicas, tanto no diagnóstico por imagens quanto no mapeamento da temperatura intracelular, e citou exemplos de aplicações de materiais luminescentes que estão no mercado e já são utilizadas no diagnóstico e tratamentos de diversas doenças. Veja nossa entrevista com Luís Dias Carlos.
Conversamos com o cientista francês Jean-Marie Dubois, especialista em quasicristais (estruturas ordenadas mas não periódicas de materiais sólidos) e pioneiro no patenteamento de aplicações dos quasicristais. Ele nos contou um pouco quais são suas principais contribuições à área de Materiais e adiantou o tema da sua plenária, na qual falará sobre essa ordem não periódica que está presente em ligas metálicas, polímeros, óxidos e nanoestruturas artificiais e que gera propriedades sem precedentes. Na foto, Jean-Marie Dubois (esquerda) e Dan Shechtman, quem recebeu um Prêmio Nobel em 2011 pelos quasicristais, usando gravatas iguais, decoradas com um mosaico de Penrose – um exemplo típico de aperiodicidade. Veja nossa entrevista com Jean-Marie Dubois.
Também entrevistamos o químico italiano Roberto Dovesi, um dos criadores de CRYSTAL, ferramenta computacional para cálculos quânticos ab initio usados no estudo de diversas propriedades de materiais sólidos. O código CRYSTAL hoje é utilizado em mais de 350 laboratórios no mundo. Na sua palestra plenária, Dovesi tentará demonstrar que, atualmente, simulações quânticas podem ser ferramentas muito úteis para complementar os experimentos. Veja nossa entrevista com Roberto Dovesi.
Entrevistamos o professor Alberto Salleo, da Universidade de Stanford, que falará no XIII Encontro da SBPMat sobre dispositivos eletrônicos orgânicos. Jovem, porém dono de uma carreira que já se destaca internacionalmente, Salleo nos contou sobre os trabalhos de seu grupo, que tem se aprofundado no estudo do papel exercido pelas imperfeições no transporte de cargas em semicondutores orgânicos. Ele também compartilhou conosco seus papers mais destacados, publicados na Nature Materials. Finalmente, Salleo falou sobre os próximos desafios e aplicações da eletrônica orgânica e adiantou o que pretende abordar na sua plenária, que promete ser informativa e amena para um amplo público. Veja nossa entrevista com Alberto Salleo.
Nosso perfil no TwitterNossa página no Facebook
Para divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails.

 

Entrevistas com plenaristas do XIII Encontro da SBPMat: Sir Colin Humphreys (University of Cambridge, Reino Unido).

Professor Sir Colin Humphreys.

Sir Colin Humphreys, PhD pela University of Cambridge e Bacharel em Ciências pelo Imperial College, é Professor do Departamento de Ciência de Materiais e Metalurgia da University of Cambridge, no Reino Unido. Sua pesquisa abrange três temas principais: materiais e dispositivos baseados em nitreto de gálio (GaN), microscopia eletrônica avançada e materiais aeroespaciais para temperaturas ultraelevadas. Ele já publicou centenas de trabalhos sobre microscopia eletrônica e apresentou diversas palestras plenárias e convidadas em todo o mundo. Recebeu prêmios nacionais e internacionais por suas pesquisas sobre difração e microscopia eletrônica, bem como sobre nitreto de gálio.

Sir Colin Humphreys fundou uma empresa spinoff  chamada CamGaN para aplicar a pesquisa com nitreto de gálio de seu grupo em LEDs de baixo custo para a iluminação de casas e escritórios. A empresa foi adquirida em fevereiro de 2012 pela Plessey, que fabrica LEDs baseados nessa tecnologia. O professor Humphreys é o fundador e diretor do Cambridge Centre of Gallium Nitride, um centro de nível internacional com instalações voltadas para caracterização, onde a pesquisa é conduzida desde os estudos fundamentais do GaN até suas aplicações em LEDs e lasers. Também fundou e dirige o Cambridge/Rolls-Royce Centre for Advanced Materials for Aerospace, desenvolvendo materiais que agora voam nos motores Rolls-Royce.

Ele é membro da Royal Society, associação independente que reúne vários dos mais renomados cientistas do mundo, vindos de todas as áreas das Ciências, Engenharias e Medicina, e da Royal Academy of Engineering, do Reino Unido. Também é membro do Selwyn College, uma das 31 unidades autônomas da Cambridge University onde os estudantes vivem, comem, socializam e assistem a algumas aulas. Em 2010, ele foi nomeado Cavaleiro (recebeu uma honraria especial e o título de “Sir” da Rainha da Inglaterra) por serviços prestados à ciência.

O professor Sir Colin Humphreys é autor de mais de 600 trabalhos publicados em revistas arbitradas, com mais de 9.400 citações, e seu índice H é 43. Em suas poucas horas vagas, ele escreve livros sobre ciência e religião, como “The Mistery of the Last Supper: Reconstructing the Final Days of Jesus”, (publicado no Brasil com o título “O Mistério da Última Ceia: uma viagem histórica aos últimos dias de Jesus”) recentemente traduzido para o russo, alemão, português, japonês e grego.

Segue nossa entrevista com o professor, que dará uma palestra plenária no XIII Encontro da SBPMat.

Boletim SBPMat: – Por que o senhor acha que o nitreto de gálio é um dos mais importantes materiais semicondutores? Quais são os principais desafios no campo do nitreto de gálio para cientistas e engenheiros em materiais?

Sir Colin Humphreys: – Acho que o nitreto de gálio é um dos materiais semicondutores mais importantes graças à sua ampla variedade de potenciais aplicações e aos benefícios que serão gerados à humanidade a partir delas. Os principais desafios para alcançar essas aplicações são reduzir os custos dos aparelhos baseados em GaN e elevar ainda mais a sua eficiência.

Boletim SBPMat: – Quais são as suas principais contribuições para o desenvolvimento da Ciência e Engenharia de Materiais?

Sir Colin Humphreys: – Minhas principais contribuições para o desenvolvimento da Ciência e Engenharia de Materiais foram solucionar alguns problemas fascinantes de ciência básica, além de desenvolver materiais para a indústria. Por exemplo, eu dirijo um centro de pesquisa em Materiais Avançados da Rolls-Royce, em Cambridge, e alguns dos materiais que desenvolvemos agora estão voando nos motores Rolls-Royce. Além disso, eu dirijo o Cambridge Centre for Gallium Nitride, e os LEDs de baixo custo que produzimos, baseados em GaN sobre silício, hoje são fabricados no Reino Unido pela Plessey.

Boletim SBPMat: – O Brasil tem se esforçado para transferir tecnologia para a indústria. Enquanto isso, o senhor fundou uma empresa spinoff e centros de pesquisa, e em ambos os casos obteve bons resultados com a transferência de tecnologia. Com base nessa experiência, o que o senhor diria para a comunidade de Pesquisa em Materiais do Brasil sobre concretizar a transferência de tecnologia?

Sir Colin Humphreys: – Em primeiro lugar, cientistas e engenheiros precisam ter uma ideia para um produto novo e melhor. Para convencer a indústria, é importante que preparem e apresentem protótipos dos aparelhos. Caso decidam montar sua própria empresa, geralmente é útil trazer um CEO de fora para dirigir os negócios, porque, em sua maioria, cientistas e engenheiros não são muito bons nisso. A escolha do CEO é crucial. E é realmente importante ser muito bem aconselhado. Eu tive sorte ao montar duas empresas porque recebi vários bons conselhos de graça, já que, no Reino Unido, muitas pessoas de Cambridge criaram suas empresas e podem dar boas orientações. Por fim, concretizar a transferência de tecnologia é divertido, mas também trabalhoso! Pode haver muitas adversidades, mas é preciso perseverar! Além disso, entusiasmem-se com seu produto, porque, se vocês mesmos não se entusiasmarem, os outros tampouco o farão! É preciso realmente acreditar no que se está fazendo.

LEDs de GaN sobre substrato de silício de cerca de 15 cm.

Boletim SBPMat: – Se possível, nos fale um pouco sobre o tema da sua palestra plenária no Encontro da SBPMat.

Sir Colin Humphreys: – Na minha palestra plenária em João Pessoa, planejo começar apresentando algumas micrografias eletrônicas em resolução atômica impressionantes, mostrando átomos únicos de impureza de silício em grafeno e indicando como podem ocupar dois pontos diferentes. Também vou mostrar imagens de átomos de silício dançando em grafeno (sei que os brasileiros são excelentes dançarinos!). Então, vou falar sobre o nitreto de gálio (GaN) e como esse incrível material criado pelo homem provavelmente vai nos poupar mais energia e reduzir mais emissões de CO2 do que a energia solar, a eólica e a biomassa juntas! Descreverei como a microscopia eletrônica avançada e a tomografia de sonda atômica têm sido usadas para responder uma questão fascinante: por que os LEDs de GaN são tão brilhantes quando a densidade de deslocamento é tão alta. Também vou descrever como desenvolver LEDs de GaN em substratos de silício de grande área pode reduzir substancialmente o custo dos LEDs, e como é provável que essa economia permita que os LEDs de GaN sejam a forma predominante de iluminação em nossas casas, escritórios, ruas etc. no futuro próximo. Além disso, vou demonstrar como dispositivos eletrônicos baseados GaN são 40% mais eficientes do que aqueles baseados em silício (Si), e que, portanto, substituir os eletrônicos de Si por GaN nos pouparia mais 10% de eletricidade, além da economia de 10 a 15 % vinda do uso dos LEDs de GaN. Assim, o GaN poderia, potencialmente, reduzir o consumo de eletricidade do mundo em 25%, o que é incrível.

Além da economia de energia e das emissões de carbono, se acrescentarmos alumínio ao GaN, ele emitirá luz ultravioleta (UV) profunda, o que pode matar todas as bactérias e vírus. Então, esses LEDs de UV profunda poderiam ser usados para purificar água em todo o mundo, salvando milhões de vidas. Por fim, falarei sobre como a iluminação otimizada por LEDs pode melhorar tanto a nossa saúde quanto as notas de crianças em idade escolar! Minha palestra vai abordar desde a ciência básica até as aplicações.

Artigo em destaque: Pontos quânticos desenvolvidos para LEDs mais eficientes.

O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

Wan Ki Bae, Young-Shin Park, Jaehoon Lim, Donggu Lee, Lazaro A. Padilha, Hunter McDaniel, Istvan Robel, Changhee Lee, Jeffrey M. Pietryga & Victor I. Klimov. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nature Communications 4, article number 2661, published 25 October 2013. doi:10.1038/ncomms3661.

Texto de divulgação: 

Pontos quânticos desenvolvidos para LEDs mais eficientes

Um trabalho de pesquisa publicado no mês de outubro na Nature Communications, revista científica de conteúdo aberto do grupo Nature, resultou num material que aumenta dezenas de vezes a eficiência de LEDs de pontos quânticos ao diminuir a influência do efeito Auger, um dos principais limitadores da eficiência desses dispositivos que apresentam grande potencial para serem usados em iluminação, entre outras aplicações. O trabalho foi realizado no Grupo de Nanotecnologia e Espectroscopia Avançada do Laboratório Nacional de Los Alamos, localizado no sul dos Estados Unidos, com a participação de um doutor brasileiro, Lázaro Padilha, e com a colaboração de grupos da Coreia.

“O resultado veio depois de mais de um ano de pesquisa sobre como efetivamente minimizar o efeito Auger em pontos quânticos”, relata Padilha, atualmente professor do Instituto de Física da Unicamp, que chegou a Los Alamos em 2010 para fazer um estágio de pós-doutorado. O trabalho que gerou o paper na Nature Communications, além de outros artigos em periódicos de alto fator de impacto como Nano Letters e ACS Nano, começou no final de 2011 e, na sua primeira etapa, visou entender o processo físico para minimizar a influência do chamado “efeito Auger” ou “recombinação Auger” nos pontos quânticos.

Os pontos quânticos, cristais semicondutores de alguns nanometros de tamanho, apresentam propriedades que possibilitam a emissão de luz com brilho intenso e cores puras e podem ser fabricados usando técnicas simples e de baixo custo. Por esses motivos, essas nanopartículas são materiais interessantes para a fabricação de LEDs. Desde a primeira demonstração de LEDs de pontos quânticos, ocorrida em 1994 (Nature 370, 354 – 357, 04 August 1994; doi:10.1038/370354a0), esses dispositivos têm sido objeto de pesquisas visando otimizar sua capacidade de converter eletricidade em luz.

Nos LEDs, a emissão de luz se produz quando, ao se introduzir energia no dispositivo por meio de corrente elétrica, ocorrem recombinações nos átomos do material emissor. Especificamente, elétrons próximos ao núcleo do átomo saem de seu lugar deixando vagas, as quais são preenchidas por elétrons mais distantes, dotados de mais energia. A energia excedente pode sair em forma de fóton, ocorrendo a desejada emissão de luz, ou pode ser transmitida a um terceiro elétron, que será ejetado do átomo. Esta segunda possibilidade constitui o efeito Auger, que pode ser visto como um concorrente da emissão de luz no uso da energia.

Nanoengenharia dos pontos quânticos

Depois de compreender como minimizar a recombinação Auger nos pontos quânticos do ponto de vista físico e constatar que impacta significativamente na eficiência dos LEDs, o grupo de Los Alamos se propôs a desenvolver o material que teria o melhor desempenho frente a esse efeito. “Eu trabalhei nos estudos de espectroscopia para entender os processos físicos que levariam a um melhor desempenho dos materiais como base para LEDs”, diz Lázaro Padilha.

O desenvolvimento do material foi feito a partir de pontos quânticos compostos por um núcleo de seleneto de cádmio (CdSe) e uma casca de sulfeto de cádmio (CdS). Para conseguir a redução da influência do efeito Auger, os cientistas aplicaram duas estratégias de nanoengenharia: a variação da espessura da casca e a introdução de uma camada composta por uma liga de zinco, cádmio e enxofre (ZnCdS) entre o núcleo e a casca.

Após concluir, em Los Alamos, o desenvolvimento do material base, os colaboradores da Coreia do construíram LEDs com uma arquitetura na qual a camada emissora, formada pelos pontos quânticos, ficou inserida entre as camadas de transporte de cargas negativas e positivas, sendo uma inorgânica e a outra orgânica, respectivamente, como mostra a figura a seguir, extraída do artigo da Nature Communications:


“Uma vez encontrado o material que teria o melhor efeito, foram fabricados os LEDs e pudemos confirmar os resultados esperados”, conta Padilha. A confirmação ocorreu através de uma série de medidas espectroscópicas dos pontos quânticos dentro dos dispositivos.

De acordo com Padilha, com os novos materiais desenvolvidos, os cientistas conseguiram obter LEDs de pontos quânticos até 10 vezes mais eficientes, com uma taxa de conversão de energia elétrica em energia luminosa da ordem de 8%.