Entrevistas com palestrantes de plenárias do XIV Encontro: Nader Engheta.


Foto do prof. Nader Engheta sobreposta a algumas imagens relacionadas a pesquisas dele. Crédito: Felice Macera, fotógrafo da Universidade de Pennsylvania.

Materiais fabricados com a aplicação do estado-da-arte da ciência e engenharia de materiais e da nanotecnologia podem fazer com que ondas eletromagnéticas como a luz se comportem de modo extraordinário… e útil para aplicações em diversos segmentos.

Para falar sobre esse assunto, o XIV Encontro da SBPMat contará com a presença do professor Nader Engheta (Universidade de Pennsylvania, EUA), um reconhecido líder mundial da pesquisa em metamateriais – materiais criados pelo ser humano por meio de micro ou nanoengenharia, que interagem com as ondas eletromagnéticas de modos não encontrados na natureza. Os metamateriais podem esculpir as ondas para conseguir interações extraordinárias entre luz e matéria.

No Rio de Janeiro, Engheta falará sobre cenários “extremos” gerados a partir de metamateriais: luz viajando em máxima velocidade através de estruturas artificiais, dispositivos ópticos de um átomo de espessura, metamateriais que realizam operações matemáticas, circuitos miniaturizados – ópticos em vez de eletrônicos – compostos por metamateriais, e estruturas com índice de refração próximo de zero.

Já na sua infância em Teerã (capital do Irã), Nader Engheta desenvolveu uma curiosidade especial por compreender fenômenos relacionados a ondas. Foi essa curiosidade que o impulsionou a cursar a graduação em Engenharia Elétrica na Universidade de Teerã, obtendo o diploma de “Bachelor of Science”. Em 1978, foi aos Estados Unidos para continuar com a sua formação em Engenharia Elétrica no prestigiado Instituto de Tecnologia de California (Caltech). Inicialmente obteve o título de mestre e, em 1982, defendeu sua tese de doutorado, da área de eletromagnetismo. Depois de um pós-doutorado na mesma instituição, Engheta atuou como cientista na indústria por quatro anos, trabalhando novamente com eletromagnetismo.

Em 1987, foi contratado pela Universidade de Pennsylvania (Penn), onde ascendeu rapidamente na carreira de professor. Desde 2005, ocupa a cátedra H. Nedwill Ramsey de Engenharia Elétrica e de Sistemas, além de lecionar nos departamentos de Engenharia Elétrica e de Sistemas, de Física e Astronomia, Bioengenharia e Ciência e Engenharia de Materiais. Engheta é coeditor do livro “Metamaterials: Engineering and Physics Explorations“, da editora Wiley-IEEE, lançado em 2006, e autor de 28 capítulos de livros. Em 2012, foi coordenador da Gordon Research Conference on Plasmonics.

Dono de um número H de 69 segundo o Google Scholar, Engheta tem mais de 21.400 citações.

Suas contribuições à ciência e engenharia têm recebido importantes reconhecimentos e distinções de diversas entidades, como a sociedade internacional de óptica e fotônica, SPIE (“2015 SPIE Gold Medal”), a união internacional de ciência de rádio, URSI (“2014 Balthasar van der Pol Gold Medal”) e a organização internacional profissional de engenheiros elétricos e eletrônicos, IEEE (“2015 IEEE Antennas and Propagation Society Distinguished Achievement Award“, “2013 Benjamin Franklin Key Award”, “2012 IEEE Electromagnetics Award”, “IEEE Third Millennium Medal”), entre muitas outras entidades. Ele também é fellow da Materials Research Society (MRS), American Physical Society (APS), Optical Society of America (OSA), American Association for the Advancement of Science (AAAS), SPIE, and IEEE. Engheta também recebeu vários prêmios por sua atuação no ensino.  Em 2006, a prestigiada revista de divulgação científica Scientific American o escolheu como um dos 50 líderes em ciência e tecnologia por seu desenvolvimento de nanocircuitos ópticos inspirados em metamateriais.

Segue uma entrevista com este plenarista do XIV Encontro da SBPMat.

Boletim da SBPMat: – Em sua opinião, quais são suas contribuições mais significativas nos temas relacionados à sua palestra plenária no XIV Encontro da SBPMat? Explique-as muito brevemente, por favor, e, se possível, compartilhe referências dos artigos ou livros resultantes, ou comente se esses estudos produziram patentes, produtos, empresas derivadas etc.

Nader Engheta: – Eu tenho muito interesse na interação luz-matéria, e no meu grupo nós exploramos diferentes métodos para manipular e  otimizar a interação de ondas com estruturas materiais, tanto no domínio óptico como no das microondas. Estou muito feliz com todos os tópicos de pesquisa nos quais o meu grupo e eu temos trabalhado. Alguns desses tópicos incluem (1) O nanocircuito metatrônico óptico, no qual nós trouxemos a noção de elementos de circuito “aglomerado” (“lumped”) da eletrônica para o campo da nanofotônica, desenvolvendo um novo paradigma no qual as nanoestruturas materiais podem funcionar como elementos de circuito óptico. Em outras palavras, “materiais se tornam circuitos” operando com sinais ópticos. Dessa forma, a nanofotônica pode ser modulada de uma maneira análoga à da eletrônica. Isso permite processar sinais ópticos em nanoescala, (2) Metamateriais que podem fazer matemática: dando sequência a nosso trabalho em metatrônica óptica, nós estamos explorando como materiais projetados adequadamente (ex. materiais em camadas) podem interagir com luz de tal forma que seja possível realizar operações matemáticas com luz. Em outras palavras, nós estamos explorando as seguintes questões: Os materiais podem ser especialmente projetados para realizar processamento analógico com a luz em nanoescala? Na medida em que a luz propaga através de tais estruturas materiais projetadas adequadamente, os perfis dos sinais de saída poderiam se assemelhar aos resultados de certas operações matemáticas (tal como diferenciação ou integração) nos perfis dos sinais de entrada? Em outras palavras, nós podemos projetar materiais para operações matemáticas específicas para realizar um “cálculo fotônico” em nanoescala? (3) Cenários extremos na interação luz-matéria: isso pode incluir dimensionalidade extrema, como fotônica de grafeno como plataforma com espessura de um átomo para manipulação de luz, metamateriais extremos no qual parâmetros materiais tais como permissividade relativa e permeabilidade relativa atinjam valores próximos do zero. Essa categoria de materiais, que nós nomeamos materiais épsilon-próximo-do zero, mu-próximo do zero (MNZ) e épsilon-e-mu-próximo do zero (EMNZ) exibem características bastante interessantes em sua resposta à interação com ondas eletromagnéticas.

Referências:

  • N. Engheta, “Circuits with Light at Nanoscales:  Optical Nanocircuits Inspired by Metamaterials”, Science, 317, 1698-1702 (2007).
  • N. Engheta, A. Salandrino, A. Alu, “Circuit Elements at Optical Frequencies:  Nano-Inductor, Nano-Capacitor, and Nano-Resistor,” Physical Review Letters, 95, 095504 (2005).
  • N. Engheta, “Taming Light at the Nanoscale,”  Physics World , 23(9), 31-34 (2010).
  • A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science, 332, 1291-1294 (2011).
  • A.Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, “”Performing Mathematical Operations with Metamaterials,” Science, 343, 160-163 (2014).
  • M. G. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy through Sub-Wavelength Channels and Bends Using Epsilon-Near-Zero (ENZ) Materials,” Physical Review Letters, 97, 157403 (2006).
  • N. Engheta, “Pursuing Near-Zero Response”, Science, 340, 286-287 (2013).
  • A.M. Mahmoud and N. Engheta, “Wave-Matter Interaction in Epsilon-and-Mu-Near-Zero Structures”, Nature Communications, 5:5638, December 5, 2014.

Boletim da SBPMat: – Ajude-nos a visualizar os metamateriais desenvolvidos por seu grupo. Escolha um de seus materiais fotônicos favoritos e conte-nos, brevemente, do que ele é feito, qual sua propriedade principal e quais seriam suas possíveis aplicações.

Nader Engheta: – Uma das estruturas desenvolvidas pelo meu grupo é o nanocircuito metatrônico para regime de IV médio (de 8 a 14 mícrons), no qual nós adaptamos e construímos adequadamente nanobastões de Si3N4 com larguras e espessuras específicas, separados por um espaço específico. Esses arranjos de nanobastões de Si3n4 funcionam como coleções de nanoindutores ópticos, nanocapacitores ópticos e nanorresistores ópticos no IV médio. Nós demonstramos que tais estruturas se comportam como circuitos ópticos de nanoescala, com funcionalidade análoga aos filtros eletrônicos, mas aqui essas estruturas materiais operam em regimes de IV médio. Nós demostramos como essas estruturas operam como filtros ópticos no IV médio, oferecendo aplicações interessantes para futuros dispositivos e componentes ópticos integrados.

Referência:

  • Y. Sun, B. Edwards, A. Alu, and N. Engheta, “Experimental Realization of Optical Lumped Nanocircuit Elements at Infrared Wavelengths,” Nature Materials, 11, 208-212 (2012)

Posteriormente, em colaboração com a minha colega professora Cherie Kagan e seu grupo na UPenn, nós ampliamos esse trabalho para o regime próximo ao IV (de 1 a 3 mícrons). Nesse caso, nós usamos o óxido de índio dopado com estanho (ITO) como o material de escolha, com projeto e padrão adequado de nanobastões de ITO. Nós também demonstramos que tais circuitos metatrônicos óticos baseados em ITO funcionam como uma plataforma interessante para circuitos e filtragem óptica. Isso pode ter interessantes possibilidades na fotônica de silício.

Referência:

  • H. Caglayan, S.-H. Hong, B. Edwards, C. Kagan, and N. Engheta, “Near-IR Metatronic Nanocircuits by Design,” Physical Review Letters, 111, 073904 (2013).

Boletim da SBPMat: – Se quiser, deixe uma mensagem ou convite para sua palestra plenária aos leitores que participarão do XIV Encontro da SBPMat.

Nader Engheta: – Uma das características mais excitantes de fazer ciência é a alegria da busca do desconhecido e a emoção da descoberta. Eu sempre acredito que nós devemos seguir nossa curiosidade e nossa paixão pela descoberta. Também, em ciência e tecnologia é importante manter o equilíbrio entre a complexidade e a simplicidade na busca por soluções às inquisições científicas.

Mais

Plenárias do XIII Encontro da SBPMat: ciência de alto nível com impacto social.


Muitos participantes assistiram às palestras plenárias.

A cena se repetiu diariamente enquanto durou o evento: por volta das 8h30 e cerca das 14h00, sob o forte sol de João Pessoa, filas de centenas de participantes ingressavam ao centro de convenções e se instalavam na refrigerada sala das plenárias. Nela, cientistas de carreiras muito destacadas, atestadas por seus índices H de valores entre 40 e 73, vindos da França, Portugal, Alemanha, Inglaterra, Estados Unidos e Itália, compartilharam com os participantes do encontro da SBPMat o conhecimento deles sobre temas nos quais são, sem sombra de dúvida, qualificados especialistas.

A última plenária do evento, a cargo de Robert Chang, professor do primeiro departamento de Ciência de Materiais do mundo, na Northwestern University, retomou dois assuntos que tinham sido explicitados pelo professor Arana Varela na palestra memorial e que permeariam quase todas as plenárias. O primeiro é o papel essencial da área de Materiais e, em particular, da nanotecnologia, no atendimento às necessidades e demandas da humanidade em saúde, alimentação, transporte, segurança e comunicação, e, simultaneamente, na preservação do equilíbrio do meio ambiente.  Quanto ao segundo assunto, Arana Varela e Chang, que foi presidente da sociedade estadunidense de pesquisa em Materiais, a MRS, e fundador em 1991 da União Internacional de Sociedades de Pesquisa em Materiais (IUMRS), destacaram a necessidade da colaboração para enfrentar esse duplo desafio do século XXI. Nesse contexto, Chang convocou os jovens brasileiros [vídeo abaixo] a formarem parte de uma rede global lançada em 2012, a qual promove a interação de jovens pesquisadores da área em torno desses desafios mundiais por meio de uma conferência bienal e plataformas virtuais.

Mas a colaboração científica entre físicos, químicos, engenheiros, matemáticos, biólogos e outros pesquisadores para desenvolver as tecnologias necessárias, disse Chang, é insuficiente. Também é preciso, acrescentou, contar com o esforço conjunto e global de governos, empresas, comunidades, famílias e indivíduos para implantar essas tecnologias no dia-a-dia das pessoas. “Isso requer educação”, completou Chang. Nos últimos 20 anos, o cientista tem conduzido o programa Materials World Modules, que desenvolveu material interativo de ensino sobre Materiais e Nanotecnologia destinado a estudantes pré-universitários.

Nanomedicina

Luís Carlos

O português Luís Carlos, da Universidade de Aveiro, trouxe ao XIII Encontro da SBPMat muitos exemplos de aplicações da nanotecnologia na área da saúde que estão fazendo diferença, ou podem fazê-la no curto prazo.

Especialista em materiais luminescentes, aqueles emissores de luz não resultante do calor, o cientista mostrou em sua palestra plenária que esses materiais já são de grande utilidade no diagnóstico médico. Complexos orgânicos luminescentes, por exemplo, são comercializados como agentes de contraste para imagens por ressonância magnética e como marcadores para fluoroimunoensaios (utilizados em exames pré e neonatais e na detecção de proteínas, vírus, anticorpos, resíduos de fármacos etc.).

Por sua vez, nanopartículas luminescentes (pontos quânticos e nanocristais com íons lantanídeos) despontam tanto em técnicas de diagnóstico quanto no tratamento de doenças. No último grupo se insere o processo de hipertermia, que consiste na exposição de tecidos biológicos, geralmente células cancerosas, a temperaturas superiores a 45°C, provocando sua morte, com lesões colaterais mínimas nos tecidos normais circundantes.  Acompanhada de um monitoramento e controle adequado da temperatura, a técnica poderia se popularizar.

Nos últimos anos, tem sido realizados esforços por desenvolver nanotermómetros que meçam a temperatura intracelular para atender essa e outras aplicações, não só em Nanomedicina, mas também em áreas comoa Microeletrônica, Fotônica e Microfluídica. Um exemplo bem sucedido, apresentado por Luís Carlos na plenária, é o do desenvolvimento de uma plataforma nanométrica formada por nanobastões, os quais funcionam como termômetros, com nanopartículas de ouro na sua superfície, as quais funcionam como aquecedores. Uma plataforma que, em contraste com seu pequeno tamanho, pode trazer grandes benefícios ao aprimoramento da técnica de hipertermia e ao estudo dos processos de transferência de calor na nanoescala.

LEDs e outros dispositivos de nitreto de gálio: economia de 25% no consumo mundial de eletricidade

Sir Colin Humphreys

Quem participou do XIII Encontro da SBPMat certamente se lembrou da palestra plenária do professor da University of Cambridge, Sir Colin Humphreys, quando foi anunciado o Prêmio Nobel de Física de 2014 para três cientistas japoneses cujos trabalhos foram essenciais para o desenvolvimento das lâmpadas de LED de luz branca. O material escolhido pelos laureados quando decidiram enfrentar o desafio de criar o LED azul que viabilizaria o LED emissor de luz branca foi o nitreto de gálio, objeto da palestra de Sir Colin.

De fato, o professor é especialista nesse material. Criador e diretor de um centro de pesquisa em Cambridge dedicado ao nitreto de gálio, Humphreys também criou dois empreendimentos para explorar comercialmente a tecnologia desenvolvida por seu grupo de pesquisa para fabricação de LEDs para iluminação de baixo custo, crescidos sobre “wafers” de silício relativamente grandes, de uns 15 cm. Em 2012, as spinoffs foram compradas pela Plessey, fabricante de produtos baseados em materiais semicondutores com mais de 50 anos no mercado, que hoje está fabricando esses LEDs no Reino Unido.

A lâmpada LED de nitreto de gálio hoje oferece uma das maiores durabilidades do mercado – 100.000 horas de uso, o equivalente a 69 anos sem trocar a lâmpada, contra 1.000 horas de vida da lâmpada incandescente e  10.000 da fluorescente. Esses LEDs também apresentam alta eficiência energética, de 100 a 200 lumens (quantidade de luz emitida em um segundo) por watt de potência consumida.

Na plenária, Sir Colin mostrou que a ampla utilização de LEDs em iluminação (um dos poucos segmentos em que ainda não se universalizou o uso de dispositivos de alta eficiência energética) resultaria numa economia de cerca de 15% no total de eletricidade consumida no planeta e, portanto, numa notória redução nas emissões de dióxido de carbono.

Mais energia pode ser economizada, disse o professor de Cambridge, substituindo o silício por nitreto de gálio, também nestes casos mais eficiente no uso da eletricidade, em diversos dispositivos eletrônicos. No total, concluiu Humphreys, até 25% de toda a eletricidade usada hoje no mundo poderia ser economizada. Motivo que, acrescido a outras aplicações do nitreto de gálio no campo da saúde, foi suficiente para o cientista britânico afirmar que esse material criado pelo homem é um dos mais importantes.

Semicondutores orgânicos: OLEDs e células solares em destaque

Karl Leo

Da mesma forma que os LEDs, os OLEDs, que são fabricados com materiais orgânicos que justificam a letra “O” da sigla, convertem diretamente a eletricidade em luz e são, portanto, dispositivos de alta eficiência potencial, a qual vem sendo efetivamente melhorada ano a ano. LEDs e OLEDs, cada um com seus diferenciais, já concorrem em alguns mercados, como o de displays e, de maneira mais incipiente no caso dos orgânicos, no de iluminação.

Junto com as células solares orgânicas, os OLEDs foram foco da palestra plenária de Karl Leo, professor da universidade alemã TU Dresden e da árabe-saudita KAUST, autor de mais de 550 papers com 23.000 citações e 50 famílias de patentes, além de fundador de 8 empresas spinoff, como as hoje consolidadas Heliatek e a Novaled, que fabricam células solares orgânicas e OLEDs, respectivamente.

O professor Leo compartilhou com o público uma importante quantidade de resultados conseguidos por seus grupos de pesquisa no que diz respeito a melhorar o desempenho de dispositivos semicondutores orgânicos. Junto a seus colaboradores, Karl Leo tem desenvolvido um extenso trabalho sobre a dopagem de semicondutores orgânicos das camadas de transporte de OLEDs e células solares para aumentar significativamente sua condutividade elétrica – trabalho que resultou, por exemplo, na obtenção de OLEDs emissores de luz branca com eficiência energética mais alta do que a dos tubos fluorescentes.

A partir da esquerda: A. Salleo, F. So, R. Faria, H. von Seggern e J. Nelson.

Karl Leo não foi o único cientista destacado internacionalmente presente em João Pessoa representando a área de semicondutores orgânicos. Na quarta-feira à tarde, uma mesa redonda organizada pelo Simpósio D reuniu quatro desses renomados especialistas: Alberto Salleo (Stanford University), Franky So (University of Florida), Heinz von Seggern (TU Darmstadt) e Jenny Nelson (Imperial College London). Moderada por um destacado cientista brasileiro da área, Roberto Mendonça Faria, professor do Instituto de Física de São Carlos da USP e presidente da SBPMat, o painel congregou dezenas de participantes do encontro, de diversas idades, que participaram ativamente do debate. Em torno do tema dos desafios da eletrônica orgânica, da pesquisa básica à produção em massa (ou produção individual, conforme apontou um jovem do público chamando a atenção para as técnicas de impressão em 3D), diversos assuntos dos campos científico, industrial e social foram abordados pelos membros do painel a partir das perguntas do público. “Felizmente, existem desafios para a Ciência dos Materiais. Infelizmente, desafios existem para a produção em massa”, resumiu o professor Faria, retomando, de alguma maneira, uma das primeiras falas da mesa redonda, em que a professora Jenny lamentou que a comunidade científica celebrasse muito mais o desenvolvimento de um dispositivo que funciona do que a compreensão dos motivos pelos quais determinado dispositivo não funcionou.

Alberto Salleo na plenária

Alberto Salleo, criador em Stanford de um grupo que vem estudando a relação entre estrutura e propriedades em semicondutores poliméricos para melhor compreender a geração e transporte de cargas nesses materiais, também proferiu uma plenária no evento. Na palestra, Salleo colocou em dúvida a universalidade de um pressuposto difundido no ambiente científico que relaciona um alto grau de cristalinidade (ou ordem) na microestrutura desses polímeros a uma mobilidade de cargas mais alta ou a um melhor desempenho dos dispositivos. O cientista mostrou que a desordem é boa para as células solares orgânicas e citou exemplos de polímeros semicondutores quase amorfos de desempenho similar a outros de estrutura muito mais ordenada.

O professor de Stanford apresentou um modelo desenvolvido no seu grupo para mostrar como funciona o transporte de cargas nos semicondutores orgânicos, materiais de microestruturas heterogêneas, caracterizadas pela coexistência de agregados ordenados e desordenados e de longas cadeias poliméricas. Para que exista uma alta mobilidade de cargas, revelou Salleo, o importante é que os agregados se conectem entre si, o que acontece por meio dos “spaghetti” poliméricos.

Ordem sim, mas sem periodicidade

Muito longe da desordem, mas também fora da ordem cristalina tradicional estão os quasicristais, tema geral da plenária do francês Jean-Marie Dubois, do Institut Jean Lamour, cuja experiência no assunto foi reconhecida pela comunidade científica por meio da criação do “Prêmio Internacional Jean-Marie Dubois”, outorgado a cada três anos a pesquisas relacionadas a quasicristais.

Jean-Marie Dubois

Dubois apresentou uma introdução sobre quasicristais, materiais nos quais os átomos estão agrupados em células unitárias de padrões ordenados (podem ser determinados por algoritmos), mas não periódicos (nunca se repetem). Belas imagens científicas e artísticas entremeadas na apresentação de Dubois permitiram visualizar essa ordem aperiódica.

O palestrante homenageou Dan Shechtman, que descobriu os quasicristais em 1982 e, após muitas brigas e resistências na comunidade científica, acabou ganhando o Prêmio Nobel de Química em 2011 e gerando uma grande mudança na visão da ciência sobre a matéria condensada ordenada. Hoje, materiais quasicristalinos são sintetizados e utilizados em diversos produtos, como autopeças e panelas, para melhorar sua condutividade térmica, adesão, atrito, resistência à corrosão etc. Vale destacar que Dubois consta entre os pioneiros no depósito de patentes visando aplicações dos quasicristais.

A ordem quasicristalina pode ser observada nos mais diversos tipos de materiais. Na palestra do XIII Encontro, Dubois abordou, em particular, ligas metálicas formadas por três elementos (A, B e C), nas quais A – B e B – C formam ligações químicas, enquanto B e C se repelem. Denominados por Dubois “ligas puxa-empurra” (push-pull alloys), esses materiais podem formar compostos intermetálicos muito complexos, de até centenas de átomos por célula unitária. Dentre esses, só alguns podem aumentar ainda mais sua complexidade até formar uma ordem quasicristalina, que resulta em propriedades únicas e abrem possibilidades para novas aplicações.

Simulação computacional

Roberto Dovesi

Em mais uma plenária do XIII Encontro da SBPMat, adeptos e interessados no uso de simulação computacional como complemento ao trabalho experimental na investigação das propriedades dos materiais puderam ouvir do professor Roberto Dovesi (Università di Torino) que essa dupla abordagem vale a pena.

Dovesi é um dos criadores de CRYSTAL, uma ferramenta computacional que permite caracterizar sólidos cristalinos do ponto de vista da Mecânica Quântica, por meio de cálculos ab initio. A primeira versão do programa foi desenvolvida a partir de 1976 e lançada em 1988, transformando o CRYSTAL no primeiro código periódico distribuído publicamente para a comunidade científica. Atualmente em sua sétima versão, o programa permite estudar propriedades elásticas, piezoelétricas, fotoelásticas, dielétricas, polarizabilidade e tensores de hiperpolarizabilidade, espectro IR e RAMAN, estrutura de bandas eletrônicas e fonônicas, entre outras propriedades.

O químico italiano destacou o preço acessível e alta velocidade de trabalho dos computadores atuais que são adequados para rodar programas desse tipo. Como exemplo, citou o computador mais recentemente adquirido por seu grupo de pesquisa para simulação computacional, que, tendo custado cerca de 6.500 euros (o equivalente hoje a uns 20.000 reais), é capaz de fazer longos cálculos em poucas horas com seus 64 “cores”. Supercomputadores não são necessários, disse Dovesi, além de serem menos robustos. Quanto ao software, Dovesi remarcou que hoje a área de Materiais conta com programas poderosos, robustos, fáceis de usar e de preços acessíveis (a licença básica da última versão do CRYSTAL, por exemplo, custa a partir de 600 euros – uns 1.900 reais).

Minientrevistas com palestrantes do XII Encontro da SBPMat: Elson Longo da Silva (Unesp).


O professor Elson Longo. Crédito: divulgação.

Elson Longo é professor da pós-graduação na Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) e Professor Emérito da Universidade Federal de São Carlos (UFSCar). Coordena o Centro Multidisciplinar para o Desenvolvimento de Materiais Cerâmicos (CMDMC) e o Instituto Nacional de Ciência e Tecnologia dos Materiais em Nanotecnologia (INCTMN).

Químico formado pela Unesp em 1969, com mestrado e doutorado em Físico-Química pela Universidade de São Paulo (USP), Longo conta com mais de 780 artigos publicados em revistas internacionais, que totalizam mais de 11.180 citações. O professor já foi orientador de mais de 50 mestres e mais de 60 doutores enquanto professor da UFSCar (1989-2005) e da Unesp (a partir de 2005).

Da sua carreira como pesquisador da área de Materiais, Longo destaca uma série de contribuições realizadas nos últimos vinte anos: varistores a base de óxido de zinco, óxido de estanho e titanato de cálcio e cobre; sensores; materiais fotoluminescentes a base de titanatos e tungstato; filmes finos ferroelétricos para utilização em memórias, e materiais fotodegradadores (materiais semicondutores). Também na área de Materiais, Longo participou, junto a empresas da indústria de refratários e siderúrgica, do desenvolvimento de novos tipos de refratários, pisos e azulejos e de cerâmica artística.

É membro titular da Academia Brasileira de Ciências, empossado neste ano, membro da Academia de Ciências do Estado de São Paulo e membro da Academia Internacional de Cerâmica (World Academy of Ceramics).

Atualmente é membro do Conselho da SBPMat. Foi presidente da sociedade de 2004 a 2005.

No XII Encontro da SBPMat, Longo será honrado com a Palestra Memorial “Joaquim Costa Ribeiro”, na qual falará sobre a evolução da pesquisa em Materiais no Brasil.

Segue uma breve entrevista com o palestrante.

Boletim da SBPMat (B.SBPMat): – O senhor tem vasta experiência em projetos realizados junto a empresas. O que teria a comentar sobre a relação da área de Materiais e a indústria no Brasil nesses 40 anos de Engenharia de Materiais? A inserção de engenheiros de Materiais na indústria tem ajudado a melhorar a qualidade, variedade e valor agregado dos produtos brasileiros?

Elson Longo(E.L.): – A área de Materiais evoluiu sobremaneira após a fundação e consolidação da primeira turma de Engenharia de Materiais da UFSCar. Este curso criou no país novas perspectivas para a indústria de um modo geral, pois contemplava três áreas extremamente carentes de especialistas: cerâmica, polímeros e compósitos. Na área de metais já existiam os engenheiros especializados formados em diferentes universidades do país. Vamos tomar somente dois exemplos: a indústria de refratários prosperou e tornou-se competitiva internacionalmente, o mesmo ocorrendo para a indústria de polímeros. Os produtos brasileiros são competitivos no mercado nacional e internacional em função do trabalho dos engenheiros de Materiais e demais categorias de engenharia que trabalham em consonância.

B.SBPMat: – Na sua visão, quais os principais resultados da evolução da formação de recursos humanos na área de Materiais nesses 40 anos no Brasil?

E.L.: – Mais importante que a formação de recursos humanos foi a estruturação de cursos de Engenharia de Materiais em nível de graduação e pós-graduação. Estes cursos hoje estão homogeneamente distribuídos pelo país beneficiando sobremaneira a nossa indústria.

B.SBPMat: – Como você consegue manter uma produtividade científica tão alta e com tantas citações?

E.L.: – A nossa produtividade é fruto de um trabalho em equipe que envolve pesquisadores de São Paulo, Rio Grande do Sul, Paraná, Rio de Janeiro, Minas Gerais, Goiás, Brasília, Sergipe, Paraíba, Rio Grande do Norte, Piauí, Maranhão e Pará. Devo destacar também as interações internacionais que proporcionam grandes oportunidades ao grupo de mostrar o nosso trabalho para a comunidade internacional.

B.SBPMat: – Enquanto participante ativo da história da SBPMat, o que você destacaria dos onze anos de existência da sociedade?

E.L.: – O principal ponto da SBPMat é a harmonia que existe entre os pesquisadores de todos os níveis e a saudável troca de informação entre os mesmos. Por outro lado, a SBPMat desde sua origem tem uma forte participação dos pesquisadores do exterior, o que a coloca na vanguarda do conhecimento.

Informações sobre a palestra de Elson Longo no XII Encontro da SBPMat
Título: “Evolução da pesquisa em Materiais no Brasil”
Resumo: Desde a fundação do curso de Ciência dos Materiais na UFSCar, São Carlos (SP), o país vem evoluindo de modo constante nesta área de conhecimento. É importante ressaltar que esse curso catalisou pesquisadores de Engenharia, Química e Física para o desenvolvimento de materiais cerâmicos, poliméricos e compósitos. Por outro lado, houve também uma ampliação dos cursos de Materiais a nível de graduação e pós graduação, o que contribuiu enormemente para o desenvolvimento da área. Com essa nova estrutura, houve a necessidade da criação da Sociedade Brasileira de Materiais, que vem evoluindo de modo positivo ao longo dos últimos 10 anos.
Quando: 29 de setembro (domingo) das 20h00 às 21h00, após a abertura do evento e antes do coquetel.