Dicas de leitura. Livro “Nanociência e Nanotecnologia: Princípios e Aplicações” (editora Elsevier).

“Nanociência e Nanotecnologia: Princípios e Aplicações” é uma obra distribuída em 3 volumes, com um total de 22 capítulos, redigidos por especialistas e cientistas renomados de diferentes regiões do país. O volume 1 apresenta tópicos de nanoestruturas; o volume 2, técnicas de nanocaracterização, e o volume 3, exemplos de aplicações.

Os organizadores do livro são os pesquisadores doutores Alessandra da Róz (IFSP), Fábio de Lima Leite (UFSCar/CCTS), Marystela Ferreira (UFSCar/CCTS) e Osvaldo Novais Oliveira Jr (USP/IFSC). “Observamos que em português eram poucos os livros destinados à Nanociência e Nanotecnologia e nos unimos para organizar a série”, diz Marystela Ferreira.

A obra foi lançada em 2015 pela editora Campus, da Elsevier. “O sucesso da série lançada em 2015 foi tão grande que a Elsevier nos convidou para editar essa série em língua inglesa”, conta Ferreira. O novo desafio foi aceito e vem sendo realizado pelos organizadores, com a ajuda dos autores e da editora. Os dois primeiros volumes em inglês foram lançados em 2016, e p lançamento do volume 3 está previsto para junho de 2017. Na edição em língua inglesa, novos capítulos foram adicionados no sentido de abranger o máximo possível de materiais e técnicas. “Destaca-se o acréscimo de estruturas de carbono no volume 1 e a apresentação da técnica de SPR (superfície de ressonância de plásmons), no volume 3”, comenta Ferreira.

De acordo com a pesquisadora, a obra aborda os conceitos básicos e os princípios fundamentais da Nanociência e da Nanotecnologia, além de temas como nanossensores, filmes nanoestruturados e técnicas de nanocaracterização (incluídas pensando nos estudantes de graduação e pós que realizam pesquisa experimental). A série também inclui tópicos de mecânica quântica e simulação computacional – temas que ainda não tinham sido abordados em livros nacionais de Nanociência – redigidos em linguagem fácil e objetiva, com aplicações e ilustrações, comenta Ferreira. Novas linhas de pesquisa, como Nanomedicina, Nanoeletrônica e Nanoneurobiofísica também foram abordadas na série. “Trata-se de uma obra que reúne tópicos em áreas como Biologia, Biotecnologia, Física Materiais, Medicina, Química e áreas afins”, diz Ferreira.

Os volumes estão disponíveis no Science Direct (site da Elsevier para busca de artigos e livros) e à venda na forma de e-book e livro impresso no site da Elsevier.

Links para a edição em inglês:

Volume 1.

Volume 2.

Volume 3.

applications techniques nanostructures

 

História da pesquisa em Materiais no Brasil: 40 anos do primeiro laboratório de pesquisa em vidros do Brasil.

box-lamavO primeiro laboratório do Brasil dedicado ao estudo dos materiais vítreos completa 40 anos neste mês de dezembro de 2016. Esse laboratório, que iniciou suas atividades com apenas um forninho tipo mufla de até 1.100 °C, hoje possui 18 fornos, 4 dois quais chegam aos 1.750 °C, e mais três dezenas de equipamentos de fabricação e caracterização de vidros distribuídos em 500 m2. O aniversariante em questão é o LaMaV (Laboratório de Materiais Vítreos), do DEMa (Departamento de Engenharia de Materiais) da Universidade Federal de São Carlos (UFSCar).

No 40º aniversário do LaMaV, a equipe se manifesta plenamente satisfeita com suas realizações [veja box ao lado]. O trabalho pioneiro do laboratório foi essencial na geração, disseminação e aplicação no país do conhecimento científico sobre vidros, tanto no meio acadêmico quanto na indústria. “Formamos aproximadamente uma centena de mestres, doutores e pós-docs, que hoje trabalham como professores e pesquisadores em instituições importantes como a USP, UFSCar, ITA, UEPG, UEMa, UFBa, PUC, IPT, CEFET, UFF, UNESP, UFLavras, UFABC, CTA, UNIOESTE e outras no Brasil e exterior, e em inúmeras empresas. Este é um legado importantíssimo! ”, destaca Edgar Dutra Zanotto, um dos fundadores da SBPMat e da revista Materials Research, que fundou o LaMaV e o lidera até o presente.

Mas os esforços e resultados do LaMaV vão além das fronteiras nacionais e se caracterizam por sua internacionalidade. O laboratório já recebeu estudantes e professores visitantes de dezenas de países. Sua equipe trouxe ao Brasil os mais importantes congressos internacionais sobre vidros, participa dos conselhos editoriais de quase todas as principais revistas científicas especializadas em materiais vítreos e recebeu 7 dos mais prestigiosos prêmios e honrarias internacionais da área – além de mais de 20 prêmios nacionais, incluindo o prêmio Almirante Álvaro Alberto*. As pesquisas do grupo, principalmente aquelas sobre nucleação e cristalização de vidros e vitrocerâmicas, são mundialmente reconhecidas. “Significativa fração dos pesquisadores ativos desta área já ouviu falar, assistiu uma palestra ou leu um artigo ou patente resultante das nossas pesquisas. Certamente colocamos a cidade de São Carlos e o Brasil no mapa mundial da pesquisa em vidros! ”, diz Zanotto.

Atualmente, o LaMaV atua intensamente nos temas de cristalização de vidros, processos de relaxação estrutural e de tensões residuais, vitrocerâmicas, biomateriais, além de propriedades mecânicas, reológicas, elétricas e bioquímicas dos materiais vítreos. “Hoje temos um ótimo laboratório e um excelente financiamento, principalmente da FAPESP, mas também da Capes, CNPq e algumas empresas. Entretanto, a enorme burocracia das agências de fomento relativa à aquisição de materiais e equipamentos e na prestação de contas, as incertezas relativas ao futuro das universidades (por exemplo, PEC 55 e outras), aliadas à escassez de secretárias, técnicos e engenheiros (lab managers) que auxiliem na organização e manutenção dos laboratórios, sempre foram e continuam sendo empecilhos formidáveis”, pondera Zanotto.

A história

Tudo começou em 15 de dezembro de 1976, quando Zanotto foi contratado como professor auxiliar pelo DEMa-UFSCar com o intuito principal de iniciar o trabalho de pesquisa sobre vidros no departamento.  Em 1970, tinha sido lançado o primeiro curso do Brasil (e da América Latina) de graduação em Engenharia de Materiais e, dois anos depois, o DEMa tinha sido criado. Em 1976, o departamento já contava com grupos de pesquisa em metais, polímeros e cerâmicas, mas ninguém trabalhava ainda com vidros, lembra Zanotto, atualmente professor titular do DEMa-UFSCar. “A criação do LaMaV foi uma consequência natural do estabelecimento do curso de graduação em Engenharia de Materiais na UFSCar”, diz o professor.

Nesse fim de 1976, Edgar Zanotto era um engenheiro de materiais recém-formado (pela própria UFSCar), que acabara de concluir um trabalho de iniciação científica sob a orientação do professor visitante Osgood James Whittemore, da Universidade de Washington (EUA), pesquisador da área de materiais cerâmicos. “Minha pesquisa de IC, realizada naquele ano, focalizou a durabilidade química (lixiviação) de vidros candidatos ao encapsulamento de resíduos radioativos”, relata Zanotto. “E, pasme, este assunto ainda é “quente”! ”, completa.

Assim que foi contratado, Zanotto criou o LaMaV. Os primeiros experimentos, realizados pelo próprio Zanotto, consistiam em fundir vidros de baixo ponto de fusão, usando o forno tipo mufla e um cadinho (recipiente que pode ser usado em altas temperaturas) de platina, emprestado do laboratório de análises químicas da universidade.

Em 1977, o fundador do LaMaV iniciou o mestrado em Física no Instituto de Física e Química de São Carlos (IFQSC) da USP, sob a orientação do professor Aldo Craievich, que era, provavelmente, o único cientista atuante na área de vidros antes de 1976. De fato, ele é o autor dos dois primeiros artigos científicos sobre vidros assinados por pesquisadores de instituições brasileiras, ambos publicados em 1975. Durante o mestrado, Zanotto produzia vidros e os tratava termicamente (para gerar cristalização) no LaMaV, fazia averiguação por microscopia no laboratório de metalurgia do DEMa, e caracterizava os vidros por DRX e SAXS no IFQSC da USP. Em um ano e meio de mestrado, Zanotto terminou seu trabalho de pesquisa e defendeu a dissertação. No mesmo ano, ele iniciou o doutorado, também na área de vidros, na Universidade de Sheffield (Reino Unido), com orientação do famoso professor Peter James. Em 1982, Zanotto voltava ao LaMaV com doutorado defendido.

“Nos 10-15 anos iniciais, o trabalho isolado, a inexperiência e as incertezas e dificuldades associadas ao financiamento inconstante das pesquisas, mais o reduzido espaço físico e pouca infra laboratorial atrapalharam as nossas atividades”, relata Zanotto. Cerca de uma década depois da criação do laboratório, foi contratado o segundo professor do grupo, Oscar Peitl Filho, ex-orientado de mestrado e doutorado de Zanotto. Alguns anos depois, Ana Candida Martins Rodrigues se tornou a terceira professora da equipe do LaMaV. Finalmente, em 2013, Marcello Andreeta foi contratado. “Hoje somos 4 professores, 1 técnico, 1 assistente administrativa e cerca de 30 alunos de pesquisa e post-docs, 7 de outros países”, diz Zanotto.

O ano de 2013 foi um marco na história do LaMaV, devido à aprovação e início de atividades do CeRTEV (Center for Research, Technology and Education in Vitreous Materials), um CEPID da FAPESP. Dirigido por Zanotto, o CeRTEV reúne o LaMaV (sede do centro) e outros laboratórios da UFSCar, USP e UNESP, para realizar pesquisa, desenvolvimento e atividades de educação na área de materiais vítreos, contando com financiamento da FAPESP até 2024. “Com o CeRTEV, estabelecemos um dos maiores grupos de pesquisa acadêmicos deste planeta sobre vidros, com infraestrutura de nível internacional, 14 professores e cerca de 60 alunos de pesquisa! “, comemora Zanotto.

“Apenas divagando, se eu pudesse retornar a dezembro de 1976, com a experiência acumulada nesses 40 anos, acho que faria tudo novamente, mas mais eficientemente! ”, expressa o fundador do LaMaV.

Estudantes de doutorado de 28 países participam da "Glass and glass-ceramics school" no LaMaV em agosto de 2015.
Estudantes de doutorado de 28 países participam da “Glass and glass-ceramics school” no LaMaV em agosto de 2015.

——————————–

*Veja também nossa entrevista com o professor Edgar Dutra Zanotto, realizada em abril de 2013, na ocasião do Prêmio Almirante Álvaro Alberto, aqui.

Nota Pública da Sociedade Brasileira de Pesquisa em Materiais.

Cientistas alertam sobre a necessidade de valorizar investimentos em ciência, tecnologia e inovação para a retomada do crescimento econômico 

A diretoria e o conselho da Sociedade Brasileira de Pesquisa em Materiais (SBPMat) vêm a público exortar o Congresso Nacional a manter, no orçamento de 2017, os investimentos em Ciência, Tecnologia e Inovação (CTI) nos níveis dos últimos anos, antes dos cortes drásticos que ocorreram nos anos de 2015 e 2016. Temos ciência do esforço conjunto da sociedade para o ajuste das contas públicas, mas é inadmissível que os cortes em CTI sejam tão mais vultosos do que têm sido a queda de arrecadação e a queda no produto interno bruto.

São igualmente preocupantes os cortes em educação superior e no Sistema Nacional de Pós-Graduação, evidenciados pela interrupção ou diminuição de programas da CAPES. São estes programas que garantem um processo continuado de formação qualificada, alavancando a necessária massa crítica de capital humano para que o desenvolvimento científico e tecnológico alcançado possa, efetivamente, impactar na inovação industrial, aumentar o valor agregado da produção nacional, e garantir o bem-estar econômico e social das gerações futuras.

Num país como o Brasil, que ainda não alcançou maturidade em ciência e tecnologia para colocá-lo entre as nações desenvolvidas, a contribuição da CTI por vezes passa despercebida. Pode-se não atentar para os imensos ganhos de produção em áreas como agricultura e pecuária, na extração e beneficiamento mineral, os quais garantem superávits em nossa balança comercial. Também pode-se não notar a excelência da medicina e da tecnologia digital, que beneficiam diretamente no dia-a-dia da população.

Nossa área específica, a de pesquisa e novas soluções em materiais, é essencial para o futuro do Brasil como nação soberana e menos susceptível a interesse de outros países. Somos os maiores produtores de quartzo e de nióbio no mundo, e estamos entre os maiores em terras raras e outros minérios estratégicos de imenso valor comercial. Nossa biodiversidade oferece um número incontável de novos materiais orgânicos, que poderão ser aplicados em saúde e em segmentos industriais como os de energia e eletrônica.

Sabemos que os efeitos dos cortes em CTI serão devastadores. Além de frearem o avanço contínuo das últimas décadas, com risco de sucateamento de laboratórios e desperdício do valor já investido, os cortes efetuados inviabilizam a tecnologia nacional e a formação de recursos humanos vitais para promover o desenvolvimento sustentável.

Enganam-se aqueles que avaliam que cortes em CTI e educação de nível superior têm pouco impacto para a vida do cidadão comum. No curto prazo, tais cortes afetam mais visivelmente as comunidades acadêmicas estruturadas nos grandes centros do Brasil. Porém, são os estratos socioeconômicos menos favorecidos que serão os mais afetados no médio e longo prazos. Esses estratos não têm acesso ao material importado, ao tratamento médico e formação no exterior, dos quais somente as elites podem se valer. São estes os que mais padecerão, se o Brasil continuar com uma política de governo tênue e não regular, que pode tornar inviável o sistema de ciência, tecnologia e inovação, construído arduamente nas últimas décadas.

História do Laboratório Nacional de Luz Síncrotron – parte 1. O sonho de uma grande máquina de pesquisa no Brasil e os passos prévios à construção do laboratório.

Fotografia do LNLS mostrando tanto o acelerador principal quanto as linhas de luz. Créditos: Julio Fujikawa / Divulgação LNLS.

Desde 1997, no Laboratório Nacional de Luz Síncrotron (LNLS), na cidade de Campinas (SP), elétrons acelerados até uma velocidade muito próxima à da luz e comprimidos num feixe da espessura de um fio de cabelo percorrem um polígono de 93 metros de comprimento, chamado “anel de armazenamento”, gerando um tipo de radiação de brilho ímpar com importantes aplicações no estudo da matéria orgânica e inorgânica, a luz síncrotron.

Em diversos pontos em volta do anel, cientistas, principalmente do meio acadêmico e também da indústria, trabalham simultaneamente em diversos pequenos laboratórios, conhecidos como “estações experimentais” ou “linhas de luz”, cujos instrumentos científicos utilizam os feixes gerados pela fonte de luz síncrotron depois de ser filtrados por monocromadores. Graças a esses filtros, cada experimento recebe o tipo de radiação do espectro eletromagnético que necessita, do infravermelho até os raios X.

Ainda hoje, a fonte de luz síncrotron do LNLS é a única da América Latina. Desde a inauguração do laboratório, o uso das estações experimentais é gratuito e aberto à comunidade científica internacional. Os interessados submetem seus projetos de pesquisa a um comitê composto por membros da comunidade científica, que os encaminha à revisão por pares. As propostas aceitas conseguem um espaço na lotada agenda do LNLS, durante o dia ou à noite. Nos últimos tempos, o laboratório tem beneficiado cerca de 1.500 pesquisadores por ano, originários do Brasil (a maioria), da Argentina (cerca de 17%) e, em menores proporções, de outros países.

As possibilidades de pesquisa experimental disponíveis no LNLS são aproveitadas em trabalhos das mais variadas áreas do conhecimento, como Química, Física, Biologia, Ciências do Meio Ambiente, Geociências e, principalmente, Ciência e Engenharia de Materiais. “Para um número expressivo de pesquisadores dessa área no Brasil, as linhas de luz do LNLS são alguns dos principais instrumentos de medição nos seus programas de pesquisa”, diz Harry Westfahl Jr., diretor científico do LNLS desde março de 2013.

De acordo com Aldo Felix Craievich, cientista que teve uma importante participação ao longo de todo o processo de criação do LNLS e foi seu primeiro diretor científico, um dos objetivos do laboratório, desde o início, foi oferecer aos pesquisadores de Ciência e Engenharia de Materiais uma infraestrutura experimental única e de boa qualidade para suas pesquisas. “O funcionamento do LNLS durante 17 anos já permitiu a muitos cientistas e engenheiros de Materiais utilizarem as diversas linhas de luz, que lhes permitiram realizar pesquisas em condições muito favoráveis, a maior parte das quais seriam impossíveis em laboratórios clássicos”, completa.  De fato, a alta intensidade e outras características singulares da luz síncrotron permitem estudar os materiais com maior detalhe do que a radiação que pode ser produzida por fontes encontradas nos laboratórios das universidades. “Hoje, muitos materiais são nanomateriais e, neste contexto, os melhores tubos de raios X não conseguem concorrer com a radiação síncrotron”, afirma Yves Petroff, físico francês que dirigiu centros de luz síncrotron na Europa e foi diretor científico do LNLS de novembro de 2009 a março de 2013.

Contando com técnicas experimentais como difração de raios X (XRD), espalhamento de raios X a baixos ângulos (SAXS), absorção de raios X (EXAFS, XANES), foto-emissão de elétrons (PES), espectroscopia VUV e microtomografia, as linhas de luz síncrotron permitem um amplo e profundo estudo da estrutura e propriedades dos materiais. “Os pesquisadores trazem ao LNLS os materiais criados em seus laboratórios, como, por exemplo, plásticos mais resistentes, catalisadores mais eficientes ou metais com propriedades eletrônicas e magnéticas inusitadas, para compreender em nível microscópico a manifestação dessas propriedades inovadoras descobertas, ou mesmo para guiar novas rotas de síntese”, exemplifica Harry Westfahl Jr.

De acordo com Aldo Craievich, a contribuição do LNLS ao desenvolvimento da Ciência de Materiais é atestada pela quantidade e qualidade de artigos publicados em revistas de alto impacto a partir de pesquisas experimentais realizadas no laboratório. A título de exemplo, Craievich comenta que, no triênio 2006 – 2008, de um total de 547 publicações em revistas indexadas geradas a partir de trabalhos desenvolvidos no LNLS (as quais podem ser acessadas nos relatórios anuais do LNLS), 211 foram publicadas em periódicos da área de Ciência de Materiais, número que aumenta ao se adicionar as publicações de Química e Física que tratam de aspectos básicos das propriedades de materiais sólidos.

Entretanto, a contribuição do LNLS ao desenvolvimento científico-tecnológico do país começou antes que o laboratório abrisse suas portas à comunidade científica da academia e da indústria. O processo de criação e implantação do LNLS como Laboratório Nacional foi uma rica experiência para seus protagonistas e uma história interessante de se conhecer, principalmente devido ao fato de que a maior parte da fonte de luz síncrotron e das linhas de luz foi projetada e fabricada no país.

Gênese do LNLS: os primórdios

O desejo de possuir no Brasil um grande acelerador de partículas é quase tão antigo como a comunidade de físicos do país. Uma das primeiras tentativas de instalar um equipamento desse tipo ocorreu no início da década de 1950 e se caracterizou por ser uma proposta de construção, em vez da compra, de uma dessas grandes máquinas. O militar e cientista Almirante Álvaro Alberto da Motta e Silva, que tinha liderado a recente criação do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e presidia a instituição, viu na Universidade de Chicago um acelerador de partículas tipo sincrocíclotron e voltou ao Brasil com a proposta de fabricar um pequeno equipamento desse tipo no Rio de Janeiro, no Centro Brasileiro de Pesquisas Físicas (CBPF), para treinar técnicos e cientistas do país que depois pudessem fabricar uma máquina maior. O projeto foi iniciado em 1952. Em 1960, o sincrocíclotron pequeno funcionou pela primeira vez, mas, por diversos motivos, nunca chegou a ficar totalmente operacional.

Passado o período mais duro da ditadura militar brasileira, no qual muitos cientistas saíram do país, o assunto dos grandes equipamentos científicos foi retomado e, em 1981, o presidente do CNPq, Lynaldo C. Albuquerque, chamou a comunidade científica a elaborar propostas de grandes máquinas de pesquisa para implantar no Brasil. Em resposta, ocorreram no CBPF as primeiras discussões sobre a construção de uma fonte de luz síncrotron. No final do ano, uma proposta foi apresentada por Roberto Lobo, diretor do CBPF, ao presidente do CNPq. Em 1982, ambos os cientistas visitaram o laboratório nacional de luz síncrotron francês LURE, da Université Paris-Sud, onde Aldo Craievich estava realizando um estágio de pós-doutorado e adquirindo valiosa experiência em aplicações dessa radiação.

“Desde o início, o pequeno grupo de pessoas que participávamos dessas discussões percebemos que, para levar adiante esse projeto de grande porte, alta complexidade e elevado custo, era necessário conseguir um consenso da comunidade científica brasileira e atrair um razoável número de potenciais usuários interessados”, comenta Craievich. Nas lembranças do cientista, a primeira apresentação pública das ideias preliminares ocorreu no Encontro Nacional de Física da Matéria Condensada realizado em Cambuquira, em abril de 1982. “Na ocasião observou-se certa resistência da comunidade científica ao ser informada do elevado custo do projeto, pelo temor de que isso pudesse afetar o financiamento de outros em andamento”, conta Craievich.

Mesmo assim, Lobo, Craievich e mais alguns pesquisadores do CBPF elaboraram um primeiro documento formal visando à implantação de uma fonte de luz síncrotron no Brasil (“Proposta preliminar do estudo de viabilidade para a implantação de um laboratório nacional de radiação de síncrotron”), o qual, em 1983, foi aprovado pelo CNPq. O CNPq criou então o Projeto Radiação Sincrotrónica (PRS), coordenado por Roberto Lobo, e se dispôs a alocar verbas para formar recursos humanos para desenvolver o projeto e treinar futuros usuários. Ainda em 1983, no mês de outubro, o CNPq instaurou o comitê executivo do PRS, o qual era coordenado por Aldo Craievich (CBPF) e contava com mais sete participantes ligados ao CBPF, UFRJ, UNICAMP e USP. Entre eles, constava Ricardo Rodrigues, que, alguns anos depois, seria nomeado diretor técnico na fase de construção do laboratório. Para promover uma maior divulgação e discussão do projeto e a formação de futuros usuários foi realizado, em agosto de 1983, no CBPF, o Encontro sobre Técnicas e Aplicações da Radiação Síncrotron, do qual participaram 220 cientistas. Também com o objetivo de formar novos recursos humanos no início de 1984, o PRS lançou uma chamada oferecendo bolsas do CNPq de iniciação científica, mestrado, doutorado, pós-doutorado e pesquisa, em temas relacionados à construção da fonte e linhas de luz e suas aplicações.

Mais duas novidades marcaram o ano de 1984 na história do LNLS. O PRS passou a contar com um comitê técnico-científico (CTC), presidido por Roberto Lobo (USP) e formado por uma dúzia de cientistas ligados ao CBPF, IPT, PUC-Rio, UNICAMP e USP, inclusive Cylon Gonçalves da Silva, que se tornaria o primeiro diretor do laboratório em 1986 e lideraria sua efetiva implantação. Além disso, em dezembro de 1984, o CNPq deu mais um passo rumo à construção da fonte de luz síncrotron ao criar a figura do Laboratório Nacional de Radiação Síncrotron (LNRS), com Roberto Lobo como diretor pro tempore, e ainda sem lugar designado para sua sede.

Logo depois da criação do LNRS, o CNPq fez uma chamada à comunidade científica para que fossem submetidas propostas para a sua futura sede. Das quatro propostas de locais – Rio de Janeiro, Niteroi, Campinas e São Carlos -, o presidente do CNPq, numa das últimas resoluções de sua gestão pouco antes do fim do governo militar, em fevereiro de 1985, escolheu Campinas como futura sede do LNRS.

Na próxima edição do Boletim da SBPMat, não perca a reportagem sobre a segunda parte desta história – a fase da construção do laboratório.

Parceria da SBPMat com a IOP: publicação apresenta ao mundo um amplo panorama da área de Materiais no Brasil

Roberto Faria (SBPMat) e Susan Curtis (IOP): parceria para divulgar pelo mundo a Ciência de Materiais brasileira.

O XIII Encontro da SBPMat foi o contexto escolhido para o lançamento de uma publicação sobre o panorama atual da pesquisa em Materiais no Brasil, elaborada pelo Institute of Physics (IOP) para a SBPMat. O documento foi distribuído a todos os participantes que retiraram seu material na secretaria no encontro – mais de 1.600. Além disso, no espaço dos expositores, um estande do IOP distribuiu exemplares durante todo o evento. Ainda, a SBPMat está cuidando de enviar a publicação para bibliotecas de universidades, agências de fomento e outras entidades do Brasil e do exterior. E a versão digital do documento está disponível na web.

Para produzir as matérias que compõem o documento, os físicos do Reino Unido Susan Curtis e Michael Blanks, que trabalham como jornalistas e editores em revistas do IOP, percorreram cerca de 20 instituições brasileiras. A dupla entrevistou mais de 50 cientistas, entre pesquisadores que estão trabalhando na área de Materiais, lideranças da política científica brasileira e coordenadores de laboratórios, centros de pesquisa, projetos e institutos.  Destaque especial tiveram dois importantes cientistas da área, do exterior, que falaram sobre o panorama brasileiro: os presidentes em 2013 das sociedades de pesquisa em Materiais da Europa (E-MRS) e dos Estados Unidos (MRS), o português Rodrigo Martins e o argentino Orlando Auciello, respectivamente.

O resultado foram as 14 reportagens e entrevistas que compõem, junto à introdução assinada pelo presidente da SBPMat, professor Roberto Mendonça Faria, o documento com formato de revista, intitulado “Science impact. A special report on materials science in Brazil”.

Brasil mostra que os materiais têm importância

A revista mostra uma evolução muito positiva na pesquisa em Materiais feita no Brasil, desde o início do século atual, resultante de crescentes investimentos públicos e de estratégias acertadas por parte de entidades federais e estaduais de apoio à pós-graduação, pesquisa e inovação, entre outros motivos.

Em suas 42 páginas, as reportagens abordam resultados recentes da pesquisa feita no Brasil em temas como nanomateriais de carbono, materiais com aplicação no campo da saúde, pesquisas que visam melhorar o desempenho de materiais usados em diversas indústrias, materiais para dispositivos e sistemas optoeletrônicos e fotônicos mais eficientes e baratos, materiais naturais otimizados por meio da pesquisa, e materiais para produzir e armazenar energia solar.

Além disso, Curtis e Blank mapearam os laboratórios multiusuário do Brasil na área de Materiais, os quais disponibilizam seus equipamentos para usuários do meio acadêmico e da indústria, do país e do exterior. E também reportaram, ao longo do documento, numerosos casos de transferência de conhecimento e tecnologia da universidade para a indústria por meio da criação de empreendimentos spinoff e de projetos com grandes empresas, como a Camargo Correa, Embraco, Petrobras e Vale. Completam a publicação interessantes pitadas sobre história da Ciência de Materiais no Brasil e alguns de seus protagonistas.

Sobre os físicos-jornalistas

Michael Blanks é editor de notícias da revista Physics World do IOP. Durante sua graduação em Física na Loughborough University fez um estágio de um ano no Max Planck Institute for Solid State Research em Stuttgart (Alemanha). Começou a trabalhar no IOP em 2007, após finalizar seu doutorado em Física experimental da matéria condensada.

Susan Curtis tem cerca de duas décadas de experiência de publicação e edição de revistas e sites de ciência no IOP. É formada em Física pela University of Surrey e já foi pesquisadora na empresa BP.

Link para a versão digital do documento: http://mag.digitalpc.co.uk/fvx/iop/scienceimpact/BMRS2014/

Oportunidade para doutorado Brasil – França em transformação de fases em ligas Fe-Ni-C.

Dentre as ligas metálicas, o aço, uma liga que tem no ferro seu principal constituinte, é a de maior importância tecnológica e por isso mesmo é a mais estudada em nível experimental e teórico. O níquel é um dos principais elementos de liga utilizados em ligas ferrosas voltadas para aplicações em condições extremas, tais como em reservatórios e tubos para o transporte de gás natural liquefeito (que requer temperaturas inferiores a 100 K). O carbono, por sua vez, é normalmente encontrado em solução sólida em sítios intersticiais na matriz de ferro, ou segrega para defeitos extensos, como discordâncias (formando as assim chamadas “atmosferas de Cottrell”) e contornos de grãos, tendo reconhecida influência nas propriedades mecânicas dos aços. O trabalho de doutorado aqui proposto consistirá na utilização de técnicas experimentais não-destrutivas (ruído de Barkhausen, dilatometria, potencial termoelétrico, microscopia) e métodos teórico-computacionais multi-escala (dinâmica molecular, Monte Carlo, “phase field”) no estudo das transformações de fases em ligas Fe-Ni-C, com foco inicial na transformação martensítica, de especial relevância tecnológica. A maior ênfase no trabalho experimental ou teórico-computacional dependerá das aptidões do candidato selecionado, mas a disposição para ambos é fundamental para o projeto.

O estudante realizará seu trabalho de tese, num primeiro momento, no Departamento de Engenharia Metalúrgica e de Materiais da Escola Politécnica da Universidade de São Paulo (onde também cursará as disciplinas do Doutorado) e, num estágio posterior, na École Nationale Supérieure de Chimie de Lille e/ou no Institut National des Sciences Apliquées de Lyon, na França. A estadia do doutorando na França, por um período que pode variar de 12 a 18 meses, será inteiramente financiada pela cota de bolsas de doutorado-sanduíche do projeto CAPES-COFECUB e constitui uma valiosa oportunidade de experiência internacional.

Perfil do candidato: formação em nível de graduação em Engenharia, Matematica, Física ou Química, com Mestrado. Brasileiro ou estrangeiro com residência permanente.

Aos interessados favor contatar o Prof. Hélio Goldenstein (hgoldens@usp.br), coordenador brasileiro do projeto, e Roberto Veiga (rgaveiga@gmail.com).