Artigo em destaque: Inteligência artificial para desenvolver novos vidros.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Predicting glass transition temperatures using neural networks. Daniel R.Cassar, André C.P.L.F. de Carvalho, Edgar D. Zanotto. Acta Materialia. Volume 159, 15 October 2018, Pages 249-256. https://doi.org/10.1016/j.actamat.2018.08.022

Inteligência artificial para desenvolver novos vidros

Os vidros, materiais que estão presentes em uma vasta diversidade de produtos, desde uma garrafa de vinho até um implante dentário, poderão fazer novas contribuições à qualidade de vida dos seres humanos e animais, e à preservação do planeta. De fato, até o momento, cerca de 400 mil (4 x 105) fórmulas de vidros foram produzidas e publicadas, enquanto 1052 novos vidros poderão ainda ser desenvolvidos utilizando combinações possíveis entre 80 elementos amigáveis da tabela periódica.

Para lidar com essa infinidade de possibilidades, é imprescindível contar com a ajuda de ferramentas computacionais sofisticadas que indiquem quais são as fórmulas químicas mais promissoras em função de suas propriedades físico-químicas. Ferramentas recentes utilizam inteligência artificial, principalmente algoritmos do chamado “aprendizado de máquina” (machine learning). Após um adequado treinamento com dados conhecidos, essas ferramentas podem realizar a triagem inicial que permite decidir em quais fórmulas vale a pena investir recursos (tempo, dinheiro, esforços) para desenvolvê-las no laboratório.

box vidrosEssa foi a direção escolhida por uma equipe brasileira que reuniu pesquisadores das áreas de Materiais e de Computação, e criou uma ferramenta computacional de aprendizado de máquina (uma rede neural artificial), que se mostrou capaz de predizer com eficácia a temperatura de transição vítrea (Tg), uma importante propriedade dos vidros que depende de sua composição [Veja box ao lado].

O trabalho foi reportado em artigo científico recentemente publicado no periódico Acta Materialia (fator de impacto 6,036, taxa de aceite de 22%).

“A principal contribuição do artigo foi demonstrar a possibilidade de prever uma propriedade importante de vidros óxidos (neste caso a Tg) usando uma rede neural artificial”, diz Edgar Dutra Zanotto, professor da UFSCar e um dos três autores do paper. “A única informação necessária para realizar tal previsão é a composição química do material”, completa.

Redes neurais artificiais são amplamente usadas, por exemplo, para reconhecer rostos em enormes bancos de imagens, mas a sua aplicação na pesquisa em Materiais ainda é escassa e incipiente. Na área de materiais vítreos, por exemplo, o artigo de Zanotto e seus coautores é o terceiro que reporta o uso dessa ferramenta computacional.

As redes neurais artificiais são sistemas computacionais distribuídos formados por unidades de processamento de dados simples (equivalentes a neurônios simplificados) interconectados por meio de conexões equivalentes a sinapses. Elas aprendem por meio de algoritmos de aprendizado. Trabalhando em conjunto, os “neurônios” conseguem processar grandes volumes de dados e fazer previsões, mas, para isso, a rede precisa ser treinada a partir de exemplos concretos.

A aproximação de Zanotto às redes neurais artificiais começou há cerca de dois anos, quando ele pensou em buscar ferramentas de inteligência artificial para facilitar a busca de novas fórmulas de vidros. A ideia despertou grande interesse de Daniel Roberto Cassar, bolsista de pós-doutorado do Laboratório de Materiais Vítreos (LaMaV) do Departamento de Engenharia de Materiais (DEMa) da UFSCar, coordenado por Zanotto. Cassar participou, então, de cursos e palestras sobre redes neurais e começou a incursionar no desenvolvimento de redes neurais aplicadas ao estudo de vidros.

Há cerca de um ano, a dupla de cientistas de materiais sentiu necessidade de contar com um especialista em inteligência artificial e iniciou uma colaboração com o professor André Carlos Ponce de Leon Ferreira de Carvalho, professor do Instituto de Ciências Matemáticas e de Computação (ICMC) da USP São Carlos. Dessa maneira, a pesquisa acabou envolvendo uma série de bolsistas de ambos os grupos, todos localizados na cidade de São Carlos.

Foto da esuqerda: Professor Edgar Zanotto e bolsista de pós-doutorado Daniel Cassar no LaMaV - DEMa – UFSCar. Foto da direita: O professor André Carlos Ponce de Leon Ferreira de Carvalho (segundo a partir da esquerda) em laboratório do ICMC - USP São Carlos, rodeado por bolsistas que estão realizando pesquisas sobre ferramentas de inteligência artificial para prever propriedades de vidros. A partir da esquerda: Bruno de Almeida Pimentel (pós-doutorado), Edesio Alcobaça Neto (doutorado) e Saulo Martiello Mastelini (doutorado).
Foto da esquerda: Professor Edgar Zanotto e bolsista de pós-doutorado Daniel Cassar no LaMaV – DEMa – UFSCar. Foto da direita: O professor André Carlos Ponce de Leon Ferreira de Carvalho (segundo a partir da esquerda) em laboratório do ICMC – USP São Carlos, rodeado por bolsistas que estão realizando pesquisas sobre ferramentas de inteligência artificial para prever propriedades de vidros. A partir da esquerda: Bruno de Almeida Pimentel (pós-doutorado), Edesio Alcobaça Neto (doutorado) e Saulo Martiello Mastelini (doutorado).

A equipe projetou e implementou uma rede neural artificial, que foi treinada para que conseguisse correlacionar Tg e composição química. O treinamento foi realizado com os dados da Tg e da composição de cerca de 45.000 vidros baseados na combinação de 45 elementos químicos. Cada uma das fórmulas usadas no treinamento continha, no mínimo, 3 elementos e, no máximo, 21. Todos os dados foram extraídos de um banco de materiais vítreos que reúne dados experimentais extraídos da literatura científica.

Temperatura de transição vítrea (Tg) predita pela rede neural versus o valor experimental reportado na literatura. Gráfico construído considerando 5.515 pontos experimentais que não foram utilizados para o treino da rede neural. A linha reta mostra a identidade onde a previsão da rede é igual ao valor reportado. A inserção mostra a distribuição do erro relativo da previsão (em porcentagem).
Temperatura de transição vítrea (Tg) predita pela rede neural versus o valor experimental reportado na literatura. Gráfico construído considerando 5.515 pontos experimentais que não foram utilizados para o treino da rede neural. A linha reta mostra a identidade onde a previsão da rede é igual ao valor reportado. A inserção mostra a distribuição do erro relativo da previsão (em porcentagem).

Depois de treinar a rede, os cientistas testaram a sua capacidade de prever a Tg. Para isso, informaram à rede a composição química de outros 5.515 vidros, também presentes no banco de dados, mas que não tinham sido usados no treinamento. Ao comparar os valores preditos pela rede neural com os valores obtidos por meio de métodos experimentais, presentes no banco de dados, o time científico se surpreendeu positivamente. A rede neural artificial teve um desempenho muito bom nas respostas, errando, no máximo, 6% para cima ou para baixo nos valores da temperatura em 90% dos testes – um nível de incerteza muito similar ao exibido pelos estudos experimentais. Além disso, o grau de precisão dos resultados demonstrou ser independente da quantidade de elementos químicos presentes na composição do vidro, o que é importante quando se pensa em sondar materiais com extensas fórmulas químicas.

A rede neural são-carlense está pronta para ajudar cientistas e engenheiros de materiais do mundo a estimarem rapidamente a Tg de vidros de qualquer composição, tornando o trabalho de pesquisa e desenvolvimento de novos vidros muito mais rápido, fácil e econômico. Além disso, o estudo conduzido por Cassar, Carvalho e Zanotto mostra um caminho que pode ser seguido para desenvolver novas redes neurais aplicadas à Ciência e Engenharia de Materiais. “Este resultado abre uma larga avenida para estudos similares visando a previsão de quase todas as propriedades físico-químicas dos vidros com base na sua composição! ”, afirma Zanotto.

De fato, nos grupos dos professores Zanotto e Carvalho, pouco mais de um ano após o início da colaboração, uma série de trabalhos sobre o assunto está em curso. Essas pesquisas devem gerar novos algoritmos para aperfeiçoar ainda mais as redes neurais, novas redes treinadas para predizer outras propriedades (índice de refração, módulo de elasticidade, temperatura liquidus, etc.), mais conhecimento sobre o desempenho de algoritmos de aprendizado de máquina, novos artigos científicos e ferramentas de software para uso da comunidade.

O trabalho que originou o artigo publicado na Acta Materialia foi financiado pela FAPESP, por meio de dois Centros de Pesquisa, Inovação e Difusão: o CERTEV (Center for Research, Technology and Education in Vitreous Materials) e o CeMEAI (Centro de Ciências Matemáticas Aplicadas à Indústria). A pesquisa também recebeu financiamento do programa Nippon Sheet Glass Overseas Grant(Japão).

XI Brazilian Symposium on Glass and Related Materials (XI BrazGlass).


O BrazGlass é um evento de periodicidade bianual que reúne estudantes, pesquisadores e profissionais da indústria que pesquisam em vidros e materiais correlatos, com aplicações nas mais diversas áreas tais como biomateriais, fibras óticas, energia, etc.

O evento contará com pesquisadores palestrantes de renome internacional e encontra-se com a submissão de resumos aberta até o dia 03/04/2017.

Mais informações://www3.uepg.br/brazglass/

História da pesquisa em Materiais no Brasil: 40 anos do primeiro laboratório de pesquisa em vidros do Brasil.


box-lamavO primeiro laboratório do Brasil dedicado ao estudo dos materiais vítreos completa 40 anos neste mês de dezembro de 2016. Esse laboratório, que iniciou suas atividades com apenas um forninho tipo mufla de até 1.100 °C, hoje possui 18 fornos, 4 dois quais chegam aos 1.750 °C, e mais três dezenas de equipamentos de fabricação e caracterização de vidros distribuídos em 500 m2. O aniversariante em questão é o LaMaV (Laboratório de Materiais Vítreos), do DEMa (Departamento de Engenharia de Materiais) da Universidade Federal de São Carlos (UFSCar).

No 40º aniversário do LaMaV, a equipe se manifesta plenamente satisfeita com suas realizações [veja box ao lado]. O trabalho pioneiro do laboratório foi essencial na geração, disseminação e aplicação no país do conhecimento científico sobre vidros, tanto no meio acadêmico quanto na indústria. “Formamos aproximadamente uma centena de mestres, doutores e pós-docs, que hoje trabalham como professores e pesquisadores em instituições importantes como a USP, UFSCar, ITA, UEPG, UEMa, UFBa, PUC, IPT, CEFET, UFF, UNESP, UFLavras, UFABC, CTA, UNIOESTE e outras no Brasil e exterior, e em inúmeras empresas. Este é um legado importantíssimo! ”, destaca Edgar Dutra Zanotto, um dos fundadores da SBPMat e da revista Materials Research, que fundou o LaMaV e o lidera até o presente.

Mas os esforços e resultados do LaMaV vão além das fronteiras nacionais e se caracterizam por sua internacionalidade. O laboratório já recebeu estudantes e professores visitantes de dezenas de países. Sua equipe trouxe ao Brasil os mais importantes congressos internacionais sobre vidros, participa dos conselhos editoriais de quase todas as principais revistas científicas especializadas em materiais vítreos e recebeu 7 dos mais prestigiosos prêmios e honrarias internacionais da área – além de mais de 20 prêmios nacionais, incluindo o prêmio Almirante Álvaro Alberto*. As pesquisas do grupo, principalmente aquelas sobre nucleação e cristalização de vidros e vitrocerâmicas, são mundialmente reconhecidas. “Significativa fração dos pesquisadores ativos desta área já ouviu falar, assistiu uma palestra ou leu um artigo ou patente resultante das nossas pesquisas. Certamente colocamos a cidade de São Carlos e o Brasil no mapa mundial da pesquisa em vidros! ”, diz Zanotto.

Atualmente, o LaMaV atua intensamente nos temas de cristalização de vidros, processos de relaxação estrutural e de tensões residuais, vitrocerâmicas, biomateriais, além de propriedades mecânicas, reológicas, elétricas e bioquímicas dos materiais vítreos. “Hoje temos um ótimo laboratório e um excelente financiamento, principalmente da FAPESP, mas também da Capes, CNPq e algumas empresas. Entretanto, a enorme burocracia das agências de fomento relativa à aquisição de materiais e equipamentos e na prestação de contas, as incertezas relativas ao futuro das universidades (por exemplo, PEC 55 e outras), aliadas à escassez de secretárias, técnicos e engenheiros (lab managers) que auxiliem na organização e manutenção dos laboratórios, sempre foram e continuam sendo empecilhos formidáveis”, pondera Zanotto.

A história

Tudo começou em 15 de dezembro de 1976, quando Zanotto foi contratado como professor auxiliar pelo DEMa-UFSCar com o intuito principal de iniciar o trabalho de pesquisa sobre vidros no departamento.  Em 1970, tinha sido lançado o primeiro curso do Brasil (e da América Latina) de graduação em Engenharia de Materiais e, dois anos depois, o DEMa tinha sido criado. Em 1976, o departamento já contava com grupos de pesquisa em metais, polímeros e cerâmicas, mas ninguém trabalhava ainda com vidros, lembra Zanotto, atualmente professor titular do DEMa-UFSCar. “A criação do LaMaV foi uma consequência natural do estabelecimento do curso de graduação em Engenharia de Materiais na UFSCar”, diz o professor.

Nesse fim de 1976, Edgar Zanotto era um engenheiro de materiais recém-formado (pela própria UFSCar), que acabara de concluir um trabalho de iniciação científica sob a orientação do professor visitante Osgood James Whittemore, da Universidade de Washington (EUA), pesquisador da área de materiais cerâmicos. “Minha pesquisa de IC, realizada naquele ano, focalizou a durabilidade química (lixiviação) de vidros candidatos ao encapsulamento de resíduos radioativos”, relata Zanotto. “E, pasme, este assunto ainda é “quente”! ”, completa.

Assim que foi contratado, Zanotto criou o LaMaV. Os primeiros experimentos, realizados pelo próprio Zanotto, consistiam em fundir vidros de baixo ponto de fusão, usando o forno tipo mufla e um cadinho (recipiente que pode ser usado em altas temperaturas) de platina, emprestado do laboratório de análises químicas da universidade.

Em 1977, o fundador do LaMaV iniciou o mestrado em Física no Instituto de Física e Química de São Carlos (IFQSC) da USP, sob a orientação do professor Aldo Craievich, que era, provavelmente, o único cientista atuante na área de vidros antes de 1976. De fato, ele é o autor dos dois primeiros artigos científicos sobre vidros assinados por pesquisadores de instituições brasileiras, ambos publicados em 1975. Durante o mestrado, Zanotto produzia vidros e os tratava termicamente (para gerar cristalização) no LaMaV, fazia averiguação por microscopia no laboratório de metalurgia do DEMa, e caracterizava os vidros por DRX e SAXS no IFQSC da USP. Em um ano e meio de mestrado, Zanotto terminou seu trabalho de pesquisa e defendeu a dissertação. No mesmo ano, ele iniciou o doutorado, também na área de vidros, na Universidade de Sheffield (Reino Unido), com orientação do famoso professor Peter James. Em 1982, Zanotto voltava ao LaMaV com doutorado defendido.

“Nos 10-15 anos iniciais, o trabalho isolado, a inexperiência e as incertezas e dificuldades associadas ao financiamento inconstante das pesquisas, mais o reduzido espaço físico e pouca infra laboratorial atrapalharam as nossas atividades”, relata Zanotto. Cerca de uma década depois da criação do laboratório, foi contratado o segundo professor do grupo, Oscar Peitl Filho, ex-orientado de mestrado e doutorado de Zanotto. Alguns anos depois, Ana Candida Martins Rodrigues se tornou a terceira professora da equipe do LaMaV. Finalmente, em 2013, Marcello Andreeta foi contratado. “Hoje somos 4 professores, 1 técnico, 1 assistente administrativa e cerca de 30 alunos de pesquisa e post-docs, 7 de outros países”, diz Zanotto.

O ano de 2013 foi um marco na história do LaMaV, devido à aprovação e início de atividades do CeRTEV (Center for Research, Technology and Education in Vitreous Materials), um CEPID da FAPESP. Dirigido por Zanotto, o CeRTEV reúne o LaMaV (sede do centro) e outros laboratórios da UFSCar, USP e UNESP, para realizar pesquisa, desenvolvimento e atividades de educação na área de materiais vítreos, contando com financiamento da FAPESP até 2024. “Com o CeRTEV, estabelecemos um dos maiores grupos de pesquisa acadêmicos deste planeta sobre vidros, com infraestrutura de nível internacional, 14 professores e cerca de 60 alunos de pesquisa! “, comemora Zanotto.

“Apenas divagando, se eu pudesse retornar a dezembro de 1976, com a experiência acumulada nesses 40 anos, acho que faria tudo novamente, mas mais eficientemente! ”, expressa o fundador do LaMaV.

Estudantes de doutorado de 28 países participam da "Glass and glass-ceramics school" no LaMaV em agosto de 2015.
Estudantes de doutorado de 28 países participam da “Glass and glass-ceramics school” no LaMaV em agosto de 2015.

——————————–

*Veja também nossa entrevista com o professor Edgar Dutra Zanotto, realizada em abril de 2013, na ocasião do Prêmio Almirante Álvaro Alberto, aqui.

Postdoctoral positions available for glass research.


Applications for postdoctoral fellowships are invited for conducting fundamental and applied research at the Center for Research, Technology and Education in Vitreous Materials (CeRTEV) in São Carlos, Brazil. The period of the fellowship is two years, starting in August 2016, renewable for two additional years upon mutual consent.

CeRTEV is an 11-year (started in 2013) joint effort of the Federal University at São Carlos (UFSCar), the University of São Paulo (USP) and the State University of São Paulo (UNESP), to conduct research in the area of Functional Glasses and Glass-Ceramics.

The postdoctoral research will be focused on fundamental and/or applied investigation of glass and glass-ceramics. The researcher is expected to conduct the post-doc activities in one of the joint CeRTEV laboratories and supervised by one of our Principal Investigators, but in close collaboration with the other CeRTEV researchers.

Applicants should have a PhD degree in Physics, Chemistry, Materials Science or Engineering, and have a genuine interest in conducting interdisciplinary research in an international environment. Previous experience in glass science, solid state physics or chemistry is advantageous. The monthly fellowships (non-taxable) include ca. R$ 6.800,-plus 15% professional expenses. Travel expenses from and to their home countries will also be covered. The three sister universities are committed to increasing the proportion of women and ethnic minorities in academia.

Please send your application including CV, list of publications, a 2-page research proposal, and the names and email addresses of two references by May 5, 2016 to Prof. Dr. Edgar D. Zanotto (dedz@ufscar.br) and Laurie Leal (laurie_leal@yahoo.com.br).

Centro de pesquisa, tecnologia e educação em materiais vítreos CeRTEV inova em educação a distância internacional.


No próximo dia 19 deste mês, as 15h15, o Cepid – Fapesp CeRTEV (Center for Research, Technology and Education in Vitreous Materials), com sede na UFSCar, São Carlos, dará início a um inovador esquema de ensino e divulgação científica internacional via internet.

Trata-se de atividade inicial num programa em colaboração com o IMI (International Materials Institute for New Functionality in Glass), sediado na Pennsylvania State University e Lehigh University, ambas nos EUA. O IMI é financiado pela National Science Foundation, num programa similar aos Cepids da FAPESP.

Utilizando-se do software Blackboard Collaborate, o professor da UFSCar Edgar Dutra Zanotto, coordenador do Cepid, ministrará a primeira aula sobre vitrocerâmicos, com duração de 75 minutos, para alunos, pesquisadores de universidades e empresas, e professores de vários países cadastrados num curso sobre “glass processing”.

Uma aula teste foi realizada com sucesso na última sexta-feira. Dependendo dos resultados das duas aulas reais, nos dias 19 e 24, esta iniciativa deverá ser incorporada às inúmeras ações de ensino e divulgação científica do Cepid e expandida com vários outros cursos.

Alunos e interessados em ensino e divulgação científica em geral estão cordialmente convidados a assistir a alguns minutos da primeira aula para vislumbrar como funciona essa interessante e inovadora estratégia: http://tinyurl.com/IMI-GlassClass.

Mais informações

Pre-testing for participants: You may test your login as a participant at any time between now and the actual course sessions. We strongly recommend you try out our test site to get familiar with how to log in and the features available on Blackboard Collaborate prior to the first scheduled lecture. It will NOT be possible to sort out any connection problems during the live screening of the lecture. We are reserving two special, assisted log on sessions. During the special sessions below we will have some content posted and will monitor the sessions to address any individual problems or questions.
Monitored Testing Sessions:
Friday, Jan. 16, 2015: 10 AM – 4 PM (EST-USA) and Monday, Jan. 19: noon-5PM (EST).

How to access Blackboard Collaborate

1. Open the link below in your browser http://tinyurl.com/IMI-GlassClass

2. A Blackboard Collaborate window will appear which requests you to enter your name. Please write LAST NAME and AFFILIATION (eg. Smith – Lehigh Uni.)

3. Click the “log in” box. 4. This log in will initiate an automatic download of Java and Blackboard Collaborate (Depending on your security settings you may have to “Allow” this to run).

You may also be asked to Select the connection speed (LAN, Cable, etc)

Gente da nossa comunidade: entrevista com o pesquisador Aldo Craievich.


Ao longo de meio século dedicado à pesquisa em Física da Matéria Condensada, o cientista Aldo Felix Craievich fez relevantes contribuições ao estudo de estruturas e transformações estruturais de sólidos, pesquisando vidros (tema no qual foi pioneiro em pesquisa científica no Brasil), parafinas, materiais obtidos por sol-gel e diversos nanomateriais. Essas pesquisas renderam mais de 200 artigos publicados em revistas internacionais com revisão por pares, os quais contam com mais de 3.600 citações.

Entretanto, o legado do trabalho de Craievich para a comunidade de Materiais vai além da sua produção científica. Durante 17 anos, o cientista foi um dos protagonistas das sucessivas fases da história da criação do Laboratório Nacional de Luz Síncrotron (LNLS), cujos recursos para pesquisa têm impactado a comunidade de Materiais, não só no Brasil, como também em outros países, principalmente latino-americanos. Craievich também se dedicou intensamente à formação de usuários da luz síncrotron em cursos oferecidos em diversos países da América Latina e em dez escolas que dirigiu e nas quais participou como professor no Centro Internacional de Física Teórica (ICTP), em Trieste, Itália.

Nascido no interior da província de Santa Fé, na Argentina, Craievich se formou em Física em nível de graduação e doutorado pelo prestigiado Instituto Balseiro, localizado na cidade argentina de Bariloche, tendo desenvolvido seu trabalho de pesquisa de doutorado na França, no Laboratoire de Physique des Solides da Université Paris-Sud, sob supervisão de André Guinier, um dos maiores expoentes da cristalografia e das técnicas de caracterização por raios X do século XX.

Craievich começou a trabalhar no Brasil em 1973, ano em que assumiu tarefas de docência e pesquisa no Instituto de Física e Química de São Carlos (IFQSC), ligado à USP, a convite de Yvonne Mascarenhas. Em 1976 voltou ao Laboratoire de Physique des Solides para realizar um estágio de pós-doutorado de um ano, retornando depois ao IFQSC. Em 1980 mudou-se para o Rio de Janeiro para trabalhar como pesquisador no Centro Brasileiro de Pesquisas Físicas (CBPF), cargo no qual permaneceu até 1986. Em 1981 fez um segundo estágio de pós-doutorado na França, dessa vez no centro nacional de luz síncrotron LURE – laboratório que continuou freqüentando por períodos mais curtos nos anos seguintes. Dessa maneira, quando assumiu a coordenação do comitê executivo do projeto que visava à criação de um laboratório de luz síncrotron no Brasil, Aldo Craievich era um dos raríssimos cientistas (seriam dois em todo o país) que tinham experiência no uso dessa fonte de luz.

Em 1987, voltou ao estado de São Paulo. Até 1997, liderou o planejamento, projeto e construção das primeiras sete linhas de luz do LNLS na cidade de Campinas e desenvolveu um extenso programa de formação de novos usuários. Simultaneamente, a partir de 1987, Craievich deu aulas no Instituto de Física da USP, na cidade de São Paulo e, a partir de 1997, dedicou-se em tempo integral a seu cargo de professor titular nessa instituição, na qual foi chefe do departamento de Física Aplicada de 2002 a 2006.

Aldo Craievich também participou da criação da nossa SBPMat desde as primeiras reuniões e intercâmbios de mensagens eletrônicas, ocorridos no ano 2000. Além disso, seu nome consta entre os cientistas que compuseram a “comissão interdisciplinar de Materiais”, encarregada de elaborar os estatutos da SBPMat.

Entre outras distinções, Craievich recebeu homenagens outorgadas pela comunidade de usuários e pela equipe do LNLS (1997 e 2010), pela Sociedade Brasileira de Cristalografia (2000), pelo Instituto Balseiro (2011) e pela Asociación Argentina de Cristalografía (2014). Recebeu duas vezes o Prêmio Mercosul de Ciência e Tecnologia em 2004 e em 2010, por sua participação em trabalhos de pesquisa sobre os temas “Energia para o Mercosul” e “Nanotecnologia para o Mercosul”, respectivamente. É membro titular da Academia de Ciências do Estado de São Paulo (ACIESP) desde 1980. Em dezembro de 2014, foi eleito membro titular da Academia Brasileira de Ciências (ABC).

Atualmente com 75 anos de idade, Aldo Craievich continua realizando atividades de pesquisa no IFUSP enquanto professor sênior (aposentado) e pesquisador 1A do CNPq. É também membro do Núcleo de Apoio à Pesquisa em Nanotecnologia e Nanociências (NAP-NN) da USP e do corpo editorial de várias revistas científicas; entre elas o Journal of Synchrotron Radiation (IUCr, Chester, UK), no qual atua como coeditor.

Segue uma entrevista com o pesquisador.

Boletim da SBPMat:  – Quando se despertou seu interesse pela ciência?

Aldo Craievich: – Iniciei meus estudos universitários na Faculdad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de Córdoba, Argentina,  em março de 1959, ingressando na carreira de engenharia aeronáutica. Durante meus primeiros anos na universidade tinha que dividir meu tempo entre o estudo e meu trabalho nas Indústrias Aeronáuticas e Mecânicas do Estado (IAME). A decisão de minha escolha de Engenharia Aeronáutica deveu-se à relação entre essa carreira e a área do meu trabalho no IAME, onde eu pensava continuar minhas atividades após minha formatura. No entanto, limitações do meu tempo disponível, causadas por minhas atividades de trabalho, me fizeram perceber que a qualidade e o ritmo de avanço de meus estudos universitários eram insatisfatórios.

Depois de completar dois anos de engenharia aeronáutica, em março de 1961, enquanto fazia minha inscrição para o terceiro ano, li acidentalmente um cartaz que mencionava a abertura de um concurso de ingresso a um curso oferecido pelo Instituto de Física de São Carlos de Bariloche na Argentina (hoje Instituto Balseiro). Um dos requisitos para o ingresso, que eu satisfazia, era ter aprovado o segundo ano de estudos de Física ou Engenharia. Fiquei particularmente interessado nessa possibilidade, principalmente pelo fato de o Instituto Balseiro, além de oferecer uma formação de excelente qualidade, concedia bolsas de estudo integrais para todos seus alunos de graduação. Sem refletir muito no assunto me apresentei no concurso de ingresso, que aprovei. Assim, desde agosto 1961 até dezembro 1964 completei meu bacharelado em Física no Instituto Balseiro. Nesse Instituto tive de fato a possibilidade de me dedicar exclusivamente ao estudo, num ambiente adequado e sem dividir minha atenção com outras preocupações.

Meu real interesse pela ciência nasceu pouco depois de meu ingresso ao Instituto Balseiro. Durante a parte básica de meus estudos nesse Instituto, tive vários professores de qualidade singular, entre os quais José Balseiro (fundador e diretor do Instituto), Enrique Gaviola (físico experimental argentino de prestígio internacional) e Guido Beck (renomado físico teórico de origem austríaca). Balseiro teve uma abnegada, entusiasta e eficiente atuação como diretor e professor, e exerceu uma forte influência sobre seus colegas e  alunos assim como sobre as gerações posteriores do Instituto. A pesar de o período da minha interação com Balseiro ter sido breve (ele faleceu em março de 1962), foi suficiente para que me fizesse descobrir a importância das Ciências Físicas. Hoje penso que minha interação com os professores exemplares que tive durante meus primeiros anos no Instituto Balseiro, foi o que despertou meu interesse pela ciência, que perdura até hoje.

Boletim da SBPMat:  – O que o levou a se tornar um cientista e a trabalhar na área de Materiais, mais precisamente em Física da Matéria Condensada?

Aldo Craievich: – Durante a fase final de meus estudos de Física no Instituto Balseiro, comecei a refletir sobre o tipo de área de investigação específica aonde deveria orientar meu futuro profissional. Nessa época de dúvidas ouvi o conselho de Conrado Varotto, mais tarde fundador da empresa INVAP (spin-off do Instituto Balseiro) e agora diretor executivo da Comissão Nacional de Atividades Espaciais (CONAE) da Argentina, que me propôs realizar meu trabalho final de graduação sobre  propriedades estruturais e eletrônicas de ligas metálicas. Logo depois de formado no Instituto Balseiro, ingressei ao Instituto de Matemática, Astronomia e Física (IMAF, depois FaMAF) da Universidad Nacional de Córdoba, Argentina, como assistente de ensino, em março de 1965. Minha intenção inicial foi trabalhar num tema experimental de Física da Matéria Condensada, sem ainda ter decidido a área específica. Sabendo de meu interesse, o diretor do IMAF, Alberto  Maiztegui, me sugeriu implantar um laboratório de raios X para pesquisas de materiais utilizando um difratômetro previamente adquirido. Nessa oportunidade recebi o apoio de Alberto Bonfiglioli, pesquisador da Comissão Nacional de Energia Atômica de Buenos Aires. Bonfiglioli me sugeriu completar inicialmente minha formação de base na área, realizando minha tese de doutorado no Laboratoire de Physique des Solides da Université Paris Sud, em Orsay, França, sob a supervisão do eminente professor André Guinier.  Guinier foi um dos criadores e diretor do  Laboratoire de Physique des Solides e autor de pesquisas pioneiras sobre o a relação entre a estrutura de sólidos imperfeitos e as características do espalhamento difuso dos raios X. Ele foi também pioneiro em aplicações da técnica de espalhamento de raios-X a baixos ângulos (SAXS) ao estudo de materiais, um dos descobridores das conhecidas zonas Guinier-Preston em ligas de alumínio e autor de vários livros clássicos nessa área de pesquisa.

Em resumo, meu interesse pela pesquisa na área de materiais, mais precisamente pelos estudos da estrutura e das transformações na matéria condensada, foi inicialmente despertado durante meu trabalho final da graduação no Instituto Balseiro supervisado por C. Varotto, cresceu com minhas primeiras atividades em IMAF em colaboração com A. Bonfiglioli e se consolidou durante minha tese de doutorado na França sob orientação de A. Guinier.

Boletim da SBPMat:  – E por que você veio ao Brasil?

Aldo Craievich: – Em 1969, após meu regresso da França e recentemente doutorado, iniciei a implantação do Laboratório de Raios X no IMAF em Córdoba, Argentina, com o objetivo de aplicar as técnicas de difração de raios X e de SAXS em estudos de materiais vítreos. Depois de vários anos de trabalho e de ter conseguido já alguns resultados, percebi que o desenvolvimento do laboratório ocorria mais lentamente do que eu esperava. Os motivos eram diversos, entre eles, dificuldades financeiras para adquirir equipamentos e um excessivo envolvimento em atividades administrativas, o que reduzia significativamente meu tempo para a pesquisa. Foi assim que, no fim de 1971, decidi realizar um estágio de pós-doutorado no exterior para poder privilegiar durante algum tempo minha dedicação à pesquisa.

Nessa mesma época, em uma reunião da Sociedade Chilena de Física realizada em Valdivia, Chile, em janeiro de 1972, tive meu primeiro contato com Yvonne Mascarenhas, professora do Instituto de Física e Química de São Carlos – IFQSC/USP (hoje IFSC/USP), São Carlos, que me convidou para realizar um estágio de um ano em seu Laboratório de Cristalografia. Aceitei o convite e, em março 1973, iniciei minhas tarefas de pesquisa e ensino no IFQSC. No Laboratório de Cristalografia havia nessa época um difratômetro de raios X em operação para estudos de policristais e um aparelho de SAXS adquirido pouco tempo antes. O que era esperado de mim, além de realizar tarefas de docência, era instalar o novo aparelho de SAXS e iniciar linhas de pesquisa em temas de meu próprio interesse e em colaboração com outros cientistas locais.

Depois de iniciado meu estágio no Brasil, a situação política geral na Argentina e particularmente as condições para o ensino e a pesquisa nas universidades se foram deteriorando, o que me induziu a estender várias vezes meu estágio temporário no IFQSC. Mais tarde, em minhas várias visitas à Argentina durante a parte final da década de 1970, percebi um declínio adicional e também uma situação política e social inquietante. Essas constatações e, por outro lado, os interessantes novos desafios que se apresentaram no IFQSC e o forte apoio que recebi da comunidade local e das agências de fomento (FAPESP e CNPq), me levaram a decidir transformar meu estágio temporário numa transferência definitiva. Percebi nesse momento que no Brasil tinha encontrado as condições básicas necessárias e promissoras para que eu pudesse realizar um bom trabalho em pesquisa.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais? Considere na sua resposta todos os aspectos da sua atividade profissional.

Aldo Craievich: As principais pesquisas que desenvolvi desde 1965 até hoje podem ser classificadas em cinco grandes linhas que descrevo a seguir (Menciono algumas referências relevantes associadas a cada linha de trabalho).

(i)Separação de nanofases em sólidos vítreos

Após minha transferência ao Brasil em 1973 iniciei estudos experimentais mediante a técnica de SAXS para determinar os mecanismos responsáveis pelas primeiras etapas do processo isotérmico de separação de nanofases em vidros de B2O3-PbO-Al2O3. Dessa forma continuava a linha de pesquisa que tinha iniciado no IMAF, na Argentina. Para interpretar os resultados utilizei um modelo termodinâmico proposto por John Cahn, chamado decomposição espinodal, para sistemas correspondentes ao centro do gap de miscibilidade, e o modelo clássico de nucleação e crescimento para composições e temperaturas próximas à fronteira binodal. Observei, em particular, a existência de um desvio sistemático dos resultados experimentais de SAXS com respeito às previsões do modelo de Cahn, que atribui a um efeito de relaxação de tensões iniciais na matriz vítrea, produzidas pelo processo preliminar de quenching. Como consequência dessas pesquisas, redigi os dois primeiros artigos publicados em revistas indexadas referentes a pesquisas sobre materiais vítreos realizadas no Brasil [Craievich, Phys.Chem.Glasses 16, 133 (1975); Craievich, Phys.Stat.Sol. 28, 09 (1975)].

Verifiquei também que o modelo da decomposição espinodal não descreve adequadamente os estágios avançados da separação de nanofases no sistema vítreo B2O3-PbO-Al2O3. Foi então feita uma comparação dos resultados das experiências de SAXS que realizei no IFQSC em 1973/74, referentes aos estágios avançados do processo, com as predições da nova teoria estatística desenvolvida por Joel Lebowitz et al. no fim da década de 1970. Os resultados conduziram a um artigo que redigi em colaboração com Juan M. Sanchez (ex-aluno do IMAF e hoje vice-president for research da Texas University) no qual demonstramos, por primeira vez quantitativamente para materiais vítreos, que a evolução temporal  da função de estrutura experimental exibe as propriedades de escala dinâmica previstas pela teoria [Craievich and Sanchez, Phys.Rev.Lett. 47, 1308 (1981)].

(ii)Estrutura e transições de fases em cristais moleculares

De volta ao IFQSC de São Carlos, em 1977, depois de completar um estágio de pós-doutorado na França, trabalhei, em colaboração com Jean Doucet doLaboratoire de Physique des Solides, Orsay, França, e um aluno de doutorado, em estudos sistemáticos das estruturas e das transições de fase de um conjunto de cristais de parafinas, compostos por moléculas lineares CnH2n+2. Todas as parafinas estudadas exibem uma estrutura formada pela superposição de camadas de moléculas de CnH2n+2, com os seus eixos maiores paralelos e com empacotamento lateral compacto. Associamos as características da expansão térmica e das transições de fase destes sólidos a variações da amplitude das librações das moléculas lineares em torno do seu eixo principal. Como resultado destas pesquisas, publicamos, em poucos anos, mais de 10 artigos, todos os quais receberam um alto número de citações. Em particular, um deles, sobre os estudos de fases “rotatórias” observadas em três parafinas com n = 17, 19 e 21, recebeu até hoje 209 citações [Doucet et al, J.Chem.Phys. 75, 1523 (1981)].

(iii)Processos de formação de nanomateriais pelo método sol-gel

Durante a década de 1980 realizei uma série de pesquisas in situ de transformações estruturais mediante o uso da linha de SAXS associada à fonte de luz síncrotron francesa (LURE). Interessaram-me em particular as transformações estruturais que ocorrem durante um novo processo, denominado sol-gel, para a obtenção de materiais nanoestruturados. Este processo complexo consta de uma sequência de passos que se inicia a partir de um precursor na forma de solução líquida coloidal, continua com a agregação das partículas coloidais e subsequente transição sol-gel, para eventualmente ser completado por secagem e sinterização do material nanoporoso resultante.

Realizei os primeiros trabalhos nesta linha em colaboração com grupos de pesquisa liderados por Jerzy Zarzycki (Laboratoire de Verres du CNRS, Université de Montpellier, France) e André Aegerter (IFQSC-São Carlos).  A maioria desses estudos experimentais visava à análise da cinética de processos e foram feitos utilizando a técnica de SAXS in situ [Lours et al, J.Non-Cryst.Solids 100, 207 (1988)]. Isso foi possível mediante a utilização de uma linha de SAXS associada a uma fonte de luz síncrotron de alta intensidade, o que permitiu medições com alta resolução temporal. Em vários casos, utilizamos novos conceitos de geometria fractal para conseguir uma caracterização precisa das estruturas, o que nos permitiu identificar de forma clara os mecanismos de agregação.

Durante a década de 1990, continuei meus estudos sobre as estruturas de vários nanomateriais e de processos de tipo sol-gel com a participação de Luis Esquivias e seus colaboradores (Universidade de Cádiz, Espanha), e com os pesquisadores do grupo liderado por Celso Santilli (UNESP-Araraquara). Com o grupo de Luis Esquivias trabalhamos em diversos temas, com ênfase em pesquisas da influência do uso controlado de ultrassom sobre as características estruturais dos “sonogéis” finais.  Com Celso Santilli e seu grupo pesquisamos uma série de nanomateriais, mediante estudos de SAXS in situ, que contribuíram, em particular, para um melhor conhecimento da estrutura, dos mecanismos da formação e das relações com as propriedades de vários tipos de nanocompósitos híbridos organo-inorgânicos [Dahmouche et al, J.Phys.Chem. B 103, 4937 (1999)]. 

(iv)Proteínas em solução

Participei desde a década de 1980 em numerosas colaborações sobre estudos estruturais de proteínas em solução. Particularmente, colaborei num estudo da estrutura terciária da albumina que resultou ser a primeira pesquisa publicada com resultados experimentais obtidos exclusivamente no LNLS[Castelletto et al, J.Chem.Phys. 109, 2825 (1998)]. Mais tarde, publicamos um trabalho sobre a variação da densidade média das proteínas com a massa molecular que na literatura estava sendo considerada invariante [Fischer et al, Protein Sci. 13, 2825 (2004)]. Este artigo teve durante uma década mais de 200 citações na literatura. Mais recentemente, desenvolvemos um novo método de determinação da massa molecular de proteínas em solução utilizando exclusivamente resultados de experiências de SAXS em escala relativa [Fischer et al, J.Appl.Cryst. 43, 101 (2010)].

(v)Estrutura e estabilidade de fases de nanopartículas metálicas e soluções sólidas de óxidos nanoestruturadas

Durante a última década participei num conjunto de estudos sobre estrutura, mecanismos de formação e estabilidade de fases de diversos nanomateriais, em colaboração com vários grupos de pesquisa.

Com Guinther Kellerman, um dos meus alunos de tese e hoje professor na UFPR, publicamos vários artigos pioneiros sobre os mecanismos de formação de nanopartículas de Bi e Ag em matriz vítrea e sobre a relação entre o tamanho das nanopartículas de Bi e suas temperaturas de fusão e de cristalização. Os resultados experimentais foram também quantitativamente comparados com as previsões teóricas correspondentes [Kellermann and Craievich, Phys.Rev. B 78, 054106 (2008)].

Em colaboração com Felix Requejo e seu grupo da Universidad Nacional de La Plata, Argentina, pesquisamos diversas características estruturais de nanopartículas de metais nobres suportadas em matrizes porosas [Giovanetti et al, Small 8, 468 (2012)] e, mais recentemente, de arranjos de nanoplacas de CoSi2 enterradas  e coerentes num substrato de  Si monocristalino.

Com Diego Lamas da Universidad Nacional de San Martín, Argentina, e membros de seu grupo realizamos um conjunto de pesquisas de soluções sólidas de óxidos nanoestruturadas. No caso particular do sistema nanoestruturado zircônia-escândia, demonstramos que é possível reter a temperatura ambiente fases de estrutura cúbica e tetragonal, com propriedades interessantes, que são estáveis somente a altas temperaturas nesses mesmos materiais quando compostos por cristais micro ou macroscópicos [Abdala et al, RSC Adv. 2, 5205 (2012)].

b. Participação na criação e gestão de instituição de pesquisa

No final de 1986 fui designado vice-diretor e chefe do departamento científico do Laboratório Nacional de Luz Síncrotron (LNLS) em Campinas.  Nessa época o diretor e o chefe de projeto do LNLS eram Cylon Gonçalves da Silva e Ricardo Rodrígues, respectivamente. No LNLS iniciou-se em 1987 a construção de uma fonte de luz síncrotron composta por um acelerador linear de elétrons de 120 MeV, um anel de armazenamento de elétrons (UVX) de 1,37 GeV e  um conjunto de linhas de luz.

Durante minha gestão no LNLS fui responsável pelo projeto das primeiras sete linhas de luz do LNLS, que foram desenvolvidas paralelamente à construção do acelerador linear e do anel de armazenamento. Também realizei um esforço persistente para promover a formação dos futuros usuários do LNLS, organizando numerosos eventos (cursos de curta duração, oficinas etc.) nos quais diversos especialistas (principalmente pesquisadores estrangeiros) ministraram palestras e/ou participaram em sessões de treinamento.

Além das tarefas administrativas e técnicas associadas a minhas funções como vice-diretor, continuei realizando pesquisas experimentais durante períodos de uma a duas semanas por ano no laboratório de luz síncrotron LURE, na França. Os conhecimentos de primeira mão adquiridos nesses estágios no exterior foram úteis para meu trabalho relacionado com o planejamento e a construção das primeiras linhas de luz do LNLS.

A fase de construção da fonte UVX e do primeiro conjunto de linhas de luz findou durante o primeiro semestre de 1997 [Rodrigues et al, J.Synchr.Rad. 5, 1157 (1998)] sendo em seguida  abertas ao uso pela comunidade científica.

Quando a fonte de luz síncrotron foi concluída, em julho de 1997, considerei que tinha chegado o momento de afastar-me de minha função de vice-diretor do LNLS e continuar meu trabalho com dedicação exclusiva no Instituto de Física da USP, a partir de 1998. Considerei que dessa forma eu poderia continuar minhas atividades como pesquisador usuário da fonte de luz e também contribuir de forma mais direta à formação de estudantes e ao crescimento da comunidade de usuários do LNLS.

c. Participação na criação de grupos e laboratórios de pesquisa

Durante meus 50 anos de atividades de ensino e pesquisa trabalhei sucessivamente em cinco instituições: IMAF/UNC na Argentina (1965-1972), IFQSC/USP em São Carlos (1973-1980), CBPF em Rio de Janeiro (1981-1986), LNLS em Campinas (1987-1997) e IF/USP em São Paulo (1998-…). As minhas contribuições à criação e ao desenvolvimento de grupos e linhas de pesquisa nessas instituições são suscintamente expostas a seguir.

(i)IMAF (Córdoba, Argentina): Criei e organizei no IMAF o seu primeiro laboratório de raios X, iniciei uma nova linha de pesquisa sobre separação de fases de sólidos vítreos e contribui à formação de jovens estudantes na área de Ciência dos Materiais. Publiquei em 1973 o primeiro artigo em colaboração sobre a estrutura de um material vítreo associado a pesquisas realizadas no IMAF.

(ii)IFQSC/USP (São Carlos): Implantei no IFQSC em 1973 o primeiro laboratório de SAXS em funcionamento no Brasil. Nesse mesmo ano iniciei uma linha de pesquisa sobre materiais vítreos que se desenvolveu fortemente mais tarde pela ação principal de Edgar Zanotto (hoje diretor do LaMaV na UFSCar, São Carlos), a quem orientei na sua dissertação de mestrado. Finalmente, em colaboração com Yvonne Mascarenhas e um aluno de pós-graduação, concluímos em 1984 pesquisas estruturais pioneiras de proteínas em solução realizadas mediante  uso de SAXS.

(iii)CBPF (Rio de Janeiro): Implantei o primeiro laboratório de raios X do CBPF composto por um difratômetro de policristais e uma câmara de SAXS. Minha principal atividade no CBPF durante o período 1981-86  foi a participação nos estudos de viabilidade, tarefas de difusão e sessões de discussão que conduziram à criação, em 1986, do Laboratório Nacional de Luz Síncrotron.

(iv)LNLS (Campinas): Durante meu trabalho no LNLS, além de realizar as atividades associadas à construção da fonte de luz sincrotron descritas anteriormente, promovi e coordenei um dos projetos da primeira série aprovada em 1996 pelo Programa de Apoio a Núcleos de Excelência (PRONEX) do CNPq.  Neste projeto sobre “Pesquisa e caracterização estrutural e magnética de materiais” participaram 22 pesquisadores/docentes do LNLS, IF/USP, IF/UNICAMP, IQ/UNESP e DF/UFPR.

(v)IFUSP (São Paulo): Contribui à consolidação do Laboratório de Cristalografia do IFUSP, principalmente mediante minha participação no planejamento do projeto e na incorporação de um novo aparelho de SAXS de última geração com feixe de seção pontual. Este aparelho permite estudos de SAXS e GISAXS a temperatura ambiente e a altas temperaturas com sistema automatizado de coleta de dados. Esse moderno equipamento foi o primeiro em operação no Brasil e provavelmente também em América Latina.

d. Contribuição em política científica

Após realizar um estágio sabático no laboratório de luz síncrotron LURE, Orsay, França, de volta ao CBPF em 1982, participei em reuniões de um grupo pequeno de pesquisadores que discutia a eventual viabilidade da construção uma fonte de luz síncrotron no Brasil. Nesse mesmo ano, o presidente do CNPq depois de manifestar o seu apoio à iniciativa, decidiu criar o Projeto Radiação Sincrotrónica (PRS/CNPq) coordenado pelo diretor do CBPF, Roberto Lobo. No contexto desse projeto atuei como coordenador do Comitê Executivo e membro do Conselho Técnico Científico (CTC). Em minha função de coordenador do Comitê Executivo organizei reuniões, palestras e visitas de especialistas estrangeiros. Também colaborei na elaboração de um primeiro projeto conceitual de uma fonte de radiação síncrotron e participei na redação de uma proposta de plano diretor para sua implantação. Detalhes dos trabalhos desenvolvidos foram expostos no artigo “Proposta preliminar de estudo de viabilidade de um Laboratório Nacional de Radiação Síncrotron” [Lobo et al, CBPF/PRS 1 (1983)] e no relatório “PRS: Atividades e Perspectivas” [Craievich, CBPF/PRS 14 (1984)]. Coordenei também um programa de bolsas do CNPq que permitiram a jovens brasileiros acessar por primeira vez fontes de luz síncrotron no exterior e adquirir assim experiência no seu uso.

No período 1983-1985, apresentei na Argentina o projeto do síncrotron brasileiro, no Instituto Balseiro de Bariloche, na CNEA de Constituyentes, em reunião da Associação Física Argentina (AFA) em La Plata e no Simpósio Latino Americano de Física do Estado Sólido (SLAFES) em Mar del Plata.

Por outro lado, participei na fase de fundação de duas novas organizações científicas: a Sociedade Brasileira de Pesquisa de Materiais (SBPMat) no ano 2000, que até hoje organizou treze encontros anuais, e a Rede Latino Americana Matéria, que promoveu desde 1995 doze reuniões científicas (Simpósios Matéria) em oito diferentes países da América Latina.

e. Formação de novos cientistas

Desde 1965 até 2009 ministrei diversas disciplinas de graduação e pós-graduação nas diferentes instituições da Argentina e do Brasil onde trabalhei. Por outro lado, desde 1982 até hoje, participei em cursos curtos, escolas e oficinas de formação e treinamento de usuários de luz síncrotron em diversas cidades do Brasil, Argentina, Chile, Uruguai, Peru, Colômbia, Venezuela, Cuba e México. Também contribui à formação de usuários da luz síncrotron fora da América Latina, atuando como diretor e professor de uma série de escolas sobre aplicações da luz síncrotron organizadas pelo Centro Internacional de Física Teórica (ICTP), em Trieste, Itália. Essa atividade no ICTP se prolongou durante quase 20 anos, num total de dez escolas sucessivas de quatro semanas cada uma, realizadas bianualmente desde 1991 até 2008.

Por outro lado, orientei 18 alunos de pós-graduação (nove mestrandos e nove doutorandos). A maioria de meus antigos orientandos continuou atuando como pesquisadores e professores em diversas universidades, nos estados de São Paulo, Bahia e Paraná, e em centros de pesquisa em Rio de Janeiro e São Paulo. Um deles trabalha numa empresa industrial do interior do Estado de São Paulo e outro, de origem francesa, que orientei na modalidade de cotutela com pesquisador da Université Paris V, atua em laboratório de pesquisa industrial na Bélgica. Mantenho ainda colaborações com dois de meus antigos orientandos em pesquisas de propriedades estruturais e transições de fase de nanomateriais e em estudos mediante SAXS de proteínas e outras macromoléculas em solução.

Boletim da SBPMat: – O que o motivou a participar da história do Laboratório Nacional de Luz Síncrotron?

Aldo Craievich: – Em 1981, já havendo ingressado ao CBPF, em Rio de Janeiro, decidi passar um ano sabático no laboratório de luz síncrotron LURE, em Orsay, França.  A minha motivação para esse estágio surgiu da possibilidade que se me apresentava de acessar um novo tipo de instrumentação experimental que me permitiria realizar pesquisas de meu interesse, impossíveis em laboratórios clássicos, tais como estudos cinéticos in situ de variações estruturais rápidas a altas temperaturas de materiais vítreos.

Finalizado meu ano sabático no LURE e já de retorno ao CBPF, em setembro de 1982, fui convidado pelo Diretor do CBPF para participar nas atividades formais que visavam à futura construção de uma fonte de luz sÍncrotron no Brasil. Minha motivação para participar no CBPF nos trabalhos preliminares desse projeto e depois no LNLS na fase de construção da fonte de luz foi consequência de uma conjunção de razões. Eu considerei que (i) a eventual futura disponibilidade local de uma fonte de luz síncrotron seria de grande relevância para o desenvolvimento da ciência brasileira, (ii) a disponibilidade de um sÍncrotron no Brasil seria, em particular, muito útil para o avanço de minhas linhas de pesquisa em andamento, e (iii) eu havia adquirido, já em 1982, a competência e a experiência necessárias para participar de forma ativa nas tarefas propostas.

Boletim da SBPMat: – Deixe uma mensagem para nossos leitores que estão iniciando suas carreiras de cientistas.

Aldo Craievich: – Considero que uma condição necessária e importante para ser um bom cientista na área na qual eu trabalho é sentir um forte interesse por entender e tratar de explicar a natureza essencial e as propriedades relevantes da matéria que nos rodeia. Por isso minha primeira mensagem é para encorajar nas suas carreiras científicas os jovens estudantes que de fato sentem esse tipo de interesse.

Os estudos que transformam um jovem estudante num bom cientista dependem menos da natureza dos temas específicos e muito mais da forma como os novos conhecimentos são apresentados e adquiridos. O estudante e o professor devem considerar cada novo tema de estudo como um desafio a ser enfrentado. Por outro lado, o  estudante deve valorizar o trabalho mais difícil dos professores que apresentam cada novo tema visando sua compreensão profunda, evitando caminhos fáceis. Nesse sentido minha segunda mensagem aos jovens estudantes é a de, na medida do possível, procurar os ensinamentos, conselhos e orientação de professores não somente destacados, mas também exigentes.

As contribuições pessoais de todo pesquisador para o progresso da ciência devem ser consideradas por eles, em geral, como relativamente modestas. A minha terceira mensagem está relacionada com uma qualidade importante que, a meu ver, deve possuir todo pesquisador novo e também aqueles com maior experiência: uma atitude permanente de respeito pelo trabalho alheio. Uma mensagem muito clara sobre este tema foi mencionada por Balseiro, diretor do Instituto de Física onde realizei meus estudos de graduação, em seu discurso aos alunos recém-formados na primeira turma desse Instituto em 1958. Ele disse “Não creio que haja um índice mais patético de incultura, excetuando a violência, que a falta de respeito pelo trabalho alheio. Essa falta de respeito é uma forma de destruição e quem destrói o fruto do trabalho alheio bem pode ser qualificado de selvagem, isto é, a incultura em sua mais prístina forma” [http://www.ib.edu.ar/index.php/historia-del-ib/primera-graduacion.html].

Para saber mais sobre o professor Aldo Craievich: artigo “Un físico del Mercosur” publicado pela revista “Ciencia e Investigación. Reseñas”, tomo 1, no 3, disponível aquí: http://aargentinapciencias.org/images/stories/R-tomo1-3/RevRes-1-3xArt/7a24Craievich-ceiRes-1-3.pdf.