Nota Pública da Sociedade Brasileira de Pesquisa em Materiais (SBPMat).

A diretoria e o conselho da Sociedade Brasileira de Pesquisa em Materiais (SBPMat) externam sua preocupação diante da falta de perspectivas para a ciência, tecnologia e inovação (CTI) no Brasil. O setor sofreu cortes profundos nos últimos anos, que ameaçam inviabilizar programas e projetos de pesquisa e desenvolvimento essenciais para a Nação. Não tem havido manifestação, por parte do governo, sobre a reversão desses cortes e garantia de um orçamento que possa minimamente manter o Brasil na trajetória ascendente das últimas décadas.

Ainda mais preocupante é a ausência de um plano estratégico para CTI, requisito fundamental para ajudar o Brasil a superar a grave crise que atravessamos. A fusão do Ministério de Ciência, Tecnologia e Inovação (MCTI) com o Ministério das Comunicações, por exemplo, parece não obedecer a alguma lógica que nos permita antever a formulação de políticas públicas para alavancar o desenvolvimento econômico e social do Brasil.

No curtíssimo prazo, nossa sugestão é de que o governo recomponha os orçamentos e viabilize iniciativas em andamento das agências de fomento, como CAPES, CNPq e Finep, pois a interrupção ou diminuição de programas de CTI – ainda que por períodos curtos de tempo – podem trazer danos irreparáveis para o Brasil.

Na área em que mais concerne a nossa Sociedade Científica, o Brasil é um grande produtor de matérias primas e carece de investimentos suficientes em CTI para agregar valor aos produtos, constituir empresas de alta tecnologia e gerar empregos. Nunca é demais ressaltar que o conhecimento gerado nas ações de CTI é ingrediente indispensável para construirmos uma sociedade igualitária e desenvolvida que almejamos para nosso País.

SBPMat

 

Gente da comunidade: Conselheiro da SBPMat Carlos Roberto Grandini passa a integrar colegiado internacional de fellows da União Internacional de Sociedades de Biomateriais.

Pesquisadores do Brasil foram distinguidos com o status de “Fellow, Biomaterials Science and Engineering” (FBSE) pela União Internacional de Sociedades de Biomateriais (World’s Biomaterials Societies). O título honorário representa um reconhecimento à excelência na atuação profissional e às realizações conseguidas na área da Ciência e Engenharia de Biomateriais. Os novos fellows passam a integrar um colegiado internacional junto a cerca de 300 pesquisadores, empenhado em fortalecer e divulgar a área de Biomateriais. A honraria foi outorgada numa cerimônia durante a abertura do 10th World Biomaterials Congress, que ocorreu em Montréal (Canada) neste mês de maio.

Um dos novos FBSE do Brasil é o professor Carlos Roberto Grandini (UNESP campus Bauru), membro do Conselho Deliberativo da SBPMat e 1º vice-presidente da Sociedade Latino Americana de Biomateriais e Órgãos Artificiais (SLABO). Grandini recebeu o título honorário por suas contribuições no campo dos biomateriais metálicos e por sua liderança na comunidade científica latino-americana. Além de Grandini, tornaram-se fellows os pesquisadores brasileiros Aron Jose Pazin de Andrade (Instituto Dante Pazzanese de Cardiologia), Luís Alberto Loureiro dos Santos (UFRGS) e Marivalda de Magalhaes Pereira (UFMG).

O professor Grandini recebendo o título de “Fellow, Biomaterials Science and Engineering”.

José Arana Varela: nota de pesar.

É com profundo pesar que a SBPMat comunica o falecimento do Prof. José Arana Varela, do Instituto de Química da Unesp de Araraquara, no dia 17/05/2016. O Prof. Varela foi um dos fundadores da SBPMat, e seu presidente no período de 2010 a 2011.

A SBPMat se solidariza com a família do Prof. Varela, num dia triste em que a ciência brasileira fica sem um de seus expoentes.

Diretoria da SBPMat


Links relacionados :

Boletim da SBPMat – edição 44.

 

Saudações %primeiro_nome%!

Edição nº 44 – 29 de abril de 2016 

Notícias da SBPMat: XV Encontro - Campinas (SP), 25-29/09/2016 

Inscrições: Estão abertas as inscrições para participar do evento. Valores com desconto até 31 de agosto. Aqui.

Autores: A submissão de resumos está aberta até 30 de maio. As notificações de aceitação de trabalhos serão enviadas aos autores até 10 de julho. Não deixe de ler as instruções para autores. Aqui.

Simpósios: Veja a lista de 22 simpósios aprovados, dentro dos quais podem ser submetidos os resumos.  Aqui.

Prêmios: Interessados em concorrer ao prêmio do evento para estudantes, o Bernhard Gross Award, que distinguirá até um oral e um pôster de cada simpósio, devem submeter um resumo estendido até 22 de agosto. Saiba mais nas instruções para autores.

Expositores: Ainda tem alguns estandes disponíveis. Empresas interessadas em participar do evento com estandes e outras formas de divulgação devem entrar em contato com Alexandre, no e-mail comercial@sbpmat.org.br.

Plenárias: Veja os resumos das palestras plenárias e palestra memorial do nosso evento e os CVs dos cientistas que vão proferi-las. Aqui.

Hospedagem e passagens: Lista da agência de turismo Follow Up com hotéis, albergues, pousadas e formulário para reserva de vôos. Aqui.

Pacotes turísticos: O site da Follow Up também sugere opções de pacotes turísticos para antes e depois do evento. Aqui.

Local do evento: Veja vídeo sobre a cidade de Campinas e folder sobre o centro de convenções Expo D. Pedro. 

Organizadores: Coordenam esta edição do evento as professoras da Unicamp Ana Flávia Nogueira (Instituto de Química) e Mônica Alonso Cotta (Instituto de Física “Gleb Wataghin”). Saiba quem são os membros da comissão local e veja fotos dos organizadores, aqui.


Artigo em destaque 

Uma dupla de pesquisadores da Universidade Federal de Mato Grosso realizou uma pesquisa teórica, baseada em simulações computacionais, sobre a troilite (sulfeto de ferro) dopada com íons de lítio. Os cientistas se debruçaram sobre o comportamento coordenado de elétrons de orbitais diferentes. Em artigo recentemente publicado no Journal of Applied Physics, os autores apresentam a troilite como material promissor para baterias regarregáveis de lítio e reportam que a dopagem com lítio pode gerar estados condutores não convencionais no material isolante. Veja nossa matéria de divulgação.


Gente da nossa comunidade 
Entrevistamos o físico brasileiro Ado Jorio de Vasconcelos (professor da UFMG), especialista na aplicação da Óptica no estudo de nanoestruturas. Em 2001, Jorio tornou-se o primeiro pesquisador que conseguiu usar uma técnica óptica para estudar nanotubos de carbono individualmente. Detentor de um índice H de 74, um dos mais altos do Brasil, Jorio é autor de cerca de 200 publicações que reúnem mais de 30 mil citações. Leia nossa entrevista e saiba mais sobre as contribuições e trajetória deste cientista, que proferirá uma palestra plenária no XV Encontro da SBPMat sobre o uso de espectroscopia Raman para o estudo de nanoestruturas de carbono. Veja nossa entrevista.
Distinção internacional para Edgar Dutra Zanotto (UFSCar): foi eleito fellow da American Ceramic Society (ACerS). Saiba mais.

Dicas de leitura
Artigos científicos

  • Cientistas levam bactéria não-fotossintética a fazer fotossíntese ao inserir nanopartículas inorgânicas nela (divulgação de paper da Science). Aqui.
  • Pesquisadores conseguem que nanotubos de carbono se agrupem em fileiras, e, dessa maneira, fazem filmes de centímetros de extensão (divulgação, com texto e vídeo, de paper da Nature Nanotechnology). Aqui.
  • Pontos quânticos matam bactérias resistentes a antibióticos e não danificam células de mamíferos (divulgação de paper da Nature Materials). Aqui.

Livros

  • Livro da American Ceramic Society (ACerS) sobre cerâmicas de engenharia inclui capítulo sobre óxidos cerâmicos assinado por cientistas do Brasil. Saiba mais.

Patentes

  • Patentes da UFSCar sobre vidro bioativo são licenciadas e podem resultar em novos produtos brasileiros para a área de saúde. Saiba mais.

Oportunidades
  • Bolsa para pós-doutorado na pós-graduação em Física da Universidade Federal de Santa Catarina. Aqui.
  • Seleção para mestrado em Física e Astronomia da Universidade Tecnológica Federal do Paraná. Aqui.

Próximos eventos da área
  • 5ª escola de SAXS. Campinas, SP (Brasil). 2 a 6 de maio de 2016. Site.
  • 1st User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering. Campinas, SP (Brasil). 5 a 6 de maio de 2016. Site.
  • 40th WOCSDICE ‐ Workshop on Compound Semiconductor Devices and Integrated Circuits held in Europe & 13th EXMATEC ‐ Expert Evaluation and Control of Compound Semiconductor Materials and Technologies. Aveiro (Portugal). 6 a 10 de junho de 2016. Site.
  • Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications (PCNSPA Conference 2016). São Petersburgo (Rússia). 27 de junho a 1 de julho de 2016.  Site.
  • 1st International Symposium on Advanced Photonic Materials. São Petersburgo (Rússia). 27 de junho a 1º de julho de 2016. Site.
  • XXV International Conference on Raman Spectroscopy (ICORS2016). Fortaleza, CE (Brasil). 14 a 19 de agosto de 2016. Site.
  • 26ª edição da Reunião Anual dos Usuários (RAU) do Laboratório Nacional de Luz Síncrotron (LNLS). Campinas, SP (Brasil). 24 a 25 de agosto de 2016. Site.
  • XV Encontro da SBPMat. Campinas, SP (Brasil). 25 a 29 de setembro de 2016. Site.
  • Aerospace Technology 2016. Estocolomo (Suécia). 11 a 12 de outubro de 2016. Site.
      
Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails.

 

Artigo em destaque: Virtudes de um metal ruim.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Electronic localization and bad-metallicity in pure and electron-doped troilite: A local-density-approximation plus dynamical-mean-field-theory study of FeS for lithium-ion batteries. Craco, L; Faria, JLB. J. Appl. Phys. 119, 085107 (2016); http://dx.doi.org/10.1063/1.4942843

Virtudes de um metal ruim

Imagem computacional da estrutura cristalina da troilite (FeS) com inserção de íons de lítio. A produção da imagem, que foi elaborada pelo professor Jorge Faria para ilustrar esta matéria, começou com a modelagem da troilite pura. Posteriormente foram feitas análises numéricas por meio de aproximação de densidade local (LDA) utilizando métodos baseados na teoria da densidade funcional (DFT) para obter os parâmetros de rede com diferentes concentrações de lítio e observando a sua posição mais estável na célula unitária.

Por apresentarem uma série de vantagens, baterias recarregáveis de íon-lítio são os dispositivos de armazenamento de energia elétrica mais encontrados nos eletrônicos portáteis (smartphones, tablets, laptops…). Além disso, essas baterias apresentam bom potencial para uso em carros elétricos, entre outras aplicações.

Motivado pela potencialidade dos sulfetos de ferro (FeS) para uso em eletrodos de baterias recarregáveis de íon-lítio de próxima geração, Luis Craco, professor do Instituto de Física da Universidade Federal de Mato Grosso (IF-UFMT), empreendeu, junto a seu colega Jorge Luiz Brito de Faria, um estudo teórico sobre o comportamento da troilite (uma fase do sulfeto de ferro que é isolante a temperatura e pressão ambiente) dopada com íons de lítio.

No estudo, Craco e seu colaborador buscaram compreender o que acontecia na troilite depois da dopagem eletrônica – um procedimento que pode transformar um isolante em semicondutor ou em metal ruim por meio da inserção de átomos (no caso, íons de lítio) que promovem uma reorganização na estrutura do material, introduzindo elétrons nela.

Cluster de alta performance computacional do IF-UFMT: a possibilidade de processamentos paralelos encurtou o tempo necessário para fazer os cálculos.

O trabalho começou com uma série de cálculos de primeiros princípios baseados na teoria da densidade funcional (DFT) realizados pelo autor Jorge Faria. Esses cálculos utilizam dados de estrutura cristalina obtidos experimentalmente. A seguir, Luis Craco efetuou um estudo detalhado, mediante cálculos baseados na teoria de campo médio dinâmico (DMFT), do efeito das correlações eletrônicas entre elétrons em diferentes orbitais (regiões em volta do núcleo de um átomo nas quais um elétron tem chance de estar presente). Nessas correlações, uma mudança experimentada por um elétron de um orbital provoca uma mudança relacionada em outro elétron de outro orbital. Elétrons correlacionados atuam coordenadamente, apesar de estarem espacialmente separados. “Cabe lembrar que a descrição teórica introduzida neste trabalho é totalmente nova no contexto da troilite e seus derivados, bem como em outros compostos contendo o ferro e o enxofre como elementos constituintes básicos”, diz Luis Craco.

Em artigo recentemente publicado no Journal of Applied Physics, os professores da UFMT reportaram uma descrição das propriedades eletrônicas e de transporte na troilite dopada e mostraram que o material apresenta comportamentos não-convencionais. De fato, apesar de que o sulfeto de ferro se mantem isolante inclusive tendo altas concentrações de lítio, as simulações computacionais da dupla mostraram que nele emergem estados metálicos após alta dopagem eletrônica. Nesse estado próximo à transição isolante – metal, o material pode ser classificado como isolante de Mott. Além disso, os autores constataram que os estados metálicos emergiam apenas em determinados orbitais atómicos, o que constitui um comportamento de “metal ruim’; ou seja, um comportamento diferente daquele que se espera de um metal dentro de teorias consolidadas na Física.

Ser um metal ruim, contudo, não implica ser banido do universo das aplicações. Muito pelo contrário, de acordo com o artigo, o comportamento incoerente dos elétrons no sulfeto de ferro dopado pode ser aproveitado para chegar a efeitos ópticos e de transporte não convencionais sem sair da temperatura e pressão ambiente.

“Este trabalho faz parte de um esforço continuado envolvendo vários pesquisadores no Brasil e no exterior, o qual tem por objetivo demonstrar claramente que sistemas com elétrons correlacionados representam uma classe importante de materiais para aplicações tecnológicas variadas”, comenta o professor Craco.

“Agora nós esperamos que a comunidade científica, relacionada à física de sistemas de elétrons correlacionados e/ou física de materiais, por exemplo, tome conhecimento do nosso estudo e resultados, e possa num futuro próximo corroborar a nossa descrição teórica das propriedades eletrônicas e de transporte não convencional na troilite dopada com elétrons, consolidando assim a relevância do nosso estudo para futuras aplicações da troilite e seus derivados no armazenamento de energia renovável ou na geração de novas fases eletrônicas não convencionais tipo não-líquidos de Fermi com grande apelo cientifico e tecnológico contemporâneo”, conclui Craco.

A pesquisa contou com financiamento do CNPq.

Gente da comunidade: entrevista com Ado Jorio de Vasconcelos, que proferirá palestra plenária no XV Encontro da SBPMat.

Há 16 anos, nos Estados Unidos, o físico brasileiro Ado Jorio de Vasconcelos, em estágio de pós-doutorado no Massachusetts Institute of Technology (MIT) no grupo da professora Mildred Dresselhaus, encabeçava um trabalho que geraria o primeiro resultado bem-sucedido da aplicação da Óptica, mais precisamente da espectroscopia Raman, na caracterização individual de nanotubos de carbono – cujas paredes, vale lembrar, têm apenas 1 átomo de espessura e cujo diâmetro costuma ser de 1 nanometro. Uma olhada no site do MIT, na página da professora Mildred, que vem estudando nanoestruturas de carbono no MIT há mais de 50 anos, reforça a relevância do trabalho realizado junto ao brasileiro: 5 das 6 publicações selecionadas pela professora emérita têm coautoria dele.

Quando começou o pós-doc, Ado Jorio tinha 28 anos de idade e acabava de obter o diploma de doutor em Física pela Universidade Federal de Minas Gerais (UFMG), com uma tese sobre transições de fase em sistemas incomensuráveis, realizada com orientação do professor Marcos Assunção Pimenta. Antes disso, graduara-se em Física, também pela UFMG, depois de cursar 3 anos de Engenharia Elétrica.

Finalizado o pós-doutorado no MIT, Jorio voltou à UFMG ao ser aprovado em concurso público, tornando-se professor adjunto da universidade em 2002. De 2007 a 2009 ocupou um cargo no Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro) para realizar atividades relacionadas ao desenvolvimento da nanometrologia. Em 2010, tornou-se professor titular da UFMG e, no mesmo ano, assumiu, até 2012, a direção da Coordenadoria de Transferência e Inovação Tecnológica da universidade. Em 2013, esteve no ETH Zurich (Suíça) como professor visitante, realizando atividades docentes e de pesquisa. Em agosto deste ano, assumiu a direção da Pró-Reitoria de Pesquisa da UFMG.

Desde 2002, Jorio vem ampliando o tema de seu trabalho de pós-doutorado. O cientista mineiro tem realizado pesquisa em Óptica e desenvolvimento de instrumentação científica, visando ao estudo de nanoestruturas de carbono com aplicações muito diversas. Um exemplo dessa diversidade é um trabalho do qual Jorio participa, no qual técnicas do campo da Nanotecnologia são utilizadas para compreender detalhes da composição da “terra preta de índio”, um solo de altíssima fertilidade e capacidade de sequestrar carbono, encontrado em locais antigamente habitados por índios na Amazônia brasileira.

Atualmente, Jorio é dono de um dos índices H mais altos entre os cientistas do Brasil: 74, segundo o Google Scholar. Ele é também um dos pesquisadores mais citados no mundo, como atesta a inclusão de seu nome na mais recente lista internacional da Thomson Reuters, que destacou, dentre todos os artigos científicos indexados entre 2003 e 2013, o 1% de papers mais citados em cada área do conhecimento. Jorio é autor de mais de 180 artigos científicos e de 20 livros ou capítulos de livros, além de 8 pedidos de patente. De acordo com o Google Scholar, suas publicações reúnem mais de 30 mil citações.

Suas contribuições receberam uma série de reconhecimentos de prestigiadas entidades, como o Somiya Award da International Union of Materials Research Societies em 2009; o ICTP Prize do Abdus Salam International Centre for Theoretical Physics em 2011, e o Georg Forster Research Award da Humboldt Foundation em 2015, entre muitas outras distinções nacionais e internacionais.

No XV Encontro da SBPMat, Ado Jorio proferirá uma palestra plenária sobre um tema no qual é um dos principais especialistas do mundo, o uso de espectroscopia Raman para o estudo de nanoestruturas de carbono. O cientista brasileiro falará sobre a evolução que a técnica experimentou até chegar na escala nano. E promete revelar alguns truques que possibilitam o uso da luz, cujo comprimento de onda é de, no mínimo, centenas de nanometros, como sonda para investigar estruturas de apenas alguns nanometros.

Veja nossa entrevista com este membro da comunidade brasileira de pesquisa em Materiais e plenarista do nosso evento anual.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar na área de Materiais.

Ado Jorio: – O caminho foi tortuoso! Entrei na universidade para cursar engenharia elétrica. Na época tocava em uma banda de rock progressivo, e procurei iniciação científica na área de música. Fui orientado a conversar com um professor do departamento de física, que gostava de música, estudava acústica e materiais. Aí começou minha trajetória, que acabou na ciência dos materiais.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais.

Ado Jorio: – Diria que são duas principais. A primeira, na área de nanotubos de carbono, demonstrei que a óptica poderia ser levada ao nível de nanotubos isolados. Isso abriu um campo de pesquisas muito amplo, porque os nanotubos podem ser de vários tipos, dependendo do seu diâmetro e quiralidade. Antes deste trabalho, as pessoas estudavam nanotubos. Após este trabalho, as pessoas passaram a estudar tipos específicos de nanotubos. Seria equivalente a dizer que pesquisadores estudavam o átomo, e se deram conta de que existem diversos tipos de átomos. O artigo que foi marco desta descoberta foi o [PRL86, 1118 (2001)]. A segunda contribuição foi o avanço da óptica para o estudo de nanoestruturas de carbono, de forma mais ampla. Trabalhei em diversas frentes, desde a instrumentação científica, para medidas ópticas abaixo do limite de difração, até o estudo e caracterização de defeitos, abordagem de materiais de interesse em ciências do solo, biotecnologia, biomedicina. Algumas referências importantes são os livros “Raman Spectroscopy in Graphene Related Systems” e “Bioengineering Applications of Carbon Nanostructures”.

Boletim da SBPMat: –  Sempre convidamos os entrevistados desta seção do boletim a deixarem uma mensagem para os leitores que estão iniciando suas carreiras científicas. Muitos desses leitores provavelmente almejam conseguir um dia um índice H como o seu. O que você diria a eles?

Ado Jorio: – Faça um grande esforço para participar de conferências, e faça excelentes apresentações, sempre! A ciência é um debate e você tem que ser ouvido. Nunca repita uma mesma apresentação. Cada público pede um foco. É certo que este conselho depende de financiamento, mas desde o início da minha carreira, sempre gastei dinheiro do meu salário financiando minhas viagens, e ainda faço isso.

Boletim da SBPMat: – Deixe uma mensagem ou convite para sua palestra plenária aos leitores que participarão do XV Encontro da SBPMat.

Ado Jorio: – Depois de tudo o que foi dito acima, e considerando que título e resumo estarão disponíveis, só me resta já deixar aqui, de prontidão, meu agradecimento àqueles que me prestigiarem com sua presença. Será uma honra ter os colegas no auditório.

————–

Link para o resumo da plenária de Ado Jorio, intitulada “Innelastic light scattering in carbon nanostructures: from the micro to the nanoscale”: http://sbpmat.org.br/15encontro/speakers/abstracts/7.pdf

Distinção da American Ceramic Society (ACerS) para o brasileiro Edgar Zanotto: eleito “fellow” da sociedade.

O professor Edgar Dutra Zanotto. Crédito: Enzo Kuratomi/ UFSCar.

O professor da Universidade Federal de São Carlos (UFSCar) Edgar Dutra Zanotto, um dos fundadores da SBPMat e pesquisador na área de Materiais há cerca de 40 anos, foi eleito fellow da American Ceramic Society (ACerS) – uma distinção outorgada anualmente a alguns poucos sócios.

O status de fellow é um reconhecimento dado a um sócio por seus pares da ACerS. De fato, os fellows da ACerS são escolhidos entre os quase 10.000 sócios da sociedade, localizados em cerca de 70 países, num processo de indicação e eleição do qual participam sócios, fellows e, na aprovação final, diretores da ACerS. Para ser eleito fellow, o sócio deve ter feito contribuições notáveis à ciência ou arte da cerâmica. No caso dos cientistas que atuam no meio acadêmico, a produção científica e tecnológica é um dos principais pontos considerados na eleição.

O professor Zanotto conta atualmente com mais de 5.500 citações e um índice H de 40, segundo o Google Scholar. Entre outras posições que ocupa, é diretor do Center for Research, Technology and Education in Vitreous Materials (CeRTEV) e editor do Journal of Non-Crystalline Solids.

A eleição dos novos fellows da ACerS será comemorada no banquete de prêmios e distinções do 118 º encontro anual da sociedade, no dia 24 de outubro deste ano em Salt Lake City, Utah, nos Estados Unidos.

Boletim da SBPMat – edição 43.

 

Saudações %primeiro_nome%!

Edição nº 43 – 31 de março de 2016 

Notícias da SBPMat: XV Encontro - Campinas (SP), 25-29/09/2016 

Autores: A submissão de resumos está aberta até 30 de maio. As notificações de aceitação de trabalhos serão enviadas aos autores até 10 de julho. Não deixe de ler as instruções para autores. Aqui.

Simpósios: Veja a lista de 22 simpósios aprovados, dentros dos quais podem ser submetidos os resumos.  Aqui.

Expositores: Ainda tem estandes disponíveis. Empresas interessadas em participar do evento com estandes e outras formas de divulgação devem entrar em contato com Alexandre, no e-mail comercial@sbpmat.org.br.

Plenárias: Veja quem são os cientistas que proferirão as palestras plenárias em nosso evento e comece e se entusiasmar. Aqui.

Hospedagem e passagens: Lista da agência de turismo Follow Up com hotéis, albergues, pousadas e formulário para reserva de vôos, aqui.

Local do evento: Veja vídeo sobre a cidade de Campinas e folder sobre o centro de convenções Expo D. Pedro. 

Organizadores: Coordenam esta edição do evento as professoras da Unicamp Ana Flávia Nogueira (Instituto de Química) e Mônica Alonso Cotta (Instituto de Física “Gleb Wataghin”). Saiba quem são os membros da comissão local e veja fotos dos organizadores, aqui.


Artigo em destaque 

Uma equipe de cientistas do Brasil, liderada por um grupo da USP, estudou, por meio de simulações e outros métodos teóricos, os efeitos indesejados que processos de nanofabricação podem gerar em determinados cristais fotônicos. Os cientistas também analisaram teoricamente de que maneira essas imperfeições afetariam o desempenho dos cristais fotônicos na sua função de manipular a luz. A pesquisa foi recentemente reportada no Journal of Applied Physics. Veja nossa matéria de divulgação.

Gente da nossa comunidade 
Para comemorar o segundo aniversário do programa University Chapters da SBPMat (no qual cerca de 150 estudantes de diversos pontos do Brasil, organizados em equipes, participam ativamente da sociedade), entrevistamos o professor da UFOP Rodrigo Bianchi, que coordena o programa desde sua criação. Curiosidade por entender a natureza e oportunidades levaram Bianchi à “Física-Engenharia” de materiais orgânicos com propriedades eletrônicas. Nesse campo, junto a seus estudantes e outros colaboradores, Bianchi tem gerado papers, patentes, startups e produtos. O segredo? Estudar limitações tecnológicas de dispositivos existentes e transformá-las em oportunidades de inovação para outros dispositivos. Na entrevista, além de contar mais sobre sua carreira de pesquisador, o professor falou sobre o programa UCs e deixou uma mensagem para os mais jovens. Veja nossa entrevista.
Especial: Sirius, o próximo síncrotron brasileiro
Cerca de 300 pessoas trabalham atualmente em Campinas (SP) na construção de um laboratório de luz síncrotron de quarta geração que será um dos primeiros do tipo no mundo, o Sirius. As características técnicas da radiação que gerará (alta energia, baixíssima emitância) abrirão novas possibilidades de estudos para a comunidade de materiais e propiciarão a realização de pesquisas de alto nível, superando amplamente o equipamento que hoje opera no Laboratório Nacional de Luz Síncrotron (LNLS). Veja nossa matéria, com entrevista ao coordenador do projeto,  Antonio José Roque da Silva.

Dicas de leitura

  • Pesquisa com participação de pesquisadores brasileiros resulta em eletrodo flexível e biocompatível capaz de medir processos biológicos associados a variações de potencial elétrico (divulgação de paper de capa da Advanced Functional Materials). Aqui.
  • Cientistas do Brasil e Canadá combinam materiais e criam vidro luminescente que pode amarelar a luz fria de LEDs (divulgação de paper da Scientific Reports). Aqui.
  • O MackGraphe, centro de pesquisa em grafeno que se propõe a ser uma “ponte” entre pesquisa e comercialização de produtos, foi inaugurado na universidade Mackenzie, em São Paulo, com a presença de Andre Geim, laureado com o Nobel de Física em 2010 por seus estudos sobre grafeno. Aqui.
Oportunidades

  • BNDES recebe pedidos de financiamento via Funtec para projetos tecnológicos em temas de Materiais, entre outros. Aqui.
  • Postdoctoral positions available for glass research. Aqui.
  • Seleção para doutorado na UFRGS com sanduíche nos EUA em dispositivos fotônicos para biossensores. Aqui.
  • Oportunidades para pesquisadores no CNPEM. Aqui.
  • Oportunidade para doutores em projeto de inovação tecnológica na área de nanomateriais de carbono, em Belo Horizonte. Aqui.
  • Prorrogadas até 20 de maio as inscrições ao concurso para professor em Química Inorgânica do IQ – Unicamp. Aqui.
Próximos eventos da área

  • 5th International Conference on Surface Metrology. Póznan (Polônia). 4 a 7 de abril de 2016.  Site.
  • 9th Brazilian-German Workshop on Applied Surface Science. Maresias, SP (Brasil). 10 a 15 de abril de 2016. Site.
  • 43rd International Conference on Metallurgical Coatings and Thin Films (ICMCTF). San Diego (EUA). 25 a 29 de abril de 2016. Site.
  • 5ª escola de SAXS. Campinas, SP (Brasil). 2 a 6 de maio de 2016. Site.
  • 1st User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering. Campinas, SP (Brasil). 5 a 6 de maio de 2016. Site.
  • 40th WOCSDICE ‐ Workshop on Compound Semiconductor Devices and Integrated Circuits held in Europe & 13th EXMATEC ‐ Expert Evaluation and Control of Compound Semiconductor Materials and Technologies. Aveiro (Portugal). 6 a 10 de junho de 2016. Site.
  • Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications (PCNSPA Conference 2016). São Petersburgo (Rússia). 27 de junho a 1 de julho de 2016.  Site.
  • 1st International Symposium on Advanced Photonic Materials. São Petersburgo (Rússia). 27 de junho a 1º de julho de 2016. Site.
  • XXV International Conference on Raman Spectroscopy (ICORS2016). Fortaleza, CE (Brasil). 14 a 19 de agosto de 2016.  Site.
  • XV Encontro da SBPMat. Campinas, SP (Brasil). 25 a 29 de setembro de 2016. Site.
  • Aerospace Technology 2016. Estocolomo (Suécia). 11 a 12 de outubro de 2016. Site.
      
Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails.

 

Gente da comunidade: entrevista com Rodrigo Fernando Bianchi.

Rodrigo Fernando Bianchi.

No mês em que o programa University Chapters (UCs) da SBPMat completa 2 anos de existência, entrevistamos seu coordenador, o professor da Universidade Federal de Ouro Preto (UFOP) Rodrigo Fernando Bianchi, diretor científico da SBPMat.

Curioso desde criança por compreender os fenômenos da natureza, Rodrigo Bianchi escolheu a Física como área de sua graduação, a qual cursou entre 1992 e 1995 na sua cidade nata, no Instituto de Física de São Carlos da Universidade de São Paulo (IFSC-USP). As oportunidades de pesquisa que foram surgindo o encaminharam para realizar mestrado e doutorado na área de Materiais, também no IFSC-USP, com orientação do professor Roberto Mendonça Faria. Defendeu o mestrado em 1997. No ano 2000, no meio do doutorado, passou seis meses nos Estados Unidos, na Universidade de Carolina do Norte em Chapel Hill, fazendo estágio de pesquisa (conhecido como “sanduíche de doutorado”). Em 2002, obteve o diploma de doutor pelo IFSC-USP.

Desde a época dos estudos de graduação, Bianchi complementava suas atividades acadêmicas com monitorias na USP, até que se tornou docente da instituição, do departamento de Engenharia de Sistemas Eletrônicos, em 2004. Em 2006, tornou-se professor do Departamento de Física da UFOP. No mesmo ano, fundou o Laboratório de Polímeros e Propriedades Eletrônicas de Materiais (LAPPEM). De 2011 a 2013, foi pesquisador visitante do departamento de Engenharia Elétrica e Ciências da Computação da Universidade da California em Berkeley, EUA. Entre 2013 e 2014, desempenhou-se como coordenador do Núcleo de Inovação Tecnológica e Empreendedorismo da UFOP.

Desde a criação do LAPPEM, trabalhos de pesquisa e desenvolvimento realizados pelo grupo de pesquisa e colaboradores do laboratório vêm gerando artigos científicos, patentes e empreendimentos, e recebendo distinções em nível nacional. Por exemplo, em 2008, o grupo recebeu o 3º Prêmio Werner von Siemens de Inovação Tecnológica na modalidade “Saúde” e o Prêmio de Incentivo em Ciência e Tecnologia para o SUS, do Ministério da Saúde, pelo desenvolvimento dos neostickers. Criados para serem usados na fototerapia com luz azul com a qual se trata a icterícia neonatal, os neostickers são sensores baseados em material orgânico luminescente que indicam o ponto ótimo de acumulação de radiação azul para o tratamento.

Outro entre vários reconhecimentos ocorreu no início deste ano, quando um empreendimento de membros do LAPPEM criado para levar ao mercado desenvolvimentos do laboratório foi classificado no quarto lugar entre 1.500 startups do Brasil no ranking “100 Open Startups”. Neste caso, o produto destacado foi um adesivo, também baseado em material orgânico luminescente, que permite monitorar o nível de radiação ultravioleta (UV) solar que a pele humana absorve.

Atualmente, e desde 2014, Rodrigo Bianchi é diretor científico da SBPMat. Quando assumiu a diretoria, recebeu a atribuição de criar e liderar o programa University Chapters (UCs) da sociedade, que conta hoje com oito grupos participantes, sediados em universidades de cinco estados brasileiros. Bianchi também é pró-reitor de Planejamento e Desenvolvimento da UFOP e docente permanente dos programas de pós-graduação em Engenharia de Materiais e em Ciências: Física de Materiais.

Bolsista de produtividade do CNPq, nível 2, Bianchi é autor de 7 patentes depositadas e mais de 40 artigos publicados em periódicos indexados internacionaisO professor já orientou 19 dissertações de mestrado e 6 teses de doutorado.

Segue uma entrevista com o pesquisador.

Boletim da SBPMat: – Conte-nos o que levou a se tornar um cientista e a trabalhar na área de Materiais.

Rodrigo Bianchi: – Sempre fui uma criança curiosa na compreensão dos fenômenos da natureza. Essa “curiosidade” tem me acompanhado em toda minha formação como cientista, desde os ciclos básicos e secundários, passando pela graduação em Física pelo Instituto de Física de São Carlos, USP, e pós-graduação em Ciência e Engenharia de Materiais, também pela USP, até as linhas de pesquisa que coordeno na UFOP, em dispositivos eletrônicos poliméricos aplicados à área de saúde. As oportunidades de pesquisa em polímeros que tive desde a graduação me levaram a atuar mais próximo da área aplicada. Consequentemente, da Física migrei para Ciência e Engenharia de Materiais, e hoje me considero um “físico – engenheiro de materiais” com linhas de pesquisa voltadas tanto ao estudo fundamental dos fenômenos de transporte de cargas em dispositivos eletrônicos orgânicos, como também à idealização de sensores aplicados a neonatologia, à área de alimentos e ao monitoramento e controle de radiação.

Boletim da SBPMat: –  Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais? Não deixe de comentar os casos em que você participou da transformação de conhecimento científico em produtos.

Rodrigo Bianchi: – Sem dúvida, na minha avaliação, a principal contribuição foi utilizar fenômenos que inviabilizavam o mercado dos dispositivos eletrônicos orgânicos, tais como os processos de fotodegradação, que levavam à baixa durabilidade e fraco desempenho de diodos emissores de luz orgânicos (OLEDS), para desenvolver sensores inovadores. Algo como conhecer os princípios de funcionamento e de limitação de dispositivos que ainda estavam em fase de maturação para criar novos sensores com aplicações distintas. Um exemplo dessa estratégia foi o uso da alteração de cor dos OLEDs, gerada pela exposição de oxigênio e luz, que inviabilizava muitas das aplicações comerciais desses sistemas, para desenvolver sensores colorimétricos de radiação na forma de nanofibras, filmes e géis. Ou seja, desenvolver sensores em escala 1, 2 e 3D para uso em diferentes áreas da saúde: do controle da fototerapia para icterícia neonatal ao monitoramento de radiação UV para banhistas e trabalhadores civis e rurais, até o monitoramento dos processos de cobaltoterapia, radioterapia e radiação de alimentos. Assim, estimulados por essas pesquisas, parcerias e orientações, atualmente há, além do nosso grupo na UFOP, outros grupos de pesquisa trabalhando na área, no Brasil e no exterior. Além disso, hoje nosso grupo é composto por físicos, químicos, engenheiros de alimentos, farmacêuticos e diversos estudantes e profissionais focados no desenvolvimento de pesquisas multidisciplinares na área de eletrônica orgânica. O grupo já gerou dezenas de artigos, patentes e orientações, cujo foco sempre foi a compreensão de fenômenos fundamentais para o desenvolvimento de dispositivos orgânicos inovadores. Por essa característica, membros da nossa equipe já foram contemplados com prêmios de inovação importantes, como, por exemplo, os do Ministério da Saúde, da Empresa Siemens e do Governo do Estado de Minas Gerais.

Do ponto de vista tecnológico, a startup As31 criada pelos estudantes para comercializar esses produtos foi classificada recentemente em quarto lugar no ranking das 100 Open Startups brasileiras, e tem se reunido periodicamente com grandes empresas para estabelecer parcerias B2B (business-to-business) para lançar produtos no mercado. Essa foi a segunda startup criada por membros do nosso grupo de pesquisa. Como lição tiramos que as dificuldades encontradas para geração de produtos tecnológicos e inovadores são imensas. Logo, ter uma equipe bem formada e competente do ponto de vista científico e tecnológico é o primeiro passo para se lançar uma startup. Não obstante, ter a coragem de mudar e alterar o rumo da empresa é fundamental. Por exemplo, a As31 tem hoje duas etiquetas inteligentes como carro chefe de produtos: uma para indicar ao consumidor possíveis processos de contaminação de carne in natura, causada por variações de temperatura em prateleira, e outra, por sua vez, para indicar quando os banhistas, sobretudo crianças, devem reaplicar o filtro solar. Ou seja, duas aplicações que surgiram da observação dos problemas dos OLEDs há mais de dez anos e que hoje são atualíssimas.

Boletim da SBPMat: – O programa University Chapters (UCs) da SBPMat, que você coordena desde o início, comemora dois anos de existência neste mês. Compartilhe conosco sua avaliação pessoal dos resultados conseguidos até o momento e conte-nos quais são seus planos para o programa daqui para frente.

Rodrigo Bianchi: – Sobre o programa UC da SBPMat, digo que foi um enorme prazer participar dessa criação e empreitada. Estabelecer uma rotina de trabalho e de envolvimento de estudantes que serão o futuro da área de Materiais no país não é um desafio simples e fácil. Ao contrário, hoje temos grupos de Materiais espalhados e concentrados em todas as regiões do país, de norte a sul, de leste a oeste. Logo, unir esses estudantes numa causa única e, consequentemente, propiciar a eles seu valor na sociedade é de grande importância. Como fazer isso? Nossa estratégia foi estimular os estudantes a formarem seus grupos, e para isso foram inúmeras palestras e divulgações dos UCs por todo o país. Uma vez criada o programa UC, o mais importante foi estimular os estudantes a organizarem um simpósio no encontro anual da SBPMat, no qual os estudantes passassem a ter o papel de protagonistas na sociedade, envolvendo-se tanto na escolha da programação, como também na organização do evento. Uma inovação, pois desconheço outra entidade de Materiais que tenha propiciado tal oportunidade até este momento. Isso aconteceu no Rio de Janeiro em 2015 e foi evidente o sucesso da ação e do envolvimento dos estudantes. Foram palestras científicas de altíssimo nível envolvendo não apenas temas de Materiais e de ciência, mas também ética e escrita científica, por exemplo. Ou seja, temas de interesse direto dos estudantes que serão o futuro da área de Materiais do país. Para o próximo encontro, em Campinas, os estudantes já se organizaram para coordenar novamente este simpósio. Como futuro? A resposta é estimular a formação de novos grupos, a interação entre os estudantes e consolidar a participação de todos na SBPMat.

Boletim da SBPMat: – Sempre convidamos os entrevistados desta seção do boletim a deixarem uma mensagem para os leitores que estão iniciando suas carreiras científicas. Gostaria de falar algo em particular para esses futuros cientistas/ cientistas juniores?

Rodrigo Bianchi: – Como mensagem final aos leitores, sobretudo aos mais jovens: “a área de Materiais é riquíssima e nos dá a oportunidade de interagir com profissionais e temas das mais diversas áreas do conhecimento. Portanto, usufrua dessa importante característica. Junte-se a pessoas competentes e motivadoras, e tenham a coragem de inovar e trazer suas ideias ao mercado. O Brasil precisa disso e você pode fazer a diferença!”

Especial: Sirius, o novo síncrotron brasileiro de última geração.

Antes da virada desta década, o Laboratório Nacional de Luz Síncrotron (LNLS), localizado no município de Campinas (SP), deve começar a receber pesquisadores do Brasil e do resto do mundo para utilizarem o Sirius, o síncrotron brasileiro de quarta geração que substituirá ou complementará o UVX – atual síncrotron brasileiro, de segunda geração, que está em funcionamento desde 1997 e é o único síncrotron da América Latina.

Muito apreciados pela comunidade científica de Materiais, e de muitas outras áreas, os síncrotrons são as melhores fontes de feixes de raios X e de luz ultravioleta, dois tipos de radiação de grande utilidade no estudo da matéria. O processo para obter a radiação começa quando elétrons são acelerados até atingirem uma velocidade próxima à da luz e submetidos a desvios na sua trajetória. Quando desviados, os elétrons perdem parte de sua energia na forma de luz síncrotron, a qual é filtrada por monocromadores, encarregados de liberar a passagem de radiação apenas no comprimento de onda desejado. Assim, feixes de raios X ou de luz ultravioleta são levados até as estações experimentais ou linhas de luz, em volta do acelerador, que têm diversos instrumentos científicos. Ali ficam os usuários dos síncrotrons, aproveitando a radiação para analisar sua interação com a matéria por meio dos instrumentos científicos e, dessa maneira, obter informações sobre a estrutura e propriedades dos materiais em escala micro e nanométrica.

Voltando ao Sirius, como sugere seu nome, que remete à estrela mais brilhante do céu noturno, ele será capaz de gerar feixes de luz de altíssimo brilho (até um bilhão de vezes mais alto do que o brilho do UVX) – uma característica muito importante para poder fazer mais e melhores experimentos.

Essa radiação de altíssimo brilho, em combinação com avançados instrumentos científicos e poderosos computadores para processar rapidamente uma grande quantidade de dados, permitirá a realização de uma diversidade de experimentos que devem gerar resultados científicos e tecnológicos em segmentos como Agricultura, Biologia, Geologia, Energia e Saúde, além, é claro, na transversal área de Materiais.

Localização das fontes de luz síncrotron em construção e em operação no mundo. Crédito: LNLS-CNPEM.

Para isso, cerca de 300 pessoas estão trabalhando no projeto e construção do Sirius, uma obra de grande dimensão e complexidade que envolve vários desafios. Um deles é o desenvolvimento da fonte de luz síncrotron. De fato, o Sirius será uma das primeiras fontes de quarta geração do mundo (existe apenas mais uma, em construção, na Suécia, e nenhuma operando). Desafios também estão presentes na construção do prédio, que deve garantir a quase absoluta ausência de vibrações, por menores que sejam. Os desafios continuam, por exemplo, no desenvolvimento de um sistema de monitoramento, diagnóstico e correção da estabilidade da trajetória do sensível feixe de elétrons.

Este grande empreendimento brasileiro, cujo valor é estimado em 1,3 bilhões de reais, está sendo realizado pelo LNLS, que desenvolveu o UVX e cuida da sua operação, manutenção e atualização há 19 anos. A direção geral da equipe está sob a responsabilidade do atual diretor do LNLS, Antonio José Roque da Silva. Professor titular da Universidade de São Paulo (USP), Roque da Silva tem graduação e mestrado em Física pela Unicamp, e doutorado (PhD), também em Física, pela University of California at Berkeley. É autor de mais de 120 artigos publicados em periódicos científicos indexados, muitos deles referentes a estudos sobre materiais. Suas publicações contam com mais de 4.400 citações, segundo o Google Scholar.

Veja a entrevista do Boletim da SBPMat com Roque da Silva sobre as características técnicas do Sirius, as possibilidades que oferecerá à comunidade de Materiais, o andamento do projeto e o futuro do UVX, entre outros assuntos.

Boletim da SBPMat: – O Sirius será uma fonte de luz síncrotron de alto brilho. Qual é a importância do brilho para as pesquisas em Ciência e Tecnologia de Materiais?

Antonio José Roque da Silva: – Para uma dada frequência da radiação, o seu brilho é diretamente proporcional ao fluxo (número de fótons por unidade de tempo) e inversamente proporcional ao produto (tamanho do feixe x divergência angular do feixe). Esse último produto é a emitância do feixe. Portanto, quanto menor a emitância, maior o brilho.

Um alto brilho influencia as análises de materiais de diferentes formas:

a.  Quanto maior o brilho da luz produzida pela fonte de luz síncrotron, maior é o número de amostras que podem ser analisadas num mesmo espaço de tempo; isso permite, inclusive, fazer experimentos com resolução temporal, em que se acompanha a evolução de reações ou processos, por exemplo, em função do tempo.

b.  Quanto maior o brilho, melhor é a relação sinal-ruído de diversas técnicas de análise.

c.  A menor emitância, e portanto maior brilho, permite que menores escalas espaciais sejam sondadas pelas técnicas de análise. Isso abre oportunidades para estudos com feixes de poucos nanometros, importantes para áreas como nanotecnologia, dentre outras.

As primeiras 13 linhas de luz que serão instaladas no Sirius. Dados fornecidos pelo LNLS-CNPEM.

d. Um maior brilho permite que novas técnicas surjam ou sejam exploradas mais efetivamente. Isso ocorre, por exemplo, com a técnica de Coherent Diffraction Imaging. As técnicas de imagem, tomografia e microscopia irão ser bastante beneficiadas pelo maior brilho.

Boletim da SBPMat: – Quais são as limitações do síncrotron UVX que serão superadas pelo Sirius? Por exemplo, nas estações experimentais do Sirius haverá técnicas de caracterização de materiais que não podem ser instaladas no UVX?

Antonio José Roque da Silva: – A primeira diferença entre as duas máquinas é a faixa de energia em que trabalham. Os elétrons no anel de armazenamento do Sirius serão acelerados até a energia de 3 GeV, mais que o dobro da energia do UVX. Isso faz com que raios X de maior energia sejam produzidos e permite que materiais como aço, concreto e rochas sejam estudados mais profundamente devido à penetração dos raios X de até alguns centímetros, contra alguns micrômetros do UVX.
Também pela diferença de energia, o número de elementos químicos que podem ser estudados por espectroscopia de absorção de raios X moles também é diferente. No UVX pouco menos da metade dos elementos químicos pode ser estudada, enquanto no Sirius quase todos os elementos da Tabela Periódica poderão ser estudados.

O baixo brilho e alta emitância (ver acima) do UVX limitam sobremaneira as técnicas mais modernas de síncrotron disponíveis para a comunidade do país. Nanotomografia, imagem por difração coerente, nanomicroscopia de fluorescência, análise de nanocristais, estudos de materiais em condições extremas (altas pressões e altas temperaturas), espalhamento inelástico, acompanhamento temporal de diversos processos, acompanhado de resolução espacial nanométrica e resolução química (importante, por exemplo, para processos catalíticos), dentre várias outras técnicas, não são possíveis de serem realizadas no UVX, ou são realizadas com grandes limitações, e todas poderão ser executadas no Sirius em alto padrão.

Boletim da SBPMat: – O que acontecerá com o UVX? Será desmontado?

Antonio José Roque da Silva: – É importante salientar que tudo o que o UVX faz hoje poderá ser feito muito melhor no Sirius. Além do enorme número de novos experimentos que são impossíveis de serem realizados pelo UVX, como citado acima. É uma preocupação do LNLS que durante o período de comissionamento das linhas de luz do Sirius, o UVX seja mantido operacional, garantindo que a comunidade não sofra nenhuma descontinuidade. Entretanto, após o Sirius ficar totalmente operacional, não se sabe ainda se a máquina atual será mantida ou desativada. Sabemos que o instrumental científico hoje disponível em algumas estações experimentais do UVX será transferido para o Sirius. Além disso, é necessário avaliar os custos e a viabilidade da manutenção e operação simultânea de duas fontes de luz síncrotron, bem como do pessoal necessário (engenheiros, técnicos, pesquisadores etc.) para operação de ambas as fontes. É necessário avaliar, ainda, qual será a demanda dos usuários pelas estações experimentais do UVX, uma vez que o Sirius esteja em operação.

Boletim da SBPMat: – A competência de profissionais (cientistas, engenheiros, técnicos) e empresas do Brasil desenvolvida durante a construção do UVX é/será aproveitada no Sirius? Se sim, de que maneira?

Antonio José Roque da Silva: – O projeto Sirius não seria possível sem a competência dos profissionais formados pelo LNLS ao longo dos anos, particularmente durante a construção do UVX. Esse corpo profissional (cientistas, engenheiros, técnicos) de alta capacidade e especialização, formado ao longo dos últimos 30 anos, é essencial para o sucesso do Sirius. O amálgama de profissionais experientes, originários da construção do UVX, com jovens é estratégia central do LNLS. Para o Sirius e para o futuro do laboratório. Do ponto de vista técnico, o conhecimento acumulado pelos nossos engenheiros e técnicos na construção e operação do UVX é que permite projetar um síncrotron como o Sirius, no estado da arte. Essa experiência será crucial também para a operação do novo síncrotron.  O mesmo vale para os cientistas. O envolvimento com a construção e operação das linhas de luz e estações experimentais do UVX é fator importantíssimo para os projetos das sofisticadas linhas de luz do Sirius. O contínuo envolvimento desses pesquisadores no treinamento de novos usuários, o que é feito regularmente pelo LNLS, é também algo fundamental, e que remonta desde o início da construção do UVX. Vale mencionar que todo esse conhecimento adquirido ao longo de décadas também depende de forte interação com a comunidade internacional de síncrotrons. O LNLS está fortemente inserido nessa comunidade.

Do ponto de vista de empresas, o número envolvido na construção do UVX foi pequeno. O UVX foi não somente projetado, mas também construído em grande parte dentro do LNLS. Entretanto, algumas empresas, como a Termomecânica, que foram parceiros importantes do UVX, também estão participando da construção do Sirius. Mas o LNLS estruturou programas específicos, com sucesso, para envolver empresas brasileiras no desenvolvimento e construção de diversos componentes para o Sirius. Programas esses em parceria com agências de fomento como FAPESP e FINEP. Esse desenvolvimento de parcerias com empresas brasileiras será importante também para o futuro. Por último, o conhecimento desenvolvido pelas empresas brasileiras que colaboram (e que ainda irão colaborar) com o projeto é de uma relevância que extrapola os limites do próprio projeto. Este é o motivo pelo qual consideramos o Sirius um projeto “estruturante”, cujos desenvolvimentos podem se refletir em novas tecnologias, em novos produtos e processos que trarão benefícios para a cadeia produtiva brasileira de alta tecnologia.

Boletim da SBPMat: – Por ser uma obra de engenharia muito complexa, de alto padrão de exigência e pioneira (não tem outro síncrotron de 4ª geração pronto no mundo), a construção do Sirius apresenta desafios sem precedentes, não é mesmo? Enquanto diretor do projeto, com que você conta para resolver esses desafios?

Antonio José Roque da Silva: – Contamos principalmente com a experiência, conhecimento e arrojo da equipe de cientistas, engenheiros e técnicos do LNLS. A coragem dessa equipe para enfrentar desafios é um dos maiores legados que remontam da construção do UVX. A bela história da construção do UVX já foi abordada em outros boletins da SBPMAT [Nota do boletim: veja aqui a primeira e segunda parte dessa história). A cultura do “yes, we can do”, que vem desde o início do LNLS, é fundamental para vencermos os desafios. Uma das estratégias é aumentar o quadro de profissionais, fundamental dadas as dimensões do Sirius, mesclando jovens com os profissionais mais experientes, garantindo a manutenção da cultura e conhecimento existentes na casa. Além dessa experiência, competência e coragem, a constante interação com outros laboratórios é fundamental. Investimos fortemente nessa área, tanto enviando profissionais do LNLS para o exterior, quanto trazendo especialistas do exterior para visitarem o laboratório. Nesse aspecto, é também importante o processo de avaliação das nossas soluções por renomados especialistas internacionais. Isso é feito através de comitês de avaliação que vêm de forma regular ao LNLS, e através da apresentação dos nossos resultados em conferências e workshops especializados. É importante, também, o investimento em infra-estrutura de ponta, tanto para fabricação quanto para metrologia. Finalmente, uma parte relevante é a gestão e coordenação das atividades e da equipe, garantindo a execução eficiente dos processos necessários.

Boletim da SBPMat: – Comente a participação de empresas e instituições externas ao CNPEM, nacionais e internacionais, no desenvolvimento do Sirius.

Antonio José Roque da Silva: – O projeto Sirius tem como um dos seus objetivos estimular o desenvolvimento da indústria brasileira, por meio da indução de demandas de desenvolvimentos tecnológicos, serviços, matérias-primas, processos e equipamentos. A meta é aplicar entre 65% a 70% dos recursos financeiros do projeto dentro do país. Vale lembrar que o projeto, em si, é 100% nacional.
Dentre parcerias já estabelecidas, cita-se, como exemplo, a realizada com a empresa Termomecânica São Paulo, que desenvolveu o processo para fabricação da matéria prima para as câmaras de vácuo do anel de armazenamento, bem como dos fios de cobre ocos para os eletroímãs, que permitem circulação de água para refrigeração (desenvolvimento este que remonta ao UVX). Outro exemplo é a empresa WEG Indústrias (SC), tradicional fabricante de motores elétricos, que irá fabricar os mais de 1.350 eletroímãs do Sirius, projetados pela equipe técnica do LNLS. Essa é uma parceria excepcional, ligada a sofisticados desenvolvimentos de processos produtivos e que tem sido extremamente bem sucedida.
Existem também exemplos de parcerias com empresas de menor porte, como a FCA Brasil (Campinas, SP), para a fabricação das câmaras de vácuo do Booster, e com a empresa EXA-M Instrumentação do Nordeste (BA), para o desenvolvimento e fabricação dos dispositivos para aquecimento das câmaras de vácuo do anel de armazenamento, e com a Engecer de São Carlos para fabricação de câmaras especiais de vácuo feitas de cerâmica.

Para ampliar a participação de empresas nacionais no projeto Sirius, outras ações sistemáticas foram realizadas. Negociações junto Finep e FAPESP culminaram no lançamento, em 2014, da primeira chamada pública para seleção de empresas paulistas para o desenvolvimento de 20 das demandas tecnológicas do projeto Sirius, com recursos da ordem de R$ 40 milhões. Esses recursos foram disponibilizados no âmbito do Programa PIPE/PAPPE Subvenção Econômica, de modo que cada proposta pudesse solicitar até R$ 1,5 milhão para seu desenvolvimento. Foram selecionadas oito empresas que desenvolverão 13 projetos de pesquisa para a realização dos desafios propostos no edital.
Em 2015 uma segunda chamada pública de propostas foi lançada para o desenvolvimento de 13 novos desafios tecnológicos, com recursos da ordem de R$ 20 milhões no âmbito do mesmo programa. O prazo final para envio das propostas pelas empresas foi encerrado em fevereiro, e atualmente estão em fase de análise pela FAPESP. A expectativa para o segundo semestre de 2016 é que se tenha pelo menos outras treze empresas aprovadas para o desenvolvimento dos desafios da segunda chamada FAPESP/Finep de apoio ao projeto Sirius.

Do ponto de vista internacional, como já mencionado, a constante interação com vários laboratórios tem sido fundamental ao projeto. Um movimento interessante é que hoje, como estamos na fronteira e com várias soluções inovadoras, há naturalmente um interesse de grupos internacionais em interagirem com o LNLS. Ou seja, o Sirius é naturalmente um enorme vetor de internacionalização.

Boletim da SBPMat: – Cite quais são as fontes de financiamento do projeto.

Antonio José Roque da Silva: – O projeto é majoritariamente financiado pelo Governo Federal, através do Ministério da Ciência, Tecnologia e Inovação, MCTI. Inclusive, é importante salientar que o projeto Sirius recentemente foi incluído no PAC (Programa de Aceleração do Crescimento), estando na lista dos primeiros projetos do MCTI a fazerem parte do Programa.

Outros recursos importantes foram fornecidos pelo Governo do Estado de São Paulo. Por exemplo, o terreno de 150 mil metros quadrados onde será instalado o Sirius foi adquirido pelo Governo Estadual e cedido ao CNPEM.

Além disso, a FAPESP tem sido importante parceira nos programas de interação com empresas e no apoio a eventos e na aquisição de instrumental científico que será instalado nas estações experimentais (linhas de luz) do Sirius.

Boletim da SBPMat: – Em que estágio o projeto se encontra neste momento? Qual é, atualmente, a previsão de inauguração da fonte de luz e das primeiras estações experimentais?

Antonio José Roque da Silva: – As obras civis do edifício que abrigará o Sirius estão cerca de 20% concluídas. Já foi construída parte da superestrutura da edificação principal e parte da estrutura metálica da cobertura da edificação principal. Um marco importante é a liberação do túnel para início da montagem dos aceleradores ao final de 2017.

Diversos componentes do acelerador estão em fase de produção. Todos os quadrupolos e corretoras do booster já foram fabricados (pela WEG) e já foram entregues. Na semana passada foi entregue o lote-piloto do sextupolo, e a fabricação dos sextupolos será iniciada em duas semanas. Os dipolos do booster terão seus protótipos entregues até o fim do mês de março, e sua produção deve ser iniciada no começo de maio. O acelerador linear, Linac já está pronto e passando por testes no Instituto de Física de Xangai. Além disso, outros componentes terminaram a fase de desenvolvimento e estão aguardando a liberação do início da produção, como é o caso das câmaras de vácuo do booster e parte das câmaras de vácuo do anel de armazenamento. As cavidades de RF do booster já foram encomendadas, e as cavidades de RF do anel de armazenamento estão prestes a serem encomendadas. Vários outros subsistemas estão em fase final de prototipagem ou início de produção.

No que se refere às estações experimentais (linhas de luz), seus projetos estão entrando na fase de detalhamento técnico e construção e/ou aquisição de componentes. Os projetos das linhas Ipê, Carnaúba, Ema e Cateretê estão entrando agora em uma fase de detalhamento de componentes das estações experimentais, desenhos técnicos e construção/encomenda de componentes como onduladores e espelhos, que tem tempo de entrega de até dois anos e meio. Praticamente todos os protótipos importantes das linhas de luz estarão concluídos até o final de 2016. De maneira geral, o cronograma do Sirius está dentro do previsto, com previsão de primeiro feixe e início da fase de comissionamento em 2018, para que em 2019 a máquina possa receber os primeiros pesquisadores.

Boletim da SBPMat: – Deseja acrescentar algum comentário ou informação?

Antonio José Roque da Silva: – É importante salientar que o Sirius é uma decorrência da evolução tanto da capacidade interna do laboratório quanto do amadurecimento da comunidade científica do Brasil. O conceito de Laboratório Nacional Aberto, que no caso do LNLS visa prover um equipamento extremamente sofisticado e único para a comunidade de CT&I, está no cerne da cultura do laboratório. O seu funcionamento em alta performance exige investimento constante na formação de recursos humanos altamente especializados (cientistas, engenheiros, técnicos), na manutenção de equipamentos e infraestrutura de ponta (aceleradores, linhas de luz, estações experimentais, grupos de apoio, metrologia, técnicas de fabricação, etc.), treinamento de usuários, desenvolvimento de novas tecnologias, comunicação e gestão de excelência. O projeto síncrotron do Brasil, desde o UVX até o Sirius, é algo que todos os brasileiros podem e devem se orgulhar, tendo saído da “estaca zero” e em trinta anos coloca o Brasil no estado da arte, com enorme impacto na formação de recursos humanos, em ciência de alto nível, em inovação, no desenvolvimento de alta tecnologia e na internacionalização.

Simulação do edifício do Sirius (redondo, acima à esquerda) implantado junto ao campus no CNPEM. Crédito: LNLS – CNPEM.

Links relacionados:

Sobre o Sirius

Sobre o UVX