Breves entrevistas com cientistas: Bernhard Keimer (Instituto Max Planck de Pesquisa em Estado Sólido, Alemanha).

Prof. Bernhard Keimer
Prof. Bernhard Keimer

Supercondutividade e magnetorresistência gigante são exemplos de fenômenos que podem ocorrer em alguns materiais ou sistemas a partir da chamada “correlação eletrônica”, na qual o comportamento de um elétron é fortemente influenciado pelo comportamento de outros elétrons do mesmo sistema.

Em um dos Institutos Max Plank, localizado em Stuttgart, na Alemanha, um grupo de pesquisadores liderados pelo professor Bernhard Keimer trabalha duro para entender e controlar o comportamento de elétrons correlacionados. Para isso, a equipe produz heteroestruturas (estruturas compostas de diversos materiais com características diferenciadas) de óxidos metálicos, e as caracteriza utilizando uma série de técnicas experimentais, principalmente de espectroscopia.

O professor Keimer estará no XVII Encontro da SBPMat em setembro falando sobre esse programa de pesquisa na palestra “Espectroscopia de excitações coletivas em heteroestruturas de óxidos”. Em sua palestra plenária, Keimer apresentará métodos e resultados, incluindo algumas possibilidades de controlar fenômenos gerados por correlação eletrônica.

Bernhard Keimer é diretor do Instituto Max Planck de Pesquisa em Estado Sólido e professor honorário da Universidade de Stuttgart desde 1998. De 1992 a 1998, foi professor de Física na Universidade de Princeton. Ele se formou em Física pela Universidade Técnica de Munique em 1985 e, em 1991, obteve seu PhD em Física pelo Instituto de Tecnologia de Massachusetts (MIT), onde permaneceu por um ano como pós-doutorado. De acordo com o Google Scholar, Keimer tem um índice H de 86 e sua produção científica tem mais de 24.500 citações.

Veja nossa minientrevista com este cientista alemão.

Boletim da SBPMat: – Um dos objetivos da pesquisa que você realiza com sua equipe no Instituto Max Plank é controlar o comportamento de elétrons fortemente correlacionados, certo? Na sua opinião, quais poderiam ser as aplicações mais promissoras? Comente em breve, por favor.

Bernhard Keimer: – Correlações quânticas entre elétrons geram uma grande variedade de fenômenos de ordenação eletrônica com propriedades macroscópicas muito diferentes. Entender e controlar o comportamento coletivo dos elétrons em “materiais quânticos” é um grande desafio intelectual para a pesquisa fundamental. A longo prazo, a pesquisa em materiais quânticos pode permitir o design de uma nova geração de dispositivos baseados no fluxo de elétrons com dissipação mínima ou mesmo zero.

Boletim da SBPMat: – Queremos saber mais sobre o seu trabalho. Por favor, escolha um artigo seu (o seu favorito) relacionado ao assunto da palestra plenária, descreva-o brevemente e compartilhe a referência.

Bernhard Keimer: – Como introdução geral à física de materiais quânticos, recomendo um artigo de revisão recente (B. Keimer e J.E. Moore, Nature Physics 13, 1045 (2017)). Um tópico particularmente fascinante é a supercondutividade em alta temperatura. Meu grupo usa heteroestruturas e super-redes para investigar novos fenômenos coletivos emergentes na interface entre supercondutores de alta temperatura e outros materiais quânticos. Como um exemplo, a figura abaixo mostra um caleidoscópio de fases quânticas em uma camada fina de 50 nm de um supercondutor de óxido de cobre prensado entre duas camadas de um ferromagneto de óxido (A. Frano et al., Nature Materials 15, 831 (2016)). Meu grupo está desenvolvendo métodos espectroscópicos que permitem a visualização dessas fases com resolução em profundidade.

Esta figura esquemática mostra os fenômenos de ordenação eletrônica em uma camada do supercondutor de alta temperatura YBa2Cu3O7 (YBCO) entre duas camadas ferromagnéticas de óxido de manganês em função da temperatura (T) e da distância ao longo da camada. FM = ferromagnetismo, SC = supercondutividade, AFI = isolante antiferromagnético, SDW = onda de densidade de spin, CDW = onda de densidade de carga. O gráfico abaixo mostra a densidade dos portadores de carga móvel, p, em função da distância. (A. Frano e outros, Nature Materials 15, 831 (2016)).
Esta figura esquemática mostra os fenômenos de ordenação eletrônica em uma camada do supercondutor de alta temperatura YBa2Cu3O7 (YBCO) entre duas camadas ferromagnéticas de óxido de manganês em função da temperatura (T) e da distância ao longo da camada. FM = ferromagnetismo, SC = supercondutividade, AFI = isolante antiferromagnético, SDW = onda de densidade de spin, CDW = onda de densidade de carga. O gráfico abaixo mostra a densidade dos portadores de carga móvel, p, em função da distância. (A. Frano e outros, Nature Materials 15, 831 (2016)).

Para mais informações sobre este palestrante e a palestra plenária que ele proferirá no XVII Encontro da SBPMat/B-MRS Meeting, clique na foto do palestrante e no título da palestra: https://www.sbpmat.org.br/17encontro/home/

Gente da comunidade: entrevista com o cientista Oscar Manoel Loureiro Malta.

DSC_4269CMYK-Photo 1

O Brasil, além de possuir uma das maiores reservas do mundo de minérios com elementos lantanídeos, também ocupa um lugar de destaque na pesquisa sobre esses elementos e seus compostos, que têm grande aplicabilidade em áreas estratégicas como energia, saúde e catálise, entre muitas outras.

Um dos cientistas brasileiros mais proeminentes nesse campo de pesquisa é o pernambucano Oscar Manoel Loureiro Malta, 63 anos, professor titular do Departamento de Química Fundamental da Universidade Federal de Pernambuco (UFPE). Ao longo de quatro décadas, Malta fez importantes contribuições à pesquisa em lantanídeos, tanto no entendimento de suas propriedades quanto no desenvolvimento de aplicações.

Nascido em Recife, Malta definiu seu interesse pela ciência durante o ensino secundário. Em 1974, iniciou o curso de Engenharia Química na UFPE e de licenciatura em Física na Universidade Católica de Pernambuco. Ao concluir a licenciatura, abandonou o curso de Química para ingressar no mestrado em Física da UFPE. Ali desenvolveu um trabalho de pesquisa sobre espectroscopia de compostos com lantanídeos, orientado pelo professor Gilberto Fernandes de Sá. Em dezembro de 1977, obteve o diploma de mestre. Continuou seus estudos em espectroscopia de lantanídeos no seu doutorado na Universidade de Paris VI (França), também conhecida como Université Pierre et Marie Curie, orientado pelo professor Yves Jeannin. Obteve o título de doutor em março de 1981. Retornou, então, a Recife, onde, no mesmo ano, tornou-se professor da UFPE. Em 1986, voltou à França por um ano como pesquisador visitante no grupo do Paul Caro, cientista mundialmente renomado na área de lantanídeos, ligado ao Centro Nacional da Pesquisa Científica (CNRS).

Oscar Malta foi professor visitante em diversas instituições do mundo: Universidade de Wroclaw (Polônia) em 2015; Universidade de Aveiro (Portugal) em 2005; Universidade Industrial de Santander (Colômbia) no ano 2000; Universidade de São Paulo, USP, em 1995, 1996 e 1999, e Universidade Estadual Paulista Júlio de Mesquita Neto, UNESP, em 1994-95 e 1998.

Na UFPE, participou da criação e consolidação do Departamento de Química Fundamental, no qual atuou como chefe de departamento (1987-89) e coordenador de pós-graduação (1991-93 e 1999-2001). Além disso, o cientista foi coordenador de duas redes nacionais de pesquisa: a Rede Nacional de Nanotecnologia Molecular e de Interfaces, RENAMI (2001 – 2009), e o Instituto Nacional de Ciência e Tecnologia para Marcadores Integrados, INAMI (2009-2015).

Malta tem sido distinguido com uma série de reconhecimentos à sua trajetória científica. Em 15 de novembro passado, recebeu o diploma de doctor honoris causa da Universidade de Wroctaw, importante instituição da Polônia da qual surgiram, por exemplo, nove laureados com o Prêmio Nobel. Em 2016, uma edição especial do Journal of Luminescence (editora Elsevier) sobre espectroscopia de lantanídeos foi dedicada ao pesquisador pernambucano (https://doi.org/10.1016/j.jlumin.2015.11.024). Em 2015, Malta recebeu o Prêmio Ricardo Ferreira ao Mérito Científico, recém-criado pela Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, Facepe. Em 2014, ganhou um reconhecimento ao mérito científico da Associação Brasileira de Química, a Medalha Professor Paulo José Duarte. Em 2003, foi nomeado membro titular da Academia Brasileira de Ciências, ABC.

Neste ano de 2017, Malta foi chairman da International Conference on Luminescence (ICL), a qual, depois de dezessete edições realizadas no hemisfério norte, foi sediada em João Pessoa.

Bolsista de produtividade em pesquisa 1A do CNPq, Oscar Malta é autor de cerca de 180 artigos publicados em periódicos internacionais, que contam com cerca de 7.000 citações na Web of Science. O cientista possui um índice H de 42.

Veja nossa entrevista com Oscar Manoel Loureiro Malta.

Boletim da SBPMat: – Na sua própria avaliação, quais são as suas principais contribuições à área de Materiais e por que as considera mais relevantes?

Oscar Malta: – Desde a época do mestrado, iniciado em 1977, meus trabalhos estão nas áreas da química teórica, teoria do campo ligante, intensidades espectrais 4f-4f, transferência de energia não radiativa, em particular, transferência de energia intramolecular em compostos de coordenação com íons lantanídeos cuja teoria desenvolvi entre 1996 e 1998 e continuo trabalhando com ela até hoje, assim como vários grupos no Brasil e no exterior. Ao longo dessas últimas três décadas, num trabalho envolvendo uma grande e extraordinária sinergia entre teoria e experimento, conseguimos construir um esquema muito bem-sucedido para a modelagem de compostos de coordenação com íons lantanídeos luminescentes altamente funcionais, com potencial para diversas aplicações tais como marcadores luminescentes em bioensaios. Muitos desses resultados foram obtidos nos períodos em que coordenei duas redes nacionais de nanotecnologia. A primeira, Rede Nacional de Nanotecnologia Molecular e de Interfaces (RENAMI), teve vigência de 2001 a 2009, a segunda, o Instituto Nacional de Ciência e Tecnologia para Marcadores Integrados (inct-INAMI), teve vigência de 2009 a 2015. Acoplados a esses resultados foram também desenvolvidos dois importantes temas: o efeito de plásmons de nanopartículas metálicas sobre a luminescência de compostos com íons lantanídeos, um assunto hoje ligado à chamada plasmônica, e o conceito de polarizabilidade da região de recobrimento na ligação química como uma forma de quantificar covalência, introduzido por mim entre 2002 e 2005 com a finalidade de melhor compreender a ligação química envolvendo orbitais 4f. Tal conceito foi posteriormente generalizado para qualquer ligação química, de moléculas simples a materiais complexos. Em todos esses resultados vale salientar a participação dos estudantes, da iniciação científica ao doutorado.

Boletim da SBPMat: – Você começou a pesquisar no campo de espectroscopia de compostos com íons lantanídeos em seu mestrado, 40 anos atrás, e ainda continua trabalhando na área. O que mais lhe atrai nesse tema de pesquisa? Trata-se de uma área ainda promissora? O que mudou na pesquisa nessa área no Brasil desde a década de 1970 até agora?

Oscar Malta: – Os lantanídeos e seus compostos são fascinantes. Eles me levaram a mergulhar no mundo da química teórica, no mundo da álgebra de momento angular, no mundo da interação da radiação com a matéria e no mundo da espectroscopia. Quando terminei o mestrado estava tudo certo para que eu fosse realizar o doutorado na Inglaterra trabalhar em física atômica. Nessa época esteve em Recife, a convite de Gilberto Sá e Ricardo Ferreira, Paul Caro, um dos mais renomados pesquisadores em espectroscopia de lantanídeos. Fez um seminário que me deixou fascinado. Desisti de ir para a Inglaterra e fui trabalhar no grupo de Paul Caro no CNRS em Meudon-Bellevue na França. No início o plano era desenvolver uma tese experimental. Entretanto, eu queria trabalhar com a teoria. Paul Caro aceitou sem problemas, e surgiu uma interação teoria/experimento muito frutífera que se estendeu para outros grupos e continua até hoje, sempre com muito a se fazer tanto do ponto de vista fundamental como do ponto de vista de aplicações. O Brasil é um dos líderes mundiais nesse assunto, com grupos de pesquisa no país extremamente ativos e reconhecidos internacionalmente. Inclusive está retomando com muita propriedade a discussão sobre a produção de lantanídeos, pois é um país muito rico em minerais desses elementos, tão importantes para a tecnologia atual e, sem dúvida, a do futuro. Não podemos negligenciar isso.

Boletim da SBPMat: – Agora convidamos você a deixar uma mensagem para os leitores que estão iniciando suas carreiras científicas.

Oscar Malta: – Percebe-se hoje uma forte tendência dos jovens pesquisadores (refiro-me aqui à área científica ora em apreço) a valorizar exacerbadamente a ciência aplicada de modo imediatista. Com isso esquecem os fundamentos teóricos e até mesmo, muitas vezes, desconhecem a história do próprio assunto, inclusive experimentais, com que trabalham ou pretendem trabalhar. Canso (um fato) de notar isso em reuniões científicas e normalmente fico abismado. Isso é como um processo inflacionário linear em que se lança moeda no mercado sem ter um lastro. Mais cedo ou mais tarde termina-se caindo em problemas cujas soluções criativas (um pressuposto que deve acompanhar um cientista) poderiam ser encontradas caso tivesse havido um maior investimento na fundamentação teórica e uma maior preocupação com a história daquilo com que se está lidando. Portanto, com respeito a essa questão, a minha mensagem é: não negligencie uma boa formação teórica e o conhecimento da origem do assunto com que pretende trabalhar. Os países que hoje desenvolvem e exportam boa tecnologia percebem a importância disso.

Boletim da SBPMat: – Fique à vontade para compartilhar outros comentários com a nossa comunidade.

Oscar Malta: – A ciência e a tecnologia constituem mais do que nunca uma atividade social que requer criatividade (como sempre), formação, e, portanto, educação, dedicação e forte cooperação interdisciplinar. E requer investimentos. Sem esses ingredientes, somados a comitês de ética atuantes e sensatos, não seremos capazes de criar políticas inteligentes e sólidas de ciência e tecnologia que garantam a continuação da civilização humana. O grande astrônomo Carl Sagan dizia que sem esses ingredientes levados a sério e sem a noção de que daqui a cinco bilhões de anos o nosso sistema solar terá sido queimado (por nossa, então, gigante vermelha), não teremos chances de sair daqui. Isso parece ficção científica, mas não é. Tomara que as próximas gerações, principalmente de governantes, percebam isso. Neste aspecto sou otimista, assim como um grande neurocientista (Miguel Nicolelis) que escreveu “Muito Além do Nosso Eu”, que recomendo aos meus colegas da Ciência de Materiais. Sobretudo no que diz respeito a propriedades emergentes.

Artigo em destaque: Rumo ao diamante bidimensional.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Raman evidence for pressure-induced formation of diamondene. Luiz Gustavo Pimenta Martins, Matheus J. S. Matos, Alexandre R. Paschoal, Paulo T. C. Freire, Nadia F. Andrade, Acrísio L. Aguiar, Jing Kong, Bernardo R. A. Neves, Alan B. de Oliveira, Mário S.C. Mazzoni, Antonio G. Souza Filho, Luiz Gustavo Cançado. Nature Communications 8, Article number: 96 (2017). DOI:10.1038/s41467-017-00149-8. Disponível em: https://www.nature.com/articles/s41467-017-00149-8

Rumo ao diamante bidimensional

Materiais bidimensionais, aqueles cuja espessura vai de um átomo até alguns poucos nanometros, possuem propriedades únicas ligadas à sua dimensionalidade e são protagonistas do desenvolvimento da nanotecnologia e da nanoengenharia.

Uma equipe de cientistas de cinco instituições brasileiras e uma estadunidense deu um passo importante no desenvolvimento, ainda incipiente, da versão bidimensional do diamante. Esse trabalho sobre diamante 2D foi reportado em artigo publicado na Nature Communications (fator de impacto 12,124) com acesso aberto.

“Nosso trabalho apresentou uma evidência espectroscópica da formação de um diamante bidimensional, ao qual demos o nome de diamondeno”, destaca Luiz Gustavo de Oliveira Lopes Cançado, professor da Universidade Federal de Minas Gerais (UFMG) e autor correspondente do paper. Ao escolher o nome do novo material, os cientistas seguiram a tradição de usar o sufixo “eno” para materiais bidimensionais, como ocorreu com o grafeno, versão 2D do grafite.

box ptAliás, foi a partir da compressão de folhas de grafeno que o diamondeno foi obtido pela equipe liderada pelo professor Cançado. Inicialmente, o time depositou duas camadas de grafeno uma em cima da outra e transferiu a bicamada de grafeno para um substrato de Teflon, escolhido por ser quimicamente inerte, impedindo a formação de ligações com o grafeno.

A amostra de grafeno bicamada sobre Teflon foi então submetida a altas pressões e simultaneamente analisada por espectroscopia Raman no Laboratório de Espectroscopia Vibracional e Altas Pressões do Departamento de Física da Universidade Federal do Ceará (UFC). O sistema experimental utilizado foi uma célula de bigornas (anvil em inglês) de diamante com espectrômetro Raman acoplado. Esse equipamento permite aplicar altas pressões a pequenas amostras que se encontram imersas em um meio transmissor da pressão (neste caso, água). A pressão é aplicada através de duas peças de diamante (material escolhido por ser um dos mais duros e resistentes à compressão), as quais comprimem o meio transmissor, que repassa a pressão para a amostra. Ao mesmo tempo, o espectrômetro permite monitorar as mudanças que ocorrem na estrutura do material da amostra frente às diversas pressões aplicadas. “Na espectroscopia Raman, a luz se comporta como uma sonda que mede estados vibracionais do material”, explica Cançado. Como resultado da sondagem, o espectrômetro gera gráficos (espectros), por meio dos quais é possível identificar a estrutura do material que está sendo estudado.

Analisando os espectros, a equipe de cientistas observou mudanças no material bidimensional que indicaram a transição de uma estrutura de grafeno para uma estrutura de diamante. Os pesquisadores puderam concluir que o diamondeno foi obtido a uma pressão de 7 gigapascals (GPa), valor dezenas de milhares de vezes superior ao da pressão atmosférica. “A evidência que apresentamos nesse trabalho é uma assinatura no espectro vibracional obtido a partir de um material de carbono bidimensional que indica a presença de ligações do tipo sp3, típicas da estrutura do diamante”, precisa o professor Cançado.

Para explicar a formação do diamondeno, a equipe acudiu a cálculos de primeiros princípios seguindo a Teoria do Funcional da Densidade e simulações de Dinâmica Molecular. “Foram esses resultados teóricos que guiaram os experimentos e permitiram o entendimento dos resultados experimentais”, diz Cançado.

Esquema do mecanismo de formação do diamondeno a partir de duas camadas de grafeno submetidas a altas pressões (setas azuis) em água como meio transmissor de pressão. As bolas de cor cinza representam os átomos de carbono; as vermelhas, os átomos de oxigênio e as azuis, os átomos de hidrogênio.
Esquema do mecanismo de formação do diamondeno a partir de duas camadas de grafeno submetidas a altas pressões (setas azuis) em água como meio transmissor de pressão. As bolas de cor cinza representam os átomos de carbono; as vermelhas, os átomos de oxigênio, e as azuis, os átomos de hidrogênio.

De acordo com os resultados teóricos, quando o sistema de grafeno bicamada sobre substrato inerte com água como meio transmissor de pressão é submetido a altas pressões, as distâncias entre os elementos do sistema diminuem e ocorrem novas ligações entre eles. “Ao se aplicar esse nível de pressão sobre o grafeno, o mesmo pode ter suas ligações modificadas, passando da configuração sp2 para a configuração sp3”, explica o professor Cançado. Os átomos de carbono da camada superior de grafeno passam então a estabelecer ligações covalentes com quatro átomos vizinhos: os átomos da camada inferior e os grupos químicos oferecidos pela água (OH e H). Estes últimos são fundamentais para estabilizar a estrutura. Na camada inferior, em contato com o substrato inerte, a metade dos átomos de carbono fica ligada a apenas três átomos vizinhos. “As ligações pendentes dão origem a abertura de gap na estrutura eletrônica, e também a bandas de spin polarizado”, acrescenta Cançado.

Essa característica faz do diamondeno um material promissor para o desenvolvimento da spintrônica (vertente emergente da eletrônica na nanoescala que se baseia no aproveitamento do spin). De acordo com Cançado, o diamondeno também poderia ser utilizado em computação quântica, sistemas micro-eletromecânicos (MEMS), supercondutividade, eletrodos para tecnologias relacionadas à eletroquímica, substratos para engenharia de DNA e biossensores –  aplicações nas quais filmes finos de diamante já provaram ter bom desempenho.

Entretanto, ainda há um longo caminho a percorrer até demonstrar as aplicações do diamondeno. Em primeiro lugar, porque o diamondeno apresentado no artigo se desmancha em condições normais de pressão. Para superar essa limitação, o grupo do professor Cançado na UFMG está montando um sistema experimental que permitirá aplicar pressões muito maiores às amostras, da ordem dos 50 GPa, e analisa-las por espectroscopia Raman. “Com isso pretendemos produzir amostras estáveis de diamondeno, que permaneçam sob essa forma mesmo depois de ter a pressão reduzida ao nível de pressão ambiente”, conta Cançado.

Além disso, como a espectroscopia Raman fornece evidências indiretas da estrutura do material, seria necessário realizar medidas diretas do diamondeno para se conhecer em detalhe sua estrutura. “As técnicas mais promissoras neste caso seriam a difração de raios X em fontes de luz sincrotron ou a difração de elétrons”, sugere Cançado. “O fator complicador nesse experimento é a necessidade de se ter a amostra submetida a altas pressões”, completa.

História do diamondeno é brasileira

A ideia da formação do diamante 2D surgiu na pesquisa de doutorado de Ana Paula Barboza, realizada com orientação do professor Bernardo Ruegger Almeida Neves e defendida em 2012 no Departamento de Física da UFMG. Nesse trabalho, conta Cançado, foram utilizadas pontas de microscopia de força atômica (AFM) para se aplicar altas pressões sobre grafenos de uma, duas e várias camadas. Evidências indiretas da formação de um diamante bidimensional foram obtidas por meio de microscopia de força elétrica (EFM). O trabalho mostrou a importância da presença de duas camadas de grafeno e de água para a formação da estrutura bidimensional de tipo sp3. Os principais resultados da pesquisa foram reportados no artigo Room-temperature compression induced diamondization of few-layer graphene [Advanced Materials 23, 3014-3017 (2011)].

Autores principais do artigo. À esquerda, Luiz Gustavo Pimenta Martins (mestre pela UFMG e doutorando no MIT). À direita, o professor Luiz Gustavo Cançado (UFMG).
Autores principais do artigo. À esquerda, Luiz Gustavo Pimenta Martins (mestre pela UFMG e doutorando no MIT). À direita, o professor Luiz Gustavo Cançado (UFMG).

“A ideia de se medir o espectro Raman dos grafenos em condições de altas pressões (utilizando células de diamante tipo anvil) veio posteriormente, após o Luiz Gustavo Pimenta Martins, estudante de iniciação científica à época, ter desenvolvido um método bastante eficaz de transferência de grafenos para diferentes substratos”, relata o professor Cançado. Esse desenvolvimento foi realizado em uma visita que o estudante fez ao laboratório da professora Jing Kong, no Massachusetts Institute of Technology (MIT), após ter ganhado uma bolsa de estudos para mobilidade internacional do Prêmio Fórmula Santander. Durante seu mestrado no Departamento de Física da UFMG, realizado com orientação do professor Cançado e defendido em 2015, Pimenta Martins fez um extenso e sistemático trabalho de obtenção de espectros Raman de grafenos submetidos a altas pressões. “Foram muitas visitas à UFC e muito estudo até entendermos os mecanismos de formação do diamondeno”, conta Cançado.

A pesquisa reportada no paper da Nature Communications foi possível graças ao trabalho colaborativo de diversos grupos de pesquisa brasileiros com reconhecida expertise em diversos assuntos, além da participação da pesquisadora do MIT na preparação de amostras. Os cientistas dos departamentos de Física da UFMG e UFC aportaram sua reconhecida competência em espectroscopia Raman aplicada a nanomateriais de carbono e, no caso da UFC, em experimentos realizado sob altas pressões. Também participaram desses experimentos pesquisadores do Instituto Federal de Educação, Ciência e Tecnologia do Ceará e da Universidade Federal do Piauí (UFPI). Além disso, físicos teóricos da Universidade Federal de Ouro Preto (UFOP) e da UFMG realizaram os cálculos e simulações computacionais.

A pesquisa teve financiamento do CNPq, FAPEMIG, FUNCAP, Programa Fórmula Santander e UFOP.

Oportunidade: bolsa de pós-doutorado em Bioeletroquímica no IQSC – USP.

  • Título: Bolsa de PD em Físico-Química
  • Área de conhecimento:Química
  • Nº do processo FAPESP:2013/14262-7
  • Título do projeto:Interação entre Biomoléculas e Nanoestruturas: Eletroquímica, Interfaces e Superfícies.
  • Área de atuação:Físico-Química
  • Pesquisador principal:Frank Nelson Crespilho
  • Unidade/Instituição: Instituto de Química de São Carlos/IQSC; Universidade de São Paulo/USP.
  • Data limite para inscrições:11/09/2016

O Laboratório de Bioeletroquímica e Interfaces, Departamento de Físico-Química (DFQ/IQSC/USP), em São Carlos, SP, oferece uma Bolsa de Pós-Doutorado FAPESP para desenvolver projeto na área de Bioeletroquímica sob supervisão do Prof. Frank Crespilho. É desejável que o candidato possua formação em Doutorado em Química, Engenharia Química ou áreas afins. Também, serão preferidos os candidatos com experiência em espectroscopia (UV-VIS e FTIR) e eletroquímica. O perfil que se tem em vista nesta chamada é de um pesquisador que tenha facilidade para trabalhar em equipe e que domine a língua inglesa. O candidato desenvolverá um projeto de pesquisa em nível de pós-doutoramento na área de Bioeletroquímica e Espectroscopia na Região do Infravermelho, incluindo:

1)     Desenvolver e testar novos eletrodos enzimáticos;

2)     Desenvolver superfícies sólidas modificadas com enzimas confinadas, com alta atividade e seletividade;

3)     Estudar a interação entre o transporte de carga, transporte de massa e a conformação molecular de enzimas;

4)     Desenvolver novas ferramentas para a técnica de Geração de Imagens Químicas por FTIR (FTIR Chemical Imaging) acoplada com técnicas eletroquímicas.

A Bolsa de Pós-Doutorado será oferecida a partir de 11/10/2016.

Os candidatos interessados devem enviar uma mensagem, até o dia 11/09/2016, para o endereço bioelectrochemistry@iqsc.usp.br, anexando o (i) curriculum vitae e a lista de publicações, (ii) duas cartas de referência e (iii) uma carta de apresentação descrevendo suas principais qualificações e habilidades.

Gente da nossa comunidade: entrevista com o pesquisador Sidney Ribeiro.

Sidney José Lima Ribeiro nasceu em São Paulo quando findava o ano de 1959. No ensino médio, fez um curso técnico de Química na cidade de Santos. Depois mudou-se para a também paulista Araraquara onde se formou como bacharel (1982), mestre (1987) e doutor (1992) em Química na Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP). Começou sua carreira docente no Instituto de Química da UNESP em 1986. De 2001 a 2003, foi chefe do departamento de Química Geral e Inorgânica. Em 2008, tornou-se professor titular. Fez pós-doutorado na França, na École Centrale Paris (1994) e no Centre National d’ Etudes des Telecomunications, CNET (1995).

O professor Sidney Ribeiro é membro do conselho editorial do Journal of Sol-Gel Science and Technology (Springer) e do Journal of Non-Crystalline Solids (Elsevier) e editor do periódico Eclética Química (Instituto de Química da UNESP).

É autor de mais de 300 artigos publicados em periódicos internacionais com revisão por pares, 7 livros ou capítulos de livros e 19 pedidos de patentes. Sua produção científica conta com cerca de 5.000 citações. Orientou ou supervisou uma centena de trabalhos de pesquisa, entre teses de doutorado, dissertações de mestrado e projetos de iniciação científica e pós-doutorado.

Foi pesquisador visitante no National Institute for Research in Inorganic Materials (Japão) e professor visitante na Universidade de Trento (Itália), nas Universidades de Angers e Toulouse (França), na Universidade de Aveiro (Portugal) e na Universidade Federal de Juiz de Fora (Brasil).

É membro da Academia de Ciências do Estado de São Paulo desde 2012 e membro titular da Academia Brasileira de Ciências (ABC) desde 2015.

Segue uma breve entrevista com o pesquisador.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar na área de Materiais.

Sidney Ribeiro: – Sou Químico. Fiz o curso técnico de Química no Colégio do Carmo em Santos. Depois, já gostando muito de Química vim fazer o curso de Bacharelado aqui mesmo em Araraquara. Me formei em 1982. Fiz Mestrado em Espectroscopia de Lantanídeos aqui na UNESP sob a orientação da Profa. Ana Maria G. Massabni e o doutorado num programa “sanduiche nacional” com parte do trabalho sendo feito aqui em Araraquara e parte na Universidade Federal de Pernambuco sob orientação do Prof. Gilberto Sá. No meu doutorado iniciei o trabalho na interface Química-Física-Ciência de Materiais onde atuamos até hoje. Em 94-95 fiz pós-doutoramento na École Centrale Paris e CNET France Telecom.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais, considerando todos os aspectos da atividade científica?

Sidney Ribeiro: – Temos trabalhado com materiais contendo íons terras raras com aplicações em fotônica e biomedicina. Temos dois trabalhos de revisão muito bem citados que podem servir de exemplo para aqueles interessados em conhecer melhor nosso trabalho:

1-Carlos, LD et al, Lanthanide-Containing light-emitting organic-inorganic hybrids: a bet on the future, Advanced Materials (2009) 21(5) 509-534.

2-Correia SFH et al, Luminescent solar concentrators: challenges for lanthanide-based organic-inorganic hybrid materials, J. of Materials Chemistry A (2014) 2 (16) 5580-5596.

Nosso programa de pós-graduação é nível 7 na Capes e nossos cursos de graduação estão entre os melhores da América Latina. Esse trabalho de ciência básica tem resultado na formação de mão de obra qualificada (27 mestrados, 20 doutorados e 23 supervisões de pós-doc além de dezenas de alunos de IC), no depósito de pedidos de 19 patentes e em spin-offs ou mesmo cooperações com uma dezena de pequenas empresas que produzem hoje produtos desenvolvidos em nossos laboratórios. O trinômio pesquisa-educação-extensão é muito bem explorado no IQ-UNESP.

Boletim da SBPMat: – Deixe uma mensagem para os leitores que estão iniciando suas carreiras científicas.

Sidney Ribeiro: – Todos nós nascemos gostando de Ciência. Quem, quando criança, num momento de inspiração cientifica, não misturou o perfume da mãe com inseticida e um pouco de azeite de oliva para “ver o que dava”? Esse gosto pela Ciência tem que ser preservado no nosso sistema educacional. E para aqueles que estão iniciando, eu diria somente para ir em frente. O país está precisando. Alguém disse que quando você faz o que gosta você nunca vai “trabalhar”. O trabalho passa a ser o seu hobby e isso é muito legal.

Artigo científico em destaque: Estrutura molecular e eletrônica de cromóforos desvendada.

O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:
Marcelo G. Vivas, Daniel L. Silva, Leonardo De Boni, Yann Bretonniere, Chantal Andraud, Florence Laibe-Darbour, J.-C. Mulatier, Robert Zalesny, Wojciech Bartkowiak, Sylvio Canuto, Cleber Mendonca. Revealing the Electronic and Molecular Structure of Randomly Oriented Molecules by Polarized Two-Photon Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 1753-1759. DOI: 10.1021/jz4007004.

 

Texto de divulgação:
Estrutura molecular e eletrônica de cromóforos desvendada

Em um artigo publicado no Journal of Physical Chemistry Letters (JPCL), pesquisadores dos institutos de Física da USP de São Carlos e São Paulo, em colaboração com químicos da França e da Polônia, aplicaram a espectroscopia baseada no fenômeno de absorção de dois fótons em cromóforos (partes de moléculas responsáveis por sua cor) orgânicos quirais (que não podem ser sobrepostos à sua imagem no espelho). A técnica revelou informações muito relevantes de sua estrutura eletrônica e molecular.

“A principal contribuição deste trabalho foi mostrar, através de uma prova de conceito, que a espectroscopia de absorção de dois fótons com controle de polarização é capaz de fornecer informações preciosas e adicionais a respeito da estrutura molecular e eletrônica de cromóforos randomicamente orientados”, resume Marcelo Vivas, primeiro autor do artigo e pesquisador de pós-doutorado no grupo de Fotônica do Instituto de Física da USP São Carlos.

O grupo de Fotônica realiza há mais de quinze anos estudos experimentais em óptica não linear de materiais orgânicos e inorgânicos. Em particular, os estudos sobre espectroscopia óptica de absorção de dois fótons com controle de polarização iniciaram no grupo há cerca de cinco anos. “Uma vez que os integrantes do grupo são majoritariamente físicos de formação e, portanto, não realizam a síntese desses materiais, há sempre a necessidade de colaboração com grupos do Brasil e exterior para aquisição de amostras”, comenta Vivas. Uma dessas colaborações ocorreu com o grupo da professora Chantal Andraud da École Normale Supérieure de Lyon (França), especialista na síntese de materiais orgânicos quirais. Quanto aos pesquisadores da Polônia, químicos teóricos, a colaboração surgiu uns seis anos atrás quando um dos autores do trabalho foi realizar um estágio de um ano na universidade polonesa.

Espectroscopia de absorção de dois fótons
A espectroscopia em questão se baseia no fenômeno óptico não linear da absorção de dois fótons, no qual dois fótons, não necessariamente da mesma frequência, são absorvidos por átomos ou moléculas em um mesmo evento quântico. Os fótons, sobrepostos espaço-temporalmente, promovem uma transição eletrônica para um nível de energia real, correspondente à soma em energia dos fótons individuais. O efeito foi proposto teoricamente por Maria Goppert-Mayer (Goppert-Mayer, M. On Elementary acts with two quantum jumps. Annalen der Physik 8, 273-294) durante sua tese de doutorado, defendida em 1930, mas só foi verificado experimentalmente em 1961, após o advento do laser (W. Kaiser and C.G.B. Garrett, Two-photon excitation in CaF2:Eu2+, Physical Review Letters 7, 229–232 ).

Na espectroscopia, explica Vivas, devido às diferentes regras de seleção da mecânica quântica, o efeito de absorção de dois fótons permite obter acesso e identificar estados eletrônicos que são inacessíveis por técnicas convencionais que utilizam efeitos ópticos lineares.

A pesquisa publicada no JPCL
Os autores do artigo escolheram para o trabalho duas moléculas quirais, uma com estrutura linear e outra com estrutura em forma de V, que, apesar de serem constituídas pelo mesmo grupo químico (fenil-acetileno), apresentam estruturas eletrônicas distintas.

“Moléculas π-conjugadas, como aquelas estudadas no trabalho da JPCL, têm atraído considerável atenção de físicos, químicos, engenheiros e biólogos, uma vez que elas permitem explorar distintos efeitos da interação radiação-matéria e, além disso, possuem aplicações latentes em novas tecnologias”, contextualiza Vivas.

Para estudar sua estrutura eletrônica e molecular com base na absorção de dois fótons, os cientistas utilizaram a técnica de Varredura-Z fazendo uso de um amplificador óptico paramétrico bombeado por um sistema laser amplificado de femtossegundos, e cálculos teóricos baseados na Teoria do Funcional da Densidade.

Um dos resultados mais significativos reportados no artigo do JPCL é a determinação da direção dos momentos de dipolo elétricos, obtidos por espectroscopia de absorção de dois fótons e corroborados por resultados de química quântica. Neste diagrama ilustrativo da geometria molecular das moléculas quirais estudadas, as direções dos dipolos indicam a estrutura molecular mais provável para as duas moléculas dissolvidas em solução de clorofórmio.