Artigo em destaque: Nanoargilas para superar a toxicidade.

O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Reaching Biocompatibility with Nanoclays: Eliminating the Cytotoxicity of Ir(III) Complexes. Malte C. Grüner, Kassio P. S. Zanoni, Camila F. Borgognoni, Cristiane C. Melo, Valtencir Zucolotto, and Andrea S. S. de Camargo. ACS Applied Materials & Interfaces 2018 10 (32), 26830-26834. DOI: 10.1021/acsami.8b10842.

Nanoargilas para superar a toxicidade

Trabalhando em laboratórios do Instituto de Física de São Carlos – USP (IFSC-USP), uma equipe científica desenvolveu uma estratégia que elimina a citotoxicidade (capacidade de destruir células) de um grupo de compostos com propriedades fotofísicas muito interessantes para aplicações na área da saúde. O estudo tornou viável a utilização dessas substâncias, outrora tóxicas, no estudo de organismos vivos e no diagnóstico e tratamento de doenças. Além de eliminar a citotoxicidade, a estratégia modifica algumas propriedades dos compostos, agregando novas funções que podem ser aproveitadas para sensoriamento de oxigênio intracelular e para aprimorar a eficiência de dispositivos luminescentes, como OLEDs.

O trabalho foi reportado em artigo recentemente publicado no periódico ACS Applied Materials and Interfaces (fator de impacto 8,097).

Tudo começou numa conversa informal entre três bolsistas de pós-doutorado ligados a laboratórios do IFSC-USP: Malte C. Grüner e Kassio P. S. Zanoni, ambos ligados ao Laboratório de Espectroscopia de Materiais Funcionais (LEMAF), e Camila F. Borgognoni, do Grupo de Nanomedicina e Nanotoxicologia (Gnano). Zanoni tinha trabalhado com complexos de irídio(III) durante seu doutorado, e desejava aproveitar algumas propriedades desses compostos para utilizá-los como agentes de terapia fotodinâmica. Tal terapia se refere a um conjunto de tratamentos para tecidos doentes, como por exemplo os atingidos pelo câncer, nos quais uma fonte de radiação externa é utilizada para a ativação, no momento apropriado, de um composto inserido dentro do corpo, o qual se encarrega de destruir as células que precisam ser eliminadas.

O desejo do pós-doc Zanoni, entretanto, esbarrava na alta citotoxicidade dos complexos de irídio(III). O pós-doc Grüner, então, teve a ideia inovadora de tentar utilizar laponitas (materiais que ele tinha estudado em seu doutorado) para inibir a citotoxicidade dos compostos. A partir dessa ideia, Grüner e Zanoni realizaram o preparo e a caracterização dos materiais no LEMAF, coordenado pela professora Andrea S. S. de Camargo. No GNano, coordenado pelo professor Valtencir Zucolotto, a pós-doc Borgognoni e a mestranda Cristiane Melo se encarregaram de investigar as interações das nanopartículas com as células.

Os autores do artigo. A partir da esquerda: Kassio Zanoni, Camila Borgognoni, Malte Grüner, Cristiane Melo, Valtencir Zucolotto e Andrea de Camargo.
Os autores do artigo. A partir da esquerda: Kassio Zanoni, Camila Borgognoni, Malte Grüner, Cristiane Melo, Valtencir Zucolotto e Andrea de Camargo.

Estratégia e aplicações

Ilustração da adsorção de complexos de Ir(III) (esferas azuis) na superfície de nanodiscos de laponita (discos amarelos), em solução.
Ilustração da adsorção de complexos de Ir(III) (esferas azuis) na superfície de nanodiscos de laponita (discos amarelos), em solução.

Uma das principais propriedades dos complexos de irídio(III) é a sua intensa luminescência (emissão de luz não resultante do calor) numa ampla gama de cores. Essa característica pode ser útil para iluminar células no interior de organismos vivos em técnicas de bioimageamento, usadas tanto para pesquisa quanto para diagnóstico e tratamento de doenças.

Por sua vez, as laponitas, que são nanoargilas sintéticas totalmente compatíveis com tecidos vivos, têm sido frequentemente propostas na literatura científica como nanoplataformas para transporte de fármacos e de outros compostos dentro de organismos vivos. As laponitas possuem cerca de 25 nm de comprimento e apenas 1 nm de altura.

No trabalho da equipe do IFSC-USP, um novo material foi desenvolvido como resultado da adsorção de moléculas de complexos de irídio(III) na superfície de nanodiscos de laponita.

Os pesquisadores verificaram, no laboratório (in vitro) a capacidade de o novo material ser absorvido por células, sua luminescência dentro das células e sua baixa toxicidade com relação a elas. Para isso, eles utilizaram células de fígado e observaram sua interação com o novo nanomaterial, comparando-a com a interação com o complexo de irídio(III) puro. Os resultados foram sumamente favoráveis aos nanodiscos de laponita com irídio(III), que demonstraram ser inofensivos para as células, além de apresentar boa penetração e alta luminescência – características que os tornam muito adequados para aplicação em técnicas de bioimageamento.

Emissão de luz em várias cores dos nanomateriais desenvolvidos (complexos de Ir(III) adsorvidos em laponita) distribuídos em xerogéis (parte superior) e em células do tecido do fígado (parte inferior).
Emissão de luz em várias cores dos nanomateriais desenvolvidos (complexos de Ir(III) adsorvidos em laponita) distribuídos em xerogéis (parte superior) e em células do tecido do fígado (parte inferior).

“Neste trabalho, foi demonstrado pela primeira vez que a adsorção de complexos de Ir(III) (em geral, altamente tóxicos) na superfície de nanodiscos de laponita é capaz de extinguir por completo a citotoxicidade desses compostos”, resume o pós-doc Kassio Zanoni,  que em 2017 foi vencedor do Young Research Award da SBPMat. “Tal feito torna altamente viável o uso de compostos outrora tóxicos em meios celulares sem prejudicar a integridade do meio e, portanto, tem o potencial de expandir as pesquisas de novos materiais biocompatíveis para uso em mapeamento celular, medicina teranóstica e terapia fotodinâmica”, completa.

De acordo com os autores, o novo nanomaterial poderia agir como uma droga de terapia fotodinâmica, já que, ao ser irradiado com determinados tipos de radiação, produz uma molécula (o oxigênio singleto) que atua na destruição de células cancerígenas. Dessa maneira, o nanomaterial também se torna promissor no campo da medicina teranóstica, a qual propõe a combinação, numa mesma plataforma, do diagnóstico de doenças por bioimageamento com a sua cura por meio de terapias fotodinâmicas.

Além disso, o nanomaterial pode ser usado como sensor para determinar com exatidão a quantidade de oxigênio distribuído no interior de uma célula. “Conforme demonstrado no nosso trabalho, a intensidade da emissão desse nanomaterial é uma variável em função da concentração de oxigênio”, justifica Zanoni.

Por fim, o nanomaterial, na forma de um filme fino nanométrico, também poderia ser aplicado em diodos orgânicos emissores de luz (OLEDs) – dispositivos que já são usados, por exemplo, em telas de celulares. “Isso porque o complexo de Ir(III) adsorvido na laponita agrega propriedades fotofísicas, fotoquímicas e eletroquímicas que são estratégicas para o desenvolvimento de dispositivos mais eficientes”, explica Zanoni.

Esta pesquisa foi realizada com financiamento da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Gente da comunidade: entrevista com o cientista Oscar Manoel Loureiro Malta.

DSC_4269CMYK-Photo 1

O Brasil, além de possuir uma das maiores reservas do mundo de minérios com elementos lantanídeos, também ocupa um lugar de destaque na pesquisa sobre esses elementos e seus compostos, que têm grande aplicabilidade em áreas estratégicas como energia, saúde e catálise, entre muitas outras.

Um dos cientistas brasileiros mais proeminentes nesse campo de pesquisa é o pernambucano Oscar Manoel Loureiro Malta, 63 anos, professor titular do Departamento de Química Fundamental da Universidade Federal de Pernambuco (UFPE). Ao longo de quatro décadas, Malta fez importantes contribuições à pesquisa em lantanídeos, tanto no entendimento de suas propriedades quanto no desenvolvimento de aplicações.

Nascido em Recife, Malta definiu seu interesse pela ciência durante o ensino secundário. Em 1974, iniciou o curso de Engenharia Química na UFPE e de licenciatura em Física na Universidade Católica de Pernambuco. Ao concluir a licenciatura, abandonou o curso de Química para ingressar no mestrado em Física da UFPE. Ali desenvolveu um trabalho de pesquisa sobre espectroscopia de compostos com lantanídeos, orientado pelo professor Gilberto Fernandes de Sá. Em dezembro de 1977, obteve o diploma de mestre. Continuou seus estudos em espectroscopia de lantanídeos no seu doutorado na Universidade de Paris VI (França), também conhecida como Université Pierre et Marie Curie, orientado pelo professor Yves Jeannin. Obteve o título de doutor em março de 1981. Retornou, então, a Recife, onde, no mesmo ano, tornou-se professor da UFPE. Em 1986, voltou à França por um ano como pesquisador visitante no grupo do Paul Caro, cientista mundialmente renomado na área de lantanídeos, ligado ao Centro Nacional da Pesquisa Científica (CNRS).

Oscar Malta foi professor visitante em diversas instituições do mundo: Universidade de Wroclaw (Polônia) em 2015; Universidade de Aveiro (Portugal) em 2005; Universidade Industrial de Santander (Colômbia) no ano 2000; Universidade de São Paulo, USP, em 1995, 1996 e 1999, e Universidade Estadual Paulista Júlio de Mesquita Neto, UNESP, em 1994-95 e 1998.

Na UFPE, participou da criação e consolidação do Departamento de Química Fundamental, no qual atuou como chefe de departamento (1987-89) e coordenador de pós-graduação (1991-93 e 1999-2001). Além disso, o cientista foi coordenador de duas redes nacionais de pesquisa: a Rede Nacional de Nanotecnologia Molecular e de Interfaces, RENAMI (2001 – 2009), e o Instituto Nacional de Ciência e Tecnologia para Marcadores Integrados, INAMI (2009-2015).

Malta tem sido distinguido com uma série de reconhecimentos à sua trajetória científica. Em 15 de novembro passado, recebeu o diploma de doctor honoris causa da Universidade de Wroctaw, importante instituição da Polônia da qual surgiram, por exemplo, nove laureados com o Prêmio Nobel. Em 2016, uma edição especial do Journal of Luminescence (editora Elsevier) sobre espectroscopia de lantanídeos foi dedicada ao pesquisador pernambucano (https://doi.org/10.1016/j.jlumin.2015.11.024). Em 2015, Malta recebeu o Prêmio Ricardo Ferreira ao Mérito Científico, recém-criado pela Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, Facepe. Em 2014, ganhou um reconhecimento ao mérito científico da Associação Brasileira de Química, a Medalha Professor Paulo José Duarte. Em 2003, foi nomeado membro titular da Academia Brasileira de Ciências, ABC.

Neste ano de 2017, Malta foi chairman da International Conference on Luminescence (ICL), a qual, depois de dezessete edições realizadas no hemisfério norte, foi sediada em João Pessoa.

Bolsista de produtividade em pesquisa 1A do CNPq, Oscar Malta é autor de cerca de 180 artigos publicados em periódicos internacionais, que contam com cerca de 7.000 citações na Web of Science. O cientista possui um índice H de 42.

Veja nossa entrevista com Oscar Manoel Loureiro Malta.

Boletim da SBPMat: – Na sua própria avaliação, quais são as suas principais contribuições à área de Materiais e por que as considera mais relevantes?

Oscar Malta: – Desde a época do mestrado, iniciado em 1977, meus trabalhos estão nas áreas da química teórica, teoria do campo ligante, intensidades espectrais 4f-4f, transferência de energia não radiativa, em particular, transferência de energia intramolecular em compostos de coordenação com íons lantanídeos cuja teoria desenvolvi entre 1996 e 1998 e continuo trabalhando com ela até hoje, assim como vários grupos no Brasil e no exterior. Ao longo dessas últimas três décadas, num trabalho envolvendo uma grande e extraordinária sinergia entre teoria e experimento, conseguimos construir um esquema muito bem-sucedido para a modelagem de compostos de coordenação com íons lantanídeos luminescentes altamente funcionais, com potencial para diversas aplicações tais como marcadores luminescentes em bioensaios. Muitos desses resultados foram obtidos nos períodos em que coordenei duas redes nacionais de nanotecnologia. A primeira, Rede Nacional de Nanotecnologia Molecular e de Interfaces (RENAMI), teve vigência de 2001 a 2009, a segunda, o Instituto Nacional de Ciência e Tecnologia para Marcadores Integrados (inct-INAMI), teve vigência de 2009 a 2015. Acoplados a esses resultados foram também desenvolvidos dois importantes temas: o efeito de plásmons de nanopartículas metálicas sobre a luminescência de compostos com íons lantanídeos, um assunto hoje ligado à chamada plasmônica, e o conceito de polarizabilidade da região de recobrimento na ligação química como uma forma de quantificar covalência, introduzido por mim entre 2002 e 2005 com a finalidade de melhor compreender a ligação química envolvendo orbitais 4f. Tal conceito foi posteriormente generalizado para qualquer ligação química, de moléculas simples a materiais complexos. Em todos esses resultados vale salientar a participação dos estudantes, da iniciação científica ao doutorado.

Boletim da SBPMat: – Você começou a pesquisar no campo de espectroscopia de compostos com íons lantanídeos em seu mestrado, 40 anos atrás, e ainda continua trabalhando na área. O que mais lhe atrai nesse tema de pesquisa? Trata-se de uma área ainda promissora? O que mudou na pesquisa nessa área no Brasil desde a década de 1970 até agora?

Oscar Malta: – Os lantanídeos e seus compostos são fascinantes. Eles me levaram a mergulhar no mundo da química teórica, no mundo da álgebra de momento angular, no mundo da interação da radiação com a matéria e no mundo da espectroscopia. Quando terminei o mestrado estava tudo certo para que eu fosse realizar o doutorado na Inglaterra trabalhar em física atômica. Nessa época esteve em Recife, a convite de Gilberto Sá e Ricardo Ferreira, Paul Caro, um dos mais renomados pesquisadores em espectroscopia de lantanídeos. Fez um seminário que me deixou fascinado. Desisti de ir para a Inglaterra e fui trabalhar no grupo de Paul Caro no CNRS em Meudon-Bellevue na França. No início o plano era desenvolver uma tese experimental. Entretanto, eu queria trabalhar com a teoria. Paul Caro aceitou sem problemas, e surgiu uma interação teoria/experimento muito frutífera que se estendeu para outros grupos e continua até hoje, sempre com muito a se fazer tanto do ponto de vista fundamental como do ponto de vista de aplicações. O Brasil é um dos líderes mundiais nesse assunto, com grupos de pesquisa no país extremamente ativos e reconhecidos internacionalmente. Inclusive está retomando com muita propriedade a discussão sobre a produção de lantanídeos, pois é um país muito rico em minerais desses elementos, tão importantes para a tecnologia atual e, sem dúvida, a do futuro. Não podemos negligenciar isso.

Boletim da SBPMat: – Agora convidamos você a deixar uma mensagem para os leitores que estão iniciando suas carreiras científicas.

Oscar Malta: – Percebe-se hoje uma forte tendência dos jovens pesquisadores (refiro-me aqui à área científica ora em apreço) a valorizar exacerbadamente a ciência aplicada de modo imediatista. Com isso esquecem os fundamentos teóricos e até mesmo, muitas vezes, desconhecem a história do próprio assunto, inclusive experimentais, com que trabalham ou pretendem trabalhar. Canso (um fato) de notar isso em reuniões científicas e normalmente fico abismado. Isso é como um processo inflacionário linear em que se lança moeda no mercado sem ter um lastro. Mais cedo ou mais tarde termina-se caindo em problemas cujas soluções criativas (um pressuposto que deve acompanhar um cientista) poderiam ser encontradas caso tivesse havido um maior investimento na fundamentação teórica e uma maior preocupação com a história daquilo com que se está lidando. Portanto, com respeito a essa questão, a minha mensagem é: não negligencie uma boa formação teórica e o conhecimento da origem do assunto com que pretende trabalhar. Os países que hoje desenvolvem e exportam boa tecnologia percebem a importância disso.

Boletim da SBPMat: – Fique à vontade para compartilhar outros comentários com a nossa comunidade.

Oscar Malta: – A ciência e a tecnologia constituem mais do que nunca uma atividade social que requer criatividade (como sempre), formação, e, portanto, educação, dedicação e forte cooperação interdisciplinar. E requer investimentos. Sem esses ingredientes, somados a comitês de ética atuantes e sensatos, não seremos capazes de criar políticas inteligentes e sólidas de ciência e tecnologia que garantam a continuação da civilização humana. O grande astrônomo Carl Sagan dizia que sem esses ingredientes levados a sério e sem a noção de que daqui a cinco bilhões de anos o nosso sistema solar terá sido queimado (por nossa, então, gigante vermelha), não teremos chances de sair daqui. Isso parece ficção científica, mas não é. Tomara que as próximas gerações, principalmente de governantes, percebam isso. Neste aspecto sou otimista, assim como um grande neurocientista (Miguel Nicolelis) que escreveu “Muito Além do Nosso Eu”, que recomendo aos meus colegas da Ciência de Materiais. Sobretudo no que diz respeito a propriedades emergentes.

Artigo em destaque: Revelando segredos da luminescência de um íon lantanídeo.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Mechanisms of optical losses inthe 5D4 and 5Dlevels in Tb3+ doped low silica calcium aluminosilicate glasses. J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimarães, M. L. Baesso, L. A. O. Nunes and T. Catunda. J. Appl. Phys. 117, 053102 (2015). DOI: 10.1063/1.4906781.

Revelando segredos da luminescência de um íon lantanídeo.

Uma equipe de cientistas de instituições brasileiras avançou na compreensão de mecanismos que limitam a eficiência da emissão de luz em materiais dopados com íon de térbio trivalente (Tb3+). Esse íon, do grupo das terras raras e subgrupo dos materiais lantanídeos, apresenta emissões luminescentes desde o ultravioleta até o infravermelho, sendo particularmente interessante, por seu interesse tecnológico, a sua intensa emissão verde, de cerca de 545 nm de comprimento de onda.

Alguns anos atrás, por exemplo, pesquisadores japoneses demonstraram emissão laser de fibras ópticas dopadas com Tb3+. Entretanto, o dispositivo apresentou baixa eficiência devido à saturação do seu ganho óptico, mesmo a baixas potências de excitação.

Processo de luminescência de amostra de LSCAS dopada com Tb3 excitada por um laser azul emitindo luz verde. As fotos mostram a amostra sem (esq.) e com (dir.) excitação.

Retomando esse problema tecnológico, a equipe de cientistas do Brasil fez um estudo detalhado dos processos que causam a saturação da emissão verde. Para isso, utilizaram o Tb3+ como dopante de um material que, por suas propriedades, garante alta eficiência de emissão, principalmente no infravermelho: o vidro aluminosilicato de cálcio com baixa concentração de sílica, conhecido como LSCAS, de low-silica calcium aluminosilicate.

O estudo envolveu dois grupos de pesquisa que mantêm colaboração há cerca de duas décadas, o grupo de espectroscopia de sólidos do Instituto de Física de São Carlos, da Universidade de São Paulo (IFSC – USP), e o grupo de fototérmica da Universidade Estadual de Maringá (UEM). Os resultados foram reportados em um artigo recentemente publicado no Journal of Applied Physics.

Em primeiro lugar, amostras do vidro com diversas concentrações do dopante foram preparadas pelo grupo da UEM.

Foto das amostras de LSCAS. A amostra base apresenta concentração de 0,05% de Tb3+.

No IFSC – USP, as amostras foram excitadas por meio de um laser em dois comprimentos de onda distintos, 488 nm (visível) e 325 nm (ultravioleta), e seus espectros de absorção, emissão e excitação foram obtidos. Ao analisá-los, os cientistas do grupo de espectroscopia de sólidos observaram certas particularidades no comportamento de algumas das emissões luminescentes, como, por exemplo, uma forte saturação numa emissão verde semelhante à observada no laser dos cientistas japoneses, e, em outros comprimentos de onda, uma diminuição da luminescência ocorrendo a intensidades de excitação mais baixas do que o previsto. Dessa maneira, os pesquisadores brasileiros puderam concluir que o mecanismo associado na literatura às emissões de materiais dopados com Tb3+, conhecido como cross relaxation, não era suficiente para explicar a totalidade do comportamento das emissões, e nem sequer a saturação que ocorre nas emissões no verde, e propuseram a ação adicional de outros processos.

“Mecanismos de perdas adicionais, tais como emissões por defeitos na matriz, processos de conversão ascendente de energia, entre outros, exercem uma influência significativa no sistema que estudamos”, explica Tomaz Catunda, professor do IFSC e autor correspondente do artigo. “Estas vias de decaimento, até então ignoradas na literatura, apresentam grande relevância na fabricação de dispositivos ópticos em materiais dopados com Tb3+”, completa.

O estudo de vidros dopados com Tb3+ na equipe brasileira começou durante a pesquisa de doutorado de Idelma Terra, defendida em 2013 pela USP, que visava ao desenvolvimento de materiais para aumentar a eficiência de células solares. A tese foi agraciada com o “Prêmio Vale-Capes de Ciência e Sustentabilidade 2014”. O estudo desses materiais continuou no doutorado de Giselly dos Santos Bianchi, realizado na UEM e na dissertação de mestrado de Jéssica Fabiana Mariano dos Santos, defendido em 2014 pela EESC-USP.

O artigo do Journal of Applied Physics veio se agregar a um conjunto de dezenas de papers publicados em periódicos internacionais gerados a partir da colaboração entre os grupos do IFSC e da UEM, em alguns casos envolvendo também outros cientistas do Brasil e do exterior, sobre espectroscopia óptica de vidros de aluminato de cálcio dopados com íons de terras raras e suas aplicações em dispositivos emissores de luz.