Artigo em destaque: Rumo ao diamante bidimensional.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Raman evidence for pressure-induced formation of diamondene. Luiz Gustavo Pimenta Martins, Matheus J. S. Matos, Alexandre R. Paschoal, Paulo T. C. Freire, Nadia F. Andrade, Acrísio L. Aguiar, Jing Kong, Bernardo R. A. Neves, Alan B. de Oliveira, Mário S.C. Mazzoni, Antonio G. Souza Filho, Luiz Gustavo Cançado. Nature Communications 8, Article number: 96 (2017). DOI:10.1038/s41467-017-00149-8. Disponível em: https://www.nature.com/articles/s41467-017-00149-8

Rumo ao diamante bidimensional

Materiais bidimensionais, aqueles cuja espessura vai de um átomo até alguns poucos nanometros, possuem propriedades únicas ligadas à sua dimensionalidade e são protagonistas do desenvolvimento da nanotecnologia e da nanoengenharia.

Uma equipe de cientistas de cinco instituições brasileiras e uma estadunidense deu um passo importante no desenvolvimento, ainda incipiente, da versão bidimensional do diamante. Esse trabalho sobre diamante 2D foi reportado em artigo publicado na Nature Communications (fator de impacto 12,124) com acesso aberto.

“Nosso trabalho apresentou uma evidência espectroscópica da formação de um diamante bidimensional, ao qual demos o nome de diamondeno”, destaca Luiz Gustavo de Oliveira Lopes Cançado, professor da Universidade Federal de Minas Gerais (UFMG) e autor correspondente do paper. Ao escolher o nome do novo material, os cientistas seguiram a tradição de usar o sufixo “eno” para materiais bidimensionais, como ocorreu com o grafeno, versão 2D do grafite.

box ptAliás, foi a partir da compressão de folhas de grafeno que o diamondeno foi obtido pela equipe liderada pelo professor Cançado. Inicialmente, o time depositou duas camadas de grafeno uma em cima da outra e transferiu a bicamada de grafeno para um substrato de Teflon, escolhido por ser quimicamente inerte, impedindo a formação de ligações com o grafeno.

A amostra de grafeno bicamada sobre Teflon foi então submetida a altas pressões e simultaneamente analisada por espectroscopia Raman no Laboratório de Espectroscopia Vibracional e Altas Pressões do Departamento de Física da Universidade Federal do Ceará (UFC). O sistema experimental utilizado foi uma célula de bigornas (anvil em inglês) de diamante com espectrômetro Raman acoplado. Esse equipamento permite aplicar altas pressões a pequenas amostras que se encontram imersas em um meio transmissor da pressão (neste caso, água). A pressão é aplicada através de duas peças de diamante (material escolhido por ser um dos mais duros e resistentes à compressão), as quais comprimem o meio transmissor, que repassa a pressão para a amostra. Ao mesmo tempo, o espectrômetro permite monitorar as mudanças que ocorrem na estrutura do material da amostra frente às diversas pressões aplicadas. “Na espectroscopia Raman, a luz se comporta como uma sonda que mede estados vibracionais do material”, explica Cançado. Como resultado da sondagem, o espectrômetro gera gráficos (espectros), por meio dos quais é possível identificar a estrutura do material que está sendo estudado.

Analisando os espectros, a equipe de cientistas observou mudanças no material bidimensional que indicaram a transição de uma estrutura de grafeno para uma estrutura de diamante. Os pesquisadores puderam concluir que o diamondeno foi obtido a uma pressão de 7 gigapascals (GPa), valor dezenas de milhares de vezes superior ao da pressão atmosférica. “A evidência que apresentamos nesse trabalho é uma assinatura no espectro vibracional obtido a partir de um material de carbono bidimensional que indica a presença de ligações do tipo sp3, típicas da estrutura do diamante”, precisa o professor Cançado.

Para explicar a formação do diamondeno, a equipe acudiu a cálculos de primeiros princípios seguindo a Teoria do Funcional da Densidade e simulações de Dinâmica Molecular. “Foram esses resultados teóricos que guiaram os experimentos e permitiram o entendimento dos resultados experimentais”, diz Cançado.

Esquema do mecanismo de formação do diamondeno a partir de duas camadas de grafeno submetidas a altas pressões (setas azuis) em água como meio transmissor de pressão. As bolas de cor cinza representam os átomos de carbono; as vermelhas, os átomos de oxigênio e as azuis, os átomos de hidrogênio.
Esquema do mecanismo de formação do diamondeno a partir de duas camadas de grafeno submetidas a altas pressões (setas azuis) em água como meio transmissor de pressão. As bolas de cor cinza representam os átomos de carbono; as vermelhas, os átomos de oxigênio, e as azuis, os átomos de hidrogênio.

De acordo com os resultados teóricos, quando o sistema de grafeno bicamada sobre substrato inerte com água como meio transmissor de pressão é submetido a altas pressões, as distâncias entre os elementos do sistema diminuem e ocorrem novas ligações entre eles. “Ao se aplicar esse nível de pressão sobre o grafeno, o mesmo pode ter suas ligações modificadas, passando da configuração sp2 para a configuração sp3”, explica o professor Cançado. Os átomos de carbono da camada superior de grafeno passam então a estabelecer ligações covalentes com quatro átomos vizinhos: os átomos da camada inferior e os grupos químicos oferecidos pela água (OH e H). Estes últimos são fundamentais para estabilizar a estrutura. Na camada inferior, em contato com o substrato inerte, a metade dos átomos de carbono fica ligada a apenas três átomos vizinhos. “As ligações pendentes dão origem a abertura de gap na estrutura eletrônica, e também a bandas de spin polarizado”, acrescenta Cançado.

Essa característica faz do diamondeno um material promissor para o desenvolvimento da spintrônica (vertente emergente da eletrônica na nanoescala que se baseia no aproveitamento do spin). De acordo com Cançado, o diamondeno também poderia ser utilizado em computação quântica, sistemas micro-eletromecânicos (MEMS), supercondutividade, eletrodos para tecnologias relacionadas à eletroquímica, substratos para engenharia de DNA e biossensores –  aplicações nas quais filmes finos de diamante já provaram ter bom desempenho.

Entretanto, ainda há um longo caminho a percorrer até demonstrar as aplicações do diamondeno. Em primeiro lugar, porque o diamondeno apresentado no artigo se desmancha em condições normais de pressão. Para superar essa limitação, o grupo do professor Cançado na UFMG está montando um sistema experimental que permitirá aplicar pressões muito maiores às amostras, da ordem dos 50 GPa, e analisa-las por espectroscopia Raman. “Com isso pretendemos produzir amostras estáveis de diamondeno, que permaneçam sob essa forma mesmo depois de ter a pressão reduzida ao nível de pressão ambiente”, conta Cançado.

Além disso, como a espectroscopia Raman fornece evidências indiretas da estrutura do material, seria necessário realizar medidas diretas do diamondeno para se conhecer em detalhe sua estrutura. “As técnicas mais promissoras neste caso seriam a difração de raios X em fontes de luz sincrotron ou a difração de elétrons”, sugere Cançado. “O fator complicador nesse experimento é a necessidade de se ter a amostra submetida a altas pressões”, completa.

História do diamondeno é brasileira

A ideia da formação do diamante 2D surgiu na pesquisa de doutorado de Ana Paula Barboza, realizada com orientação do professor Bernardo Ruegger Almeida Neves e defendida em 2012 no Departamento de Física da UFMG. Nesse trabalho, conta Cançado, foram utilizadas pontas de microscopia de força atômica (AFM) para se aplicar altas pressões sobre grafenos de uma, duas e várias camadas. Evidências indiretas da formação de um diamante bidimensional foram obtidas por meio de microscopia de força elétrica (EFM). O trabalho mostrou a importância da presença de duas camadas de grafeno e de água para a formação da estrutura bidimensional de tipo sp3. Os principais resultados da pesquisa foram reportados no artigo Room-temperature compression induced diamondization of few-layer graphene [Advanced Materials 23, 3014-3017 (2011)].

Autores principais do artigo. À esquerda, Luiz Gustavo Pimenta Martins (mestre pela UFMG e doutorando no MIT). À direita, o professor Luiz Gustavo Cançado (UFMG).
Autores principais do artigo. À esquerda, Luiz Gustavo Pimenta Martins (mestre pela UFMG e doutorando no MIT). À direita, o professor Luiz Gustavo Cançado (UFMG).

“A ideia de se medir o espectro Raman dos grafenos em condições de altas pressões (utilizando células de diamante tipo anvil) veio posteriormente, após o Luiz Gustavo Pimenta Martins, estudante de iniciação científica à época, ter desenvolvido um método bastante eficaz de transferência de grafenos para diferentes substratos”, relata o professor Cançado. Esse desenvolvimento foi realizado em uma visita que o estudante fez ao laboratório da professora Jing Kong, no Massachusetts Institute of Technology (MIT), após ter ganhado uma bolsa de estudos para mobilidade internacional do Prêmio Fórmula Santander. Durante seu mestrado no Departamento de Física da UFMG, realizado com orientação do professor Cançado e defendido em 2015, Pimenta Martins fez um extenso e sistemático trabalho de obtenção de espectros Raman de grafenos submetidos a altas pressões. “Foram muitas visitas à UFC e muito estudo até entendermos os mecanismos de formação do diamondeno”, conta Cançado.

A pesquisa reportada no paper da Nature Communications foi possível graças ao trabalho colaborativo de diversos grupos de pesquisa brasileiros com reconhecida expertise em diversos assuntos, além da participação da pesquisadora do MIT na preparação de amostras. Os cientistas dos departamentos de Física da UFMG e UFC aportaram sua reconhecida competência em espectroscopia Raman aplicada a nanomateriais de carbono e, no caso da UFC, em experimentos realizado sob altas pressões. Também participaram desses experimentos pesquisadores do Instituto Federal de Educação, Ciência e Tecnologia do Ceará e da Universidade Federal do Piauí (UFPI). Além disso, físicos teóricos da Universidade Federal de Ouro Preto (UFOP) e da UFMG realizaram os cálculos e simulações computacionais.

A pesquisa teve financiamento do CNPq, FAPEMIG, FUNCAP, Programa Fórmula Santander e UFOP.

Gente da comunidade: entrevista com o cientista João Alziro Herz da Jornada.

joaojornada (1)João Alziro Herz da Jornada nasceu em 1º de junho de 1949 em São Borja (RS). Entre 1968 e 1971, realizou a graduação em Física na Universidade Federal do Rio Grande do Sul (UFRGS), em Porto Alegre. Logo após receber o diploma de bacharel, iniciou o mestrado em Física, também na UFRGS, o qual concluiu em 1973. A dissertação de mestrado versou sobre um dos temas aos quais se dedicaria ao longo de sua carreira científica, o efeito das altas pressões nos materiais.

Em agosto de 1974, assumiu o cargo de professor adjunto do Instituto de Física da UFRGS. De 1977 a 1979 realizou o doutorado em Ciências da UFRGS, no qual desenvolveu um novo trabalho de pesquisa sobre efeitos das altas pressões em materiais, orientado pelo professor Fernando Claudio Zawislak. Sua tese de doutoramento recebeu uma distinção de louvor da UFRGS. Em 1983 e 1984, fez pós-doutorado no National Institute of Standards and Technology (NIST), instituto dedicado a promover a inovação e competitividade industrial por meio da metrologia, ciência e tecnologia nos Estados Unidos. Em abril de 1985, tornou-se professor titular do Instituto de Física da UFRGS, posição que manteve até a sua aposentadoria em fevereiro de 2016. Desde então, é colaborador convidado dessa instituição. Ao longo de sua carreira acadêmica na UFRGS, desempenhou vários cargos de administração, entre eles, o de presidente da Câmara de Pesquisa da universidade e o de coordenador de pós-graduação do Instituto de Física. O professor Jornada também criou e coordenou o Laboratório de Altas Pressões e Materiais Avançados do IF-UFRGS.

Desde 1993 até o ano 2000, Jornada foi coordenador do comitê executivo da Associação Rede de Metrologia e Ensaios do Rio Grande do Sul (Rede Metrológica RS), uma entidade criada em 1992, que atua como articuladora na prestação de serviços qualificados de metrologia e de qualidade por parte de seus laboratórios associados.

De 2000 a 2004, Jornada foi diretor de metrologia científica e industrial do Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), autarquia federal vinculada ao Ministério de Indústria, Comércio Exterior e Serviços criada em 1973, cuja missão é fortalecer as empresas nacionais, aumentando sua produtividade por meio da adoção de mecanismos destinados à melhoria da qualidade de produtos e serviços.

Em dezembro de 2004, o professor Jornada assumiu a presidência do Inmetro, permanecendo no cargo por 11 anos, até dezembro de 2015. Em seu mandato, Jornada promoveu mudanças na estratégia, capacitação, infraestrutura e gestão do Inmetro, que levaram a instituição a aumentar seu reconhecimento científico nacional e internacional e a desenvolver interações com a academia, empresas e governo.

Jornada recebeu uma série de distinções, como o Prêmio Pesquisador Destaque da Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) na área de Física (1998); a Comenda da Ordem Nacional do Mérito Científico da Presidência da República, na classe Comendador (2000) e Grã Cruz (2007), 2004 a Comenda da Ordem do Mérito Aeronáutico na Classe Comendador da Força Aérea Brasileira (2004), a Comenda da Ordem de Rio Branco no grau de Comendador do Ministério das Relações Exteriores (2008) e a Medalha Mérito Tamandaré da Marinha do Brasil (2015). É membro da Academia Brasileira de Ciências desde 2001, fellow da TWAS (The World Academy of Sciences for the advancement of science in developing countries) desde 2008. Desde 2016, é distinguished fellow da Global Federation of Competitiveness Councils, uma rede de pessoas e organizações envolvidas em estratégias de competitividade, sediada em Washington (EUA).

O cientista é autor de cerca de 100 artigos publicados em periódicos científicos, entre eles, os prestigiosos Science e Nature.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e, em particular, a atuar na área de Física da Matéria Condensada.

João A. Herz da Jornada: – Desde cedo tive grande interesse pela Ciência. O ambiente no final dos anos 50 e início dos anos 60, época de minha infância e adolescência, era especialmente estimulante para a carreira científica, especialmente a Física.  Havia muito destaque na imprensa para assuntos que me fascinavam, como foguetes, sputnik, corrida espacial, energia nuclear, transistor, computadores… Era uma época em que o mundo via a Ciência com extremo otimismo e confiança, verdadeiramente a “fronteira sem fim”, nas palavras de Vannevar Bush. A Ciência representava certezas, fornecendo o caminho seguro para responder todas as questões, grandes e pequenas,  uma visão de mundo verdadeira, completa e unificada- talvez o ápice do ideário iluminista. Tudo isto me fascinava. Sempre gostei muito de ler, aprender, fazer experimentos e construir coisas envolvendo Física, Química e Eletrônica, desfrutar o prazer da descoberta e da realização. Assim, seguir a carreira científica foi muito natural. Graduei-me em Física e fiz mestrado e doutorado em Física Experimental, aplicando técnicas de Física Nuclear a problemas de Física da Matéria Condensada, sob a orientação do Fernando Zawislak. Nessa época a Física da Matéria Condensada despontava com dinamismo, havia bastante problemas interessantes para atacar e também relevantes demandas para aplicações em várias áreas. Meu trabalho de doutorado envolveu projetar e construir câmaras de muito altas pressões, exigindo conhecimento mais profundo sobre algumas propriedades de materiais; assim comecei a me interessar para além da Física da Matéria Condensada, entrando em  Ciência dos Materiais. Adicionalmente, fiquei entusiasmado com as potencialidades da técnica em Física da Matéria Condensada, por permitir variações consideráveis e controláveis de distâncias interatômicas, fatores determinantes das propriedades de sólidos, além de gerar transformações de fase. Como não havia expertise alguma em altas pressões no Brasil, decidi criar um Laboratório para desenvolver a técnica, implantar uma boa infraestrutura experimental e explorar suas possibilidades como um novo instrumental de pesquisa em nosso meio. Com efeito, montamos um bom laboratório, com diferentes tipos de sistemas para produção de altas pressões, projetados e construídos aqui mesmo, viabilizando processamentos em altas temperaturas e medidas in-situ usando várias técnicas de sondagem, como espectroscopia ótica e difração de raios-x. Assim, pudemos desenvolver várias linhas de pesquisa em Física da Matéria Condensada. Estou usando o plural para enfatizar o trabalho em equipe, com um fantástico time de estudantes e colaboradores. O domínio desta técnica aumentou mais ainda meu interesse por Ciência dos Materiais por oferecer uma nova janela de oportunidades para produção de novos materiais, em especial os materiais chamados superduros, como o diamante e seus compósitos. A produção de diamantes sintéticos em nosso Laboratório nos introduziu definitivamente dentro da Ciência dos Materiais, com algumas linhas de pesquisa  bem representativas, como síntese de diamante, por altas pressões e por CVD, produção de  compactos e compósitos de materiais de alta dureza, produção de ferramentas de corte com diamante e cBN etc. Posteriormente iniciamos trabalhos em materiais cerâmicos, envolvendo tanto pesquisa básica como pesquisa aplicada, em conexão com empresas, para produção de cerâmicas estruturais.

Mas há um também um fator que creio ter influído bastante na escolha de minha carreira: tanto a Física da Matéria Condensada como a Ciência dos Materiais oferecem tremendas possibilidades para inovações e geração de riqueza para a sociedade, esta mesma sociedade que com dificuldades apoia e custeia nosso trabalho.  Tenho um sentimento de dever, compartilhado por muitos de minha geração, no sentido de ajudar efetivamente o desenvolvimento do País.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais? Gostaríamos de pedir que você vá além da enumeração de resultados e descreva brevemente as contribuições que considera de mais impacto ou mais destacadas. Ao refletir sobre sua resposta, sugerimos que considere todos os aspectos da atividade científica.

João A. Herz da Jornada: – A resposta não é fácil, frente às múltiplas dimensões da pergunta e à natural dificuldade de falar dos próprios feitos. Vou comentar alguns aspectos resumidamente. Em primeiro lugar, a formação de pessoas, num variado espectro de níveis, dentro da área de Materiais: Doutores, Mestres, estudantes de graduação e bolsistas de iniciação científica. Aliás, a formação de recursos humanos de qualidade é para mim a maior contribuição da pesquisa básica num país ainda em desenvolvimento como o Brasil. Tenho muito orgulho de ter contribuído para o desenvolvimento científico de muitas pessoas, em particular os vários doutores que formei e que agora estão em importantes posições de liderança. Outro aspecto que considero relevante é a construção, junto com dedicados estudantes e colaboradores, de uma infraestrutura laboratorial única, na área de altas pressões e técnicas associadas, possibilitando muitos trabalhos de investigação e também alguns de apoio à Indústria. Implantamos a técnica de altas pressões no Brasil, construindo vários tipos de equipamentos, e aplicamos numa ampla gama de trabalhos científicos e tecnológicos, inclusive sintetizando pela primeira vez no País diamante e outros materiais avançados.

Como todo pesquisador brasileiro, minhas contribuições científicas, especialmente publicações, estão detalhadas no Currículo Lattes, mas do ponto de vista pessoal tenho muita satisfação com algumas publicações em revistas de grande impacto, como Science, Nature, PRL e PR, que foram resultados de trabalhos inteiramente realizados em nosso Laboratório, com ideias próprias e com equipamentos em grande parte construídos por nós, muitas vezes utilizando sucata de equipamentos velhos. Outra contribuição à Ciência dos Materiais foi a criação do Laboratório de Materiais no Inmetro, ao longo de meu período como presidente da instituição. Além de um programa científico interessante e de equipe de muito bom nível, foi implantada a maior infraestrutura de microscopia eletrônica do hemisfério sul, acessível a toda a comunidade científica e tecnológica do País. Dentro da UFRGS fui um dos fundadores do Programa de Pós-Graduação em Ciência dos Materiais e do Centro de Microscopia e Microanálise. Destaco também a construção de uma rede de parcerias internacionais envolvendo estudo de materiais e altas pressões.

Boletim da SBPMat: –  Você será homenageado no XVI Encontro da SBPMat/B-MRS Meeting com a Palestra Memorial “Joaquim da Costa Ribeiro”. Comente brevemente o que você abordará nessa palestra e/ou deixe um convite para nossos leitores.

João A. Herz da Jornada: – Sinto-me honrado pela distinção e convido os leitores para a palestra; terei muito gosto em contar com a participação expressiva de nossa comunidade. O tema será a conexão entre Ciência dos Materiais e Inovação, sob uma perspectiva pouco discutida no Brasil, mais especificamente os complexos mecanismos que geram impacto econômico e social a partir da pesquisa básica.  Creio que o tema é bem relevante neste momento de graves restrições orçamentárias para a Ciência no Brasil. É importante termos um entendimento aprofundado do assunto, usando a mesma abordagem científica com que trabalhamos, baseada em evidências, boa lógica, rigor, espírito crítico, mente aberta e ampla discussão. Discutiremos a necessidade de se trabalhar com novos conceitos, como capacidade de absorção, capacidade de apropriação de conhecimentos  e conectividade, para melhor entender o problema. Veremos que a Ciência dos Materiais constitui-se numa área particularmente importante, não só pelos conhecimentos específicos associados estarem muito próximos de aplicações, mas também pelo seu caráter multidisciplinar envolver necessariamente  um amplo leque de conexões – um dos importantes fatores de um “ecossistema” inovativo.

Boletim da SBPMat: –  Deixe uma mensagem para os leitores que estão iniciando suas carreiras científicas. 

João A. Herz da Jornada: – Como mensagem aos que estão iniciando a carreira gostaria de sugerir uma reflexão sobre uma famosa ideia do grande filósofo do Iluminismo, David Hume, que pode ser resumida mais ou menos assim: a razão é uma serva das paixões. Qual seu significado no presente contexto? A Ciência é um empreendimento essencialmente  racional do espírito humano. Exige lógica, inteligência, trabalho disciplinado e rigoroso. Mas também exige criatividade, imaginação, conexão com pessoas, sonho, e muita vontade – fundamentalmente paixão. A paixão nos inspira e nos mobiliza para o trabalho, mas por outro lado é também nutrida pelos desafios e pelos resultados de um belo trabalho, e nutrida também pela natureza altamente social e estimulante do ambiente científico. Estas duas dimensões têm de ser igualmente reconhecidas e devidamente cuidadas. A Ciência dos Materiais nos propicia uma enorme gama de belos desafios, constantemente  renovados pela sua própria dinâmica e pelas demandas por aplicações, que estão sempre a nos conectar com a sociedade. Ela propicia boas chances de resultados gratificantes, tanto científicos como tecnológicos. Seu caráter multidisciplinar, exigindo sempre muita interação, nos propicia rica e estimulante experiência humana.