Interviews with plenary speakers of the XIV SBPMat Meeting: Ichiro Takeuchi.

The search for the materials that are most suitable for performing certain tasks maybe exists since the dawn of humanity. In this search, on the opposite end to the trial and error method, there is the combinatorial approach, which aims to increase the efficiency of the process of discovering or producing materials. This approach is based on the screening of large amounts of materials with compositions slightly different one another, using databases, rapid synthesis and characterization techniques, simulations, robots and other tools. The combinatorial approach has been applied to the pharmaceutical industry since the 1990s to identify new and useful compounds, and it also has its place in the field of Materials Science and Engineering.

Prof. Ichiro Takeuchi

During the XIV SBPMat Meeting, Professor Ichiro Takeuchi will give a plenary talk on the combinatorial approach to materials discovery – an issue that is part of his daily life. Takeuchi is a Professor of the Materials Science and Engineering Department at the University of Maryland, in the United States, since 1999. In this institution, he leads the Combinatorial Synthesis and Rapid Characterization Center and the Keck Lab for Combinatorial Nanosynthesis/ Multiscale Characterization. He is a Visiting Professor at the Tokyo University of Science since 2010. He is also member of the Executive Committee of the Forum on Industrial & Applied Physics from the American Physical Society (APS). 

Takeuchi graduated with a Degree in Physics in 1987 at the California Institute of Technology (Caltech). For four years he worked in Japan at the microelectronics research laboratories of the NEC Corporation, to later return to the United States. In 1996, he earned his Ph.D. at the University of Maryland. Then, he went to the Lawrence Berkeley National Laboratory, where he stayed until 1999 as a postdoctoral researcher. In 2004, he was the chairman of the Gordon Conference on Combinatorial and High-throughput Materials Science. In 2009, he founded a company dedicated to the development of materials and systems for applications in the field of energy, the Maryland Energy and Sensor Technologies, LLC.

Ichiro Takeuchi was a Visiting Professor at universities in Japan and Germany. He has received awards and distinctions from the National Science Foundation (Career Award), the Office of Naval Research in the US (Young Investigator Program Award) and the University of Maryland, among other institutions. The scientist, whose H index is 40, according to Google Scholar, is the author of over 180 papers, with more than 5,900 citations, and a book on the combinatorial synthesis of materials.

What follows is a brief interview with this plenary speaker.

SBPMat newsletter: – Help us to visualize how the combinatorial research is performed. For instance, choose an example of a material created in your laboratories with this approach, and outline the “step-by-step”.

Synthesis of thin-film combinatorial library: in this example, co-sputtering (a) is used to generate large compositional variation across a 3” wafer (b); such a sample is called a composition spread wafer; the composition variation is mapped on to ternary compositional phase diagram using electron probe (c).

Ichiro Takeuchi: – We do thin film based combinatorial materials research. The goal is to carry out rapid screening of previously unexplored compositional landscape in order to discover new materials with enhanced physical properties. We make wafers or chips where there are large composition variations in deposited thin films. Sometimes the thin films are separated into different pads, and sometimes it is one continuous film with changing composition across the wafer. We want the variation to be as large and diverse as possible, so that we can map large compositional variation in a single experiment. We then take different characterization techniques to carry out rapid screening of various physical properties. For example, right now, we have a project to search for new permanent magnet materials. For this, we use techniques such as scanning SQUID or scanning magneto-optical Kerr effect measurements. These measurements can be used to map magnetic properties of all the compositions on a single wafer. These wafers and chips are called combinatorial libraries. We also do a lot of structural characterization. For this purpose, we often go to synchrotron beamlines. At such locations, because of the large beam flux, we are able to carry out x-ray diffraction of the entire wafer very quickly. Right now, we can scan 200-300 spots in 2 hours.

SBPMat newsletter: – In your opinion, what are your most significant contributions in the field of combinatorial materials science? Please explain them, very briefly, and share references from the resulting articles or books, or comment if these studies have produced patents, products, spin-off companies etc.

Examples of combinatorial libraries of functional materials and visualization of their data: (a) permanent magnet library for systematic investigation of exchange coupling showing magnetic hysteresis loops taken at each spot on the library (from Physical Review B75, 144429 (2007)); (b) ferroelectric library displaying ferroelectric hysteresis loops measured at each spot (from Journal of Materials Research 27, 2691 (2012)); (c) superconductor library with resistance – temperature curves mapped onto the positions where they were measured (from APL Materials 1, 042101 (2013)).

Ichiro Takeuchi: – Over the years, we have carried out combinatorial investigation on a variety of topics in the general field of functional materials. They include superconductors, shape memory alloys, magnetosrictive materials, ferroelectric and dielectric materials to name a few. In carrying out such experiments, we have had to develop and establish techniques to effectively implement the strategies. We have indeed discovered a number of new compounds. For instance, working together with theoretical colleagues, we have found shape memory alloys with long fatigue lives. I have patents on a number of low-loss dielectric materials as well as novel piezoelectric materials. Many groups are now doing follow-on work on a lead-free morphotropic phase boundary piezoelectric material we found a number of years ago. In addition to the materials that were discovered, we have established combinatorial strategies as a technique to rapidly delineate composition-structure-property relationships in different materials systems. We have recently published a comprehensive review article. It is: “Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials,” Journal of Applied Physiscs 113, 231101 (2013) by Martin L. Green, Ichiro Takeuchi, and Jason R. Hattrick-Simpers.

SBPMat newsletter: -If you wish, leave a message or an invitation to your plenary talk to the readers who will attend the XIV SBPMat Meeting.

Ichiro Takeuchi: – The notion of search and discover is central to materials research. The combinatorial methodology is the natural counterpart to the concerted efforts in theoretical design of materials taking place around the world. By effectively coupling theory with high-throughput experimentation, we can really accelerate the rate at which new materials are discovered. I will present a mode of research we call “integrated materials engine” where theory and experiments are woven together and built on a flexible database and data management platform.

Integrated materials discovery engine: we propose coupling of high-throughput combinatorial materials exploration with theoretical investigation. Multiple feedback points between the two tracks ensure that we carry out accelerated exploration effectively.

More:

SBPMat newsletter. English edition. Year 2, issue 5.

 

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

English edition. Year 2, issue 5. 

SBPMat news: XIV Meeting – Rio de Janeiro, Sept 27 to Oct 1, 2015

Program: 7 plenary lectures with worldwide renowned scientists are already confirmed. Know more about the plenary speakers and their lectures.

Abstract submission: Abstract submission deadline extended until June 15th. Here see instructions for authors and submit your abstract.

Bernhard Gross award: Authors who are students can submit extended abstracts to compete for the award for best works (one oral and one poster) of each simposium. More info.

Registrations: The early registration is open until July 31. The value of the registrations includes participation in the event, program book, welcoming reception, and daily coffee breaks. Learn more.

Proceedings: authors of works presented in the meeting will have the possibility to submit papers to peer review for publication in IOP Materials journalsKnow more.

Fapesp financial aid: PhDs in the State of São Paulo can apply from 16th to 24th June to request resources to attend the XIV SBPMat Meeting. Know more.

Hosting: A list of hotels is available, with special conditions for participants of the XIV SBPMat Meeting. Here.

Sponsors and exhibitors: 25 companies have already booked their place in the XIV SBPMat Meeting. Contact for exhibitors and other sponsors: rose@metallum.com.br.

Go to the event website.

SBPMat XIV Meeting: interviews with plenary speakers

Professor Ulrike Diebold (UT Wien, Austria) will speak in the XIV SBPMat Meeting about the surfaces of metal oxides. These materials are used for gas monitoring, catalysis, anti-corrosion, energy conversion, pigmentation and many other applications. Using her scanning tunneling microscopes (STM), Diebold investigates, for example, atomic-scale defects in the network of metal oxides. In our interview, she talked about his major contributions in the field of metal oxides and about the power of STM technique for the study of surfaces. She also left a tempting invitation to go to her lecture and shared with us nice STM images. See the interview.

We also interviewed professor Edgar Zanotto (UFSCar, Brazil), whose plenary talk will be about glass-ceramics – materials formed from the crystallization of certain glasses. Since the beginning of his scientific career, Zanotto has been studying the mechanisms of formation of glass-ceramics and developing applications for them. In the XIV SBPMat Meeting, the scientist will talk about past and future, including the development of new glass-ceramics and their use in new products. See the interview.

Featured paper

In a study about magnetic properties of nanocrystalline thin films, held at the Brazilian Center for Research in Physics (CBPF), in Rio de Janeiro (Brazil), a team of scientists used, intensely, broadband electromagnetic resonance, and combined it with other analytical techniques. The conclusions of the study may contribute to the production of magnetic materials for miniaturized devices. The work was reported recently in the Journal of Applied Physics. See our story about the paper.

SBPMat´s community people

We interviewed Israel Baumvol, Emeritus Professor of UFRGS (Porto Alegre, Brazil) and creator of the graduate program in materials science and engineering at UCS (Caxias do Sul, Brazil). Baumvol became enchanted with the possible applications of physics at the time of graduation. Throughout his career, he has made significant contributions to the field of materials on various topics. In the interview, when talking about his career, the researcher reported, among other stories, how he began working on materials for microelectronics from an invitation from IBM to apply his knowledge on ion implantation. To our younger readers, Baumvol suggested: follow your hearts, seek changes and get rid of the prejudices about the types of research. “The only distinction is between good or bad quality research”. See our interview with the scientist.

Reading tips
  • Alternatives to silicon for miniaturized devices: graphene nanowires synthesized by new route (based on paper from Nature Nanotechnology). Here.
  • At MIT, viruses are used to create materials with relevant applications (TED talk video and other multimedia content). Here.
  • Team of scientists that includes a Brazilian “trains” nanotube composite to perform computational operations (based on paper from Journal of Applied Physics). Here.
Events
  • VII Método Rietveld. Fortaleza, CE (Brazil). July, 6 to 10, 2015. Site.
  • Escola de Técnicas de Espalhamento de Raio-X (SAXS) e Neutrons (SANS) para Investigação Estrutural de Materiais e Sistemas Biológicos. Rio de Janeiro, RJ (Brazil). July, 6 to 10, 2015. Site.
  • XXVI Escola de Inverno de Física da UFMG. Belo Horizonte, MG (Brazil). July, 13 to 17, 2015. Site.
  • São Paulo School of Advanced Sciences (ESPCA) on Recent Developments in Synchrotron Radiation. Campinas, SP (Brazil). July, 13 to 24, 2015. Site.
  • Advanced School on Glasses and Glass-Ceramics (G&GC São Carlos). São Carlos, SP (Brazil). August, 1 to 9, 2015. Site.
  • Primeira Conferência de Materiais Celulares (MATCEL 2015). Aveiro (Portugal). September, 7 to 8, 2015. Site.
  • XIV SBPMat Meeting. Rio de Janeiro, RJ (Brazil). September 27 to October 1, 2015. Site.
  • 8th International Summit on Organic and Hybrid Solar Cells Stability (ISOS-8). Rio de Janeiro, RJ (Brazil). September 29 to October 1, 2015. Site.
  • 13th International Conference on Plasma Based Ion Implantation & Deposition (PBII&D 2015). Buenos Aires (Argentina). October, 5 to 9, 2015. Site.
  • 4th EPNOE International Polysaccharide Conference. Warsaw (Poland). October, 18 to 22, 2015. Site.
  • 10th Ibero-American Workshop on Complex Fluids 2015. Florianópolis, SC (Brazil). October, 25 to 29, 2015. Site.
  • 14th International Union of Materials Research Societies – International Conference on Advanced Materials (IUMRS-ICAM 2015). Jeju (Korea). October, 25 to 29, 2015. Site.
To suggest news, opportunities, events, papers, interviewees or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.

Unsubscribe here.

 
Cannot see this message? Click here.

SBPMat´s community people: interview with Israel Baumvol.

Israel Jacob Rabin Baumvol was born in Rio Grande do Sul, in the city of São Gabriel, in the last day of 1947. When he was a child, he moved to the city of Porto Alegre with his parents and siblings. When he was 19 years old, he entered the Federal University of Rio Grande do Sul (UFRGS) to study Physics. In the following years, in addition to participating in the political activity that occurred in the university against the existing military government, Baumvol dedicated a lot of effort to his studies, trying to reach the academic standard of the bachelor’s degree in Physics of the university. In 1971, he completed the graduation course – without honors, according to him. In the following year, he moved to the city of São Paulo to take a Master’s Degree in the University of São Paulo (USP), in Nuclear Physics and under the orientation of Professor Oscar Sala. In 1975, he returned to UFRGS to undertake his Doctorate, with orientation of Professor Fernando Zawislak, studying composites of perovskite structures. During the doctorate, he became a professor at UFRGS. In 1977, he defended his thesis. For the postdoctoral course, Baumvol chose an institution of industrial research in England, today known as Harwell campus. There, between 1979 and 1981, he worked with techniques of ionic implantation and its applications, mainly the plasma immersion ionic implantation (PIII), and he took part in research contracts with large companies. Due to his expertise in PIII, Baumvol entered the world of the materials for microelectronics, an area in which he made significant scientific contributions and obtained international reputation.

In the United States, Israel Baumvol was an invited researcher of the IBM research center from 1984 to 1988 and, from 1998 to 1999, of the Bell Laboratories, belonging to company Lucent. In France, between 1992 and 1996, he was a visiting professor at the Université Pierre et Marie Curie and at the Université Paris Diderot (Paris 7). In 1997, after coming first in a public entrance examination, he was nominated full professor at Paris 7, but he did not take over the position to stay in UFRGS. From 1995 to 1996, he was a guest professor of the Ruhr Universität, in Germany.

Baumvol was also coordinator of international events held outside Brazil. In 2000 and 2005, he was coordinator (chairman) of international symposia of Physical-Chemistry of silicon oxide and silicon – silicon dioxide interface, organized by the Electrochemical Society. In 2001, he coordinated the International Workshop on Device Technology of the Materials Research Society (MRS), held in Porto Alegre. In 2004, he was meeting chair of the MRS Spring Meeting & Exhibit, that occurs annually in San Francisco (United States).

In 2003, after retiring from his position of full professor of UFRGS, he led the creation of the Materials Science and Engineering Potgraduation Program of the University of Caxias of Sul (UCS), near 130 km far from Porto Alegre, and he was coordinator and researcher of the program until 2014.

From 2002 to 2003, Baumvol presided the Research Support Foundation of the State of Rio Grande do Sul (FAPERGS). More recently, between 2011 and 2013, he was vice-coordinator of the Materials Department in Capes (a federal agency for higher education improvement). Baumvol also coordinated big projects in the Materials segment, such as the first National Network of Research in Nanostructured Materials (2001-2005) and the National Institute of Surface Engineering (2009 to 2010).

Throughout his scientific career, Israel Baumvol has carried out research in subjects related to ionic implantation, thin layer physics and surface modification, in addition to materials for microelectronics.

Baumvol holds the highest productivity level scholarship in CNPq, the Brazilian federal science council. He has authored over 270 peer-reviewed articles, besides books and book chapters. His scientific production has approximately 3,000 citations. He acted as advisor in about 30 Master’s Degree and Doctorate dissertations.

In 2000, he was chosen Prominent Researcher by FAPERGS; in 2010, he was nominated Commander of the National Order of the Scientific Merit by the Presidency of the Brazilian Republic and in the following year, he was named Professor Emeritus by UFRGS. In May of this year, the “Professor Israel Baumvol Microscopy Center” was inaugurated in UCS.

Here is an interview with the scientist.

SBPMat newsletter: – Tell us what led you to become a scientist and to work in subjects of the Materials field.

Israel Baumvol: – It was the junction of three factors. The first one was the desire to use my knowledge one day to be able to contribute to the progress of the country and its citizens. This desire was developed through reading and great political participation during the graduation course. However, seeing as in Porto Alegre the tradition of basic research was very strong and there was nobody working in applied physics, I had a strict academic formation, that was very good for my future. The second factor was my post-doctorate, for which I chose an institution of industrial research, in England. I went there in 1979 to learn ionic implantation, because the institution was a pioneer in this method. There, I became acquainted with ionic implantation, specially its applications, such as reduction of the friction in metallic components (for example Ti-Al alloys) by means of implantation of species and heavy ionic composites, increase of the resistance to wear and corrosion of steel by nitriding, oxinitriding and nitrocarburizing using the method of ionic implantation by immersion in plasma (PIII). At that time, they were constructing there the first industrial-scale reactor of PIII, with a volume of approximately 30 m3, which was later spread throughout the world, including by companies that manufactured these reactors, such as Eaton and several others, including two companies in Brazil. This environment of applied physics fascinated me due to its possibilities. I participated in many research contracts, such as the one about bone prosthesis for a Japanese manufacturer, another about turbine blades for Rolls-Royce and another on cut blades for the future electric shavers project for Philips. These projects, in addition to fascinating me, had a component that for me was romantic: they were confidential projects. The third and last factor occurred by the end of my post-doctorate. I went to a congress in Germany, where I gave a 50-minute lecture, something very difficult nowadays, when the lectures only last about 20 minutes. When I finished speaking and answering questions, there was a coffee break. Dr. James F. Ziegler came up to me, introduced himself and gave me his business card, in which it was written “Research Director, Thomas J. Watson Research Center, IBM”. He invited me to go there because, during my lecture, he thought that the PIII method could solve a serious problem that IBM had with hard drives. Yet again, the siren song of a confidential project. I accepted the invitation and, for some years, during winter and summer vacations, three to four months per year, I went to IBM – Yorktown. There, I got in touch with something unusual for me, the silicon technology, which was just being born. That was yet another allure and my mind was made, Materials Science and Engineering.

SBPMat newsletter: – What are, in your own evaluation, your main contributions to Materials field?

Israel Baumvol: – I worked in many different subjects in my professional activity, some of them mentioned above. I will highlight three of them. The first one was my participation in the beginning of the PIII technology, which is nowadays widely used in the whole world, also in Brazil, where there are at least four services of PIII processes of steel components for the metal-mechanics industry. The second one is my contribution, throughout ten years of work, to explore and to reach the physical limits of silicon oxide as gate dielectric in the metal oxide semiconductor (MOS) technology. I formed a network of cooperation with academic laboratories in four different countries and with industrial laboratories, including IBM, Motorola, Texas Instruments, Bell-Lucent. We reached the physical limit, 1 nm. From there, the entire network started to work on a substitute for silicon oxide, which was the first change in the MOS technology, after forty years. There was a convergence for hafnium oxide and, eventually, certain hafnium-based double oxides. This material stood out, allowing an increase of processing speed and today it is used as gate oxide in advanced processors. It allowed the continuity of the Moore Law, which was threatened. This research segment led to the formation of a golden generation of PhDs, all around gate oxide, which is a crucial subject for the micro and nanoelectronics.  Many of them are acting professionally in industrial companies, in technology of silicon and in other activities.  Finally, I highlight the creation of a research environment in Materials Science and Engineering and of a post-graduate program in this segment. I started this activity with only one element: Caxias do Sul and its environs possess a large number of industrial companies, small, average and large companies needing research and human resources qualification. Only this, nothing more. Then, from nothing, I gathered some young high-qualified doctors and built the desired research environment, with many excellent laboratories and a very respectable post-graduation program. The impact on the industrial context of the region is notable and very recognized.

Bulletin of SBPMat: – Leave a message for our readers who are initiating their careers of scientists.

Israel Baumvol: – Follow your heart and not convenience. Take advantage of the doctorate, because this is the best time of the career: creative research and free from administrative responsibilities. Do not hesitate in showing your ideas. New ideas are not necessarily bad ideas. Use your post-doctorate to get in touch with the new and the unknown. Do not look for a place that works with the same subject of your doctorate research. Do not hesitate in changing the field, this is very stimulant and constitutes an important factor of individual progress. I pity the professionals who continue working in the subject of their doctorate theses, ten or twenty years after the conclusion. Applied research can very be good research. Get rid of preconceptions, it does not matter if the research is fundamental, or applied or directly industrial. What counts is quality. The only difference is between good quality research or bad quality research.

Interviews with plenary speakers of the XIV SBPMat Meeting: Ulrike Diebold.

Metal oxides display a wide range of properties. Accordingly, they become useful in numerous applications, such as gas sensing, catalysis, protection against corrosion, pigmentation, energy conversion, to name a few. An important detail: in order to comprehend and use these materials, the study of their surface is crucial.

Prof. Ulrike Diebold.

Metal oxides surfaces will be the theme of a plenary talk of the XIV SBPMat Meeting. The speech will be given by Ulrike Diebold, a scientist among the leading experts on the subject in the world. Diebold is engaged in surface science since the time of her doctoral degree, defended in 1990 at the Vienna University of Technology (TU Wien), in Austria. A few years later, during her postdoctoral studies in a surface group at Rutgers University, in New Jersey (USA), she started her researches on titanium dioxide. In 1993, she became a Professor of Tulane University, in the city of New Orleans (USA) and she founded and coordinated a group on surface science.  When the group labs were hit by hurricane Katrina in 2005, Diebold was welcomed by several institutions and settled, jointly with some members of the Tulane group, in Rutgers. Finally, she went back to the place where her scientific career had started, TU Wien, as a Professor and coordinator of the surface physics group. With her research groups, Diebold continues to advance in her basic and applied science studies on metal oxides, based, among other techniques, on scanning tunneling microscopy (STM), through which the scientist can investigate these materials at atomic scale.

Ulrike Diebold is the author of more than 180 peer-reviewed articles, which have over 12,000 citations. Her h-index, according to Web of Science, is 52. The scientist has already delivered more than 250 invited talks. Throughout her career, she has received numerous awards and distinctions from several entities such as the Alexander von Humboldt Foundation, American Chemical Society, Austrian Academy of Sciences, Austrian Ministry for Science, Catalysis Society of South Africa, Czech Republic Academy of Sciences, European Academy of Sciences, German National Academy of Sciences Leopoldina, National Science Foundation, among others. She is an associate editor for the Materials Physics Division of the journal Physical Review Letters.

What follows is a mini-interview with this plenary speaker of the XIV SBPMat Meeting

STM image of single Au atoms on an Fe3O4 surface.  This system acts as a model catalyst to study simple reactions with atomic-scale detail. The related experiment is described in: Novotný, Z. et al. Ordered Array of Single Adatoms with Remarkable Thermal Stability: Au/Fe_{3}O_{4}(001). Phys Rev Lett 108, (2012).

SBPMat newsletter: – In your opinion, what are your most significant contributions in the field of metal oxides surfaces? Please explain them, very briefly, and share references from the resulting articles or books, or comment if these studies have produced patents or products.

Ulrike Diebold: – The field started with the book “The Surface Science of Metal Oxides” by Vic Henrich and P.A. Cox, which was published in 1993 (Cambridge University Press).  The book has motivated many people to develop an interest in metal oxide surfaces, and research has progressed tremendously since that time.  Some is still valid to this day, e.g., the importance of defects for understanding the properties of oxide surfaces, and how critical it is to master surface preparation.  Meaningful investigations can only be conducted on ‘well-characterized’ systems with a known and controlled surface structure.  About ten years later, in 2003, I wrote a review that focused only on titanium dioxide, which is a widely-used material both in applications and in fundamental research (Surface Science Reports 48 (2003) 53).  This review has received quite a bit of attention.   Another decade later a whole issue of Chemical Reviews (vol. 113, 2013) was focused on metal oxide surfaces, which pretty much summarizes the state-of-the art in metal oxide surface research.

SBPMat newsletter: – Comment on the possibilities offered by tunneling microscopy to the study of surfaces, especially metal oxides surfaces.

Ulrike Diebold: – Scanning Tunneling Microscopy, which was invented by Heinrich Rohrer and Gerd Binnig in the early 1980s, has revolutionized our understanding of the nanoworld.  One can use this technique for imaging the geometric and electronic structure of a surface at the local scale, atom-by-atom.  This is particularly important for oxides, where it is often the irregularities in the lattice that are the most interesting entities, i.e., defects such as missing atoms, interstitials, or impurities.  Scanning Tunneling Microscopy is the ideal tool to investigate such defects at the atomic level and to literally ‘watch’ defect-mediated chemical reactions.

 STM image of defects on a TiO2 surface. The related experiment is described in Dulub, O. et al. Electron-induced oxygen desorption from the TiO2(011)-2×1 surface leads to self-organized vacancies. Science 317, 1052–1056 (2007).

SBPMat newsletter: – If you wish, leave a message or an invitation to your plenary talk to the readers who will attend the XIV SBPMat Meeting.

Ulrike Diebold: – I think it is simply exciting to observe phenomena such as defects disappearing from a surface and coming back, or single molecules dissociating or diffusing across a surface.  If you want to see beautiful pictures and movies of processes that could potentially be relevant to your own research, please come to my talk.

More

Interviews with plenary speakers of the XIV SBPMat Meeting: Edgar Zanotto.

Edgar Dutra Zanotto.

Glass-ceramics, discovered in the decade of 1950, are produced by the catalyzed internal crystallization of certain glasses containing nucleating elements, and submitted to temperatures from 500 to 1,100 °C. They can present many properties which make of them interesting materials for many applications in the fields of medicine, odontology and architecture, among others.

In the XIV SBPMat Meeting, glass-ceramics will be addressed in a lecture entitled “60 years of glass-ceramics R&D: a glorious past and bright future”. The lecturer will be Edgar Dutra Zanotto, full professor of the São Carlos Federal University (UFSCar), in Brazil, and director of the Brazilian Center for Research, Technology and Education in Vitreous Materials (CeRTEV).

Zanotto became fascinated by glass-ceramics in 1977, when he read the book Glass Ceramics by Peter McMillan, from Warwick University (United Kingdom), while he was completing the graduation course of Materials Engineering at UFSCar. From that moment on, these materials and their crystallization process have been the focus of his studies, first in his Master’s Degree in Physics (USP São Carlos, Brazil) then in his PhD in Glass Technology (University of Sheffield, United Kingdom) and, until the moment, in the research and development projects that he develops with his group in the Laboratory of Glass Materials (LaMaV) at UFSCar.

“Orchid”. Optical microscopy image of crystallization in eutetic glass. Credits: Vladimir Fokin e Edgar Zanotto (LaMaV-UFSCar).

Edgar Zanotto is author of an important production in science and glass technology. There are more than 200 scientific articles, with approximately 3,500 citations in Web of Science and 5,000 in Google Scholar; 20 book chapters; 17 patent orders; 2 books and 4 prefaces of international books. His H index is 34, according to Web of Science, and 39 according to Google Scholar. Zanotto already received 28 prizes or distinctions from diverse entities, as American Ceramic Society, Elsevier Publishing Company, International Commission on Glass, The World Academy of Sciences and CNPq, the Brazilian Federal Research Foundation. He is Commander of the Brazilian National Order of the Scientific Merit. He was chairman of six of the most important international congresses on the glass area. He gave more than 110 invited lectures and a dozen of plenary lectures. He is editor of the Journal of Non-Crystalline Solids.

Here is a mini interview with this lecturer of the XIV Meeting of SBPMat.

SBPMat newsletter: – What are your most significant contributions or the ones with bigger social impact in the subject of glass-ceramics? Explain them very briefly and comment what was generated from them (papers, books, patents, products, etc.).

Edgar Zanotto: – I believe that the most significant contributions of my research group are referred to tests and improvements of models of nucleation, crystal growth and total crystallization of glasses. Moreover we developed and tested, successfully, models that describe the sintering with concurrent glass crystallization, besides several measurement techniques and theories of dynamic processes (viscous flow, structural relaxation, diffusion and crystallization) in glasses. The numbers of papers, patents and books generated from these researches are described above.

Optical microscopy image of crystal scratch in isochemical glass. Credits:Valmor Mastelaro e Edgar Zanotto (LaMaV – UFSCar).

SBPMat newsletter: – Please, name some products made with glass ceramics that are in the market and some possible promising applications.

Edgar Zanotto; – Throughout the last 39 years we develop glass ceramics from iron and steel slags and from recycled glasses – for application in civil construction and architecture – and also more sophisticated materials for odontological and medical use. These will be presented in the lecture.

SBPMat newsletter: – If you wish, leave a message or an invitation to your plenary talk to the readers who will attend the XIV SBPMat Meeting.

Edgar Zanotto: – In the lecture I intend to revise the main models of nucleation and crystal growth in glasses and to discuss their applicability to the development of new glass ceramics. Everything will be illustrated with colorful figures of innumerable new products. I hope that the lecture will be interesting and motivating for the students and researchers (experimental and theoreticians) of the areas of materials science and engineering, and condense matter physics and chemistry.

Learn more:

SBPMat newsletter. English edition. Year 2, issue 4.

 

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

English edition. Year 2, issue 4. 

SBPMat news: XIV Meeting – Rio de Janeiro, Sept 27 to Oct 1, 2015

Program: 7 plenary lectures with worldwide renowned scientists are already confirmed. Know more about the plenary speakers and their lectures.

Simposia and abstract submission: Abstract submission to the 27 symposia and 2 workshops of the XIV SBPMat Meeting is open until May 30th. Find here the instructions for authors.

Registrations: The early registration is open until July 31. The value of the registrations includes participation in the event, program book, welcoming reception, and daily coffee breaks. Learn more.

Hosting: A list of hotels is available, with special conditions for participants of the XIV SBPMat Meeting. Here.

Sponsors and exhibitors: 24 companies have already booked their place in the XIV SBPMat Meeting. Contact for exhibitors and other sponsors: rose@metallum.com.br.

Go to the event website.

SBPMat news

In San Francisco, SBPMat president, Roberto Faria, held meetings with authorities of MRS and IUMRS, and with representatives of Institute of Physics. The approached topics were publications, university chapters, and events, among others. Learn more.

Featured paper

A team of researchers from Brazil studied the luminescent behavior of a lanthanide ion (the trivalent terbium) as a glass dopant. Among other results, the scientists were able to explain some mechanisms that limit the light emission efficiency of the material. The work was recently reported on the Journal of Applied Physics. See our story about the paper.

SBPMat´s community people

We talked with Fernando Galembeck, director of the Brazilian Nanotechnology National Laboratory and retired UNICAMP professor. Interested since his adolescence in scientific discoveries and their transformation in products, Galembeck made important contributions to the area of Materials, either in academic studies and in works that generated licensed patents and new products. In the interview, the scientist talked about the origins of his scientific career and shared his cases of materials research and development. At the end, he left a message to the youngest readers, highlighting passion as motivation for work. See our interview with the scientist.

History of Materials research in Brazil 
Do you know when, why, how, and by whom SBPMat was created? On the page “History” of the “About”  section of our site, you may find the summary we prepared, based on documents and interviews. See.
Reading tips
International science stories from highlighted papers

  • Metallic alloy very efficient in the thermoelectric conversion produced through a new type of sintering (Science). Here.
  • Film that uses liquid as “doorkeeper” of its pores avoids fouling and has several applications (Nature). Here.
  • Scientists have studied the principles of the behavior of droplets that move on a glass and the interactions among them (Nature). Here.
  • How to “program” the service life of self-assembled materials until their self-disassembly? Researchers have developed a proposal (Nano Letters). Here.
  • Team from Brazilian institutions Unicamp and LNLS have created silver nano bricks coated with magnetite with potential applications in nanomedicine (Nature Scientific Reports). Here.
Events
  • 4th School of SAXS Data Analysis. Campinas, SP (Brazil). May, 11 to 15, 2015. Site.
  • VII Método Rietveld. Fortaleza, CE (Brazil). July, 6 to 10, 2015. Site.
  • Escola de Técnicas de Espalhamento de Raio-X (SAXS) e Neutrons (SANS) para Investigação Estrutural de Materiais e Sistemas Biológicos. Rio de Janeiro, RJ (Brazil). July, 6 to 10, 2015. Site.
  • XXVI Escola de Inverno de Física da UFMG. Belo Horizonte, MG (Brazil). July, 13 to 17, 2015. Site.
  • São Paulo School of Advanced Sciences (ESPCA) on Recent Developments in Synchrotron Radiation. Campinas, SP (Brazil). July, 13 to 24, 2015. Site.
  • Advanced School on Glasses and Glass-Ceramics (G&GC São Carlos). São Carlos, SP (Brazil). August, 1 to 9, 2015. Site.
  • Primeira Conferência de Materiais Celulares (MATCEL 2015). Aveiro (Portugal). September, 7 to 8, 2015. Site.
  • XIV SBPMat Meeting. Rio de Janeiro, RJ (Brazil). September 27 to October 1, 2015. Site.
  • 13th International Conference on Plasma Based Ion Implantation & Deposition (PBII&D 2015). Buenos Aires (Argentina). October, 5 to 9, 2015. Site.
  • 10th Ibero-American Workshop on Complex Fluids 2015. Florianópolis, SC (Brazil). October, 25 to 29, 2015. Site.
  • 14th International Union of Materials Research Societies – International Conference on Advanced Materials (IUMRS-ICAM 2015). Jeju (Korea). October, 25 to 29, 2015. Site.
To suggest news, opportunities, events, papers, interviewees or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.

Unsubscribe here.

 
Cannot see this message? Click here.

Featured paper: Revealing secrets of the luminescence of a lanthanide ion.

Paper: Mechanisms of optical losses inthe 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses. J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimarães, M. L. Baesso, L. A. O. Nunes and T. Catunda. J. Appl. Phys. 117, 053102 (2015). DOI: 10.1063/1.4906781.

A team of scientists from Brazilian institutions has expanded the comprehension of the mechanisms that restrict the light emission efficiency in materials doped with trivalent terbium ion (Tb³+). This ion, found in the rare earth group, subgroup of lanthanides, displays luminescent emissions from ultraviolet to infrared. Its intense green emission, with approximately 545 nm of wave length, is particularly interesting for technological purposes.

Some years ago, for instance, Japanese researchers produced laser emissions with Tb3+ doped optical fibers. However, their device displayed low efficiency, due to the saturation of its optical gain, even at low excitation levels.

Luminescence process of a Tb³ doped LSCAS sample, excited by a blue laser, emitting green light. The pictures portray the sample in a state of (a) non-excitation and (b) excitation.

Taking up this technological issue, the team of Brazilian scientists has conducted a thorough study on the processes that cause the saturation of the green emission. For that, they used Tb3+ to dope a material which, thanks to its properties, ensures high efficiency to the emission, mainly in infrared: the low silica calcium aluminosilicate glass, also known as LSCAS.

The study involved two research groups that have been collaborating for approximately two decades, the group of spectroscopy of solids from the São Carlos Institute of Physics at the São Paulo University (USP), and the photothermics group from State University of Maringá (UEM). The results were reported in a paper that appeared recently on the Journal of Applied Physics.

Firstly, glass samples with different dopant concentrations were prepared by the UEM group.

Picture of the LSCAS samples. The base sample has a Tb3+ concentration of 0.05%.

At IFSC-USP, the samples were excited using a laser at two different wavelengths, 488 nm (visible) and 325 nm (ultraviolet), and their absorption, emission and excitation spectra were obtained. Analyzing them, the scientists from the group of spectroscopy of solids observed certain particularities in the behavior of some luminescent emissions, such as a strong saturation in a green emission, similar to the one found in the laser presented by the Japanese scientists. In other wavelengths, they noted, for example, a decrease in luminescence occurring at lower excitation levels than expected. Thus, the researchers managed to conclude that the mechanism associated in the literature to the emissions from Tb3+ doped materials, also known as cross relaxation, was not enough to completely explain the behavior of the emissions or even the saturation of the green emissions, and proposed the additional action of other processes.

“Additional loss mechanisms, such as emissions by defects in the matrix, energy upconversion processes, to name a few, have a significant influence in the system we have studied”, explains Tomaz Catunda, professor at USP and corresponding author of the article. “These decay paths, previously ignored by the literature, are very important in the manufacturing of optical devices with Tb3+ doped materials”, he adds.

The study of Tb³+ doped glasses by the Brazilian team started during the Doctoral dissertation of Idelma Terra, defended in 2013 at USP, which aimed to develop materials in order to increase the efficiency of solar cells. Her work was granted the 2014 “Vale-Capes Science and Sustainability Award”. The study of these materials continued in Giselly Bianchi’s Doctoral dissertation, performed at UEM, and in the Master’s thesis of Jéssica Fabiana Mariano dos Santos, defended in 2014 at EESC-USP.

The article published on the Journal of Applied Physics has joined dozens of papers born from the collaboration between the groups of spectroscopy of solids and photothermics, in some cases also involving other scientists from Brazil and abroad, focused on the optical spectroscopy of calcium aluminate glasses doped with rare earth ions and their applications in light-emitting devices.

SBPMat newsletter. English edition. Year 2, issue 3.

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

English edition. Year 2, issue 3. 

SBPMat news: XIV Meeting – Rio de Janeiro, Sept 27 to Oct 1, 2015

Simposia and abstract submission: Abstract submission for the 27 symposia and 2 workshops of the XIV SBPMat Meeting is open until May 30th. Find here the instructions for authors.

Hosting: A list of hotels is available, with special conditions for participants of the XIV SBPMat Meeting. Here.

Sponsors and exhibitors: 24 companies have already booked their place in the XIV SBPMat Meeting. Contact for exhibitors and other sponsors: rose@metallum.com.br.

Go to the event website.

SBPMat news

Our SBPMat, represented by its president, Professor Roberto Mendonça Faria, composes the organizing committee of the 14th International Conference on Advanced Materials of the International Union of Materials Research Societies (IUMRS – ICAM 2015). The event is to be held in Korea, in October of this year. Learn more.


Featured paper

A team of researchers from the University of São Paulo (USP), Brazil, and from a Cuban university managed to increase by over 25 times the current density above which the material Bi-2223 ceases to be a superconductor. For such, they prepared the material by means of spark plasma sintering, followed by thermal treatment. The authors also proposed which mechanisms occur in the microstructure of Bi-2223 for such optimization to take place. The work was recently reported in the Journal of Applied Physics. Learn more.


SBPMat´s community people

Oswaldo Luiz Alves, professor of the Institute of Chemistry at the University of Campinas (Unicamp) for over 40 years, is the author of relevant contributions to materials science and engineering, from the development of vitreous materials for telecommunications, to the study of the interactions between new carbon-based nanomaterials and biosystems. In an interview given to SBPMat e-newsletter, professor Alves spoke about his work to introduce the solid state chemistry in Brazil and the contributions he has made in the materials area, working on research, formation of researchers, popularizarion of science, scientific policies, etc. He also told us about his teenage years in São Paulo, and left a message to younger readers. Take a look at our interview with the scientist.

Victor Carlos Pandolfelli, professor of the Department of Materials Engineering at the Federal University of São Carlos (DEMa-UFSCar), was appointed associate editor of the Journal of the American Ceramic Society – one of the journals with more citations in its area. Learn more.

History of Materials research in Brazil 

Cylon Gonçalves da Silva, first director of the Synchrotron Light Brazilian National Laboratory (LNLS), shared with us some anecdotes about the participation of the Brazilian industry in the construction of the laboratory – more precisely, about the use of Brazilian materials in the manufacturing of the LNLS accelerators. Read professor Silva’s article here.

Reading tips

Special

  • A captivating report of the very interesting story of the discovery of natural quasicrystal – found in Siberia and produced… in outer space. The article won the Physics Journalism Prize, 2015 edition, of the Institute of Physics (IOP) and the Science and Technology Facilities Council (STFC). Here.

International science stories of highlighted papers

  • Polymer-nanoparticles hydrogel, easy to produce, has potential for controlled drug delivery (Nature Communications). Here.
  • Magnetic hyperthermia: flower-shaped nanoparticles generate more heat to destroy cancer cells (Journal of Applied Physics). Here.

News from Brazilian National Institutes of Science and Technology (INCTs) and Research, Innovation and Dissemination Centers (CEPIDs)

  • New bioglass developed within the Center for Research, Technology and Education in Vitreous Materials (CeRTEV) improves the performance of dental and orthopedic titanium implants upon being deposited on the surface. Here.
Opportunities
  • Joint call for proposals by FAPESP (São Paulo) and M-ERA NET (Europe) in Materials Science and Engineering. Here.
Events
  • Simpósio Internacional em Materiais e Biossistemas (SIMBI) 2015. Lavras, MG (Brazil). April, 28 and 29, 2015. Site.
  • 4th School of SAXS Data Analysis. Campinas, SP (Brazil). May, 11 to 15, 2015. Site.
  • VII Método Rietveld. Fortaleza, CE (Brazil). July, 6 to 10, 2015. Site.
  • São Paulo School of Advanced Sciences (ESPCA) on Recent Developments in Synchrotron Radiation. Campinas, SP (Brazil). July, 13 to 24, 2015. Site.
  • Advanced School on Glasses and Glass-Ceramics (G&GC São Carlos). São Carlos, SP (Brazil). August, 1 to 9, 2015. Site.
  • Primeira Conferência de Materiais Celulares (MATCEL 2015). Aveiro (Portugal). September, 7 to 8, 2015. Site.
  • XIV Encontro da SBPMat. Rio de Janeiro (Brazil). September 27 to October 1, 2015. Site.
  • 13th International Conference on Plasma Based Ion Implantation & Deposition (PBII&D 2015). Buenos Aires (Argentina). October, 5 to 9, 2015. Site.
  • 10th Ibero-American Workshop on Complex Fluids 2015. Florianópolis, SC (Brazil). October, 25 to 29, 2015. Site.
  • 14th International Union of Materials Research Societies – International Conference on Advanced Materials (IUMRS-ICAM 2015). Jeju (Korea). October, 25 to 29, 2015. Site.
To suggest news, opportunities, events, papers, interviewees or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.

Unsubscribe here.

 

SBPMat’ s community people: interview with Oswaldo Luiz Alves.

Professor Oswaldo Luiz Alves. (Credits: Gustavo Morita)

It was in the science clubs from the public school and from the neighbourhood, in the city of São Paulo, that Oswaldo Luiz Alves took an interest in sciences during his teenage years, conducting chemistry and biology experiments. At the age of 20, he graduated from one of the first technical courses in Industrial Chemistry in South America, at the Oswaldo Cruz Technical School, relying on a scholarship from the São Paulo State Education Office. During the course, he did an internship at the Biological Institute, ran by the government of the State of São Paulo, where he first got in touch with the infrared spectroscopy technique.

After a one-year experience working in the industry, he was accepted to the undergraduate course in chemistry of the State University of Campinas (Unicamp), and completed it in 1973, obtaining the titles of “bacharel” and “licenciado”. During his undergraduate studies, he acted in teaching and research at the Unicamp´s Institute of  Chemistry. As soon as he graduated, Alves, who was 25 years old at the time, was hired by that institute and, at the same time, started his doctorate, carrying out research on the application of vibrational spectroscopy (both Raman and infrared) in molecular complexes. In 1979, he left for France on a scholarship from the São Paulo State Research Foundation (Fapesp) for a post-doctoral internship, in which he again worked with vibrational spectroscopy. In that opportunity, he could use one of the first Fourier transform infrared spectrometers. Thus, Oswaldo Alves experienced firsthand the beginning of a time in chemistry of fruitful development of new analysis techniques, especially spectroscopic, and their applications. In addition, Alves was also motivated by another movement, which began in the 70s and which occurred mainly in the chemists’ community in Europe: the development and study of new materials within the so-called “solid state chemistry”.

Back in Brazil after almost two years in France, in which he worked as invited professor at the University of Lille, he found a scenario different from the European one. In Brazil, almost no chemist worked in the Solid State area yet. Thus, Alves dedicated himself to introducing the area and, in 1985, he founded the Solid State Chemistry Laboratory (LQES) at Unicamp’s Institute of Chemistry. Since then, the scientist has been making relevant contributions to materials science and technology, in sundry themes such as vitreous materials for telecommunications, two-dimensional materials synthesis techniques, development of integrated chemical systems, purification of carbon nanotubes and interaction between new carbon-based nanomaterials and biosystems.

Currently 67 years old, Oswaldo Alves is a full professor at Unicamp, where he works as a scientific coordinator of the LQES and the Laboratory of Nanostructure Synthesis and Interaction with Biosystems (NanoBioss/SisNano). In his 40 years of teaching, he was advisor to over 50 master’s and doctoral dissertations. He has authored over 200 articles published in scientific journals, which have more than 2,400 citations. He have also authored over 20 patents, 5 of them granted and one licensed, the latter refering to a technology aimed at the remediation of effluents from paper and textile industries. In the scientific dissemination field, he works as scientific editor of two news bulletins, “LQES News” and “Nano em Foco”.

Oswaldo Alves is a member of the Brazilian Academy of Sciences and of the Academy of Sciences of the State of São Paulo, as well as a commander of the Brazilian National Order of Scientific Merit. He is also a fellow of TWAS (The World Academy of Sciences for the advancement of science in developing countries) and of the Royal Society of Chemistry. He has received awards from different entities, such as Unicamp, the Brazilian Association of Chemical Industries (Abiquim) and the Brazilian Society of Chemistry, which he chaired from 1998 to 2000, in addition to being a founder and first director of its materials chemistry division.

See our interview with the scientist.

SBPMat’s Bulletin: – How did you become interested in science? What led you to become a scientist and work in solid state/materials chemistry?

Oswaldo Luiz Alves: – It has been many years. Before I got into University I took part in science clubs of my public school and my neighborhood in the city of São Paulo (Perdizes district). In the neighborhood’s science club we had a small laboratory with materials donated by one of the grandchildren of scientist Vital Brazil, where we conducted several chemistry and biology experiments. Soon after that, I got an internship at the Biological Institute, as a formal requirement of the Industrial Chemistry technical course, where I worked with infrared spectroscopy and polarography (dropping mercury electrode) applied to the determination of pesticides. When I got into Unicamp, in 1969, after a period of experience in the industry (Bayer), it was already clear for me that I would continue studying after graduating, which made me engage in research on rare earth compounds, through a research scholarship from FAPESP, already thinking of becoming a university professor and researcher. I went straight to doctorate, withouth having a master´s degree (that was not very common in the 70s in Brazil), working with Raman-laser and infrared spectroscopies and theoretical calculations of molecular force fields. In 1979, I went to France for my post-doctoral internship at the Laboratoire de Spectrochimie Infrarouge et Raman of the CNRS to work with Raman spectroscopy with spatial resolution, SERS and CARS effect and to commission one of the first infrared spectrometers that operated with Fourier transform. At that time, there was in Europe and especially in France (Bordeaux, Rennes and Orsay) an extremely prolific activity in solid state chemistry, within the materials perspective. I was taken away!

Upon returning to Brazil, I saw the opportunity to found the Solid State Chemistry Laboratory – LQES (1985), with a lot of difficulty, for almost all of the Brazilian chemists worked with solutions. Due to that, I migrated to the Physics community, where I remained for approximately 10 years, even getting to the point of coordinating materials-related activities at the famous meetings of the Brazilian Physics Society (SBF) in the city of Caxambu. Since then, I have always been involved in solid state and materials chemistry, taking part in the Optical Fiber Project (Telebras), where I worked with quantum dot-doped glass for telecommunications, glass for non-linear optics and, in the LQES, on activities connected to two-dimensional (lamellar) materials, nanocomposites involving conductor polymers, integrated chemical systems, glass-ceramics and porous glasses, silicon nanoparticles with complex functionalities, carbon nanotubes, graphene oxide and carbon dots. In the last three themes, my efforts are geared towards the study of the interaction between such new carbons with biosystems, from a viewpoint of assessment of the risks of nanotechnologies (regulation).

SBPMat’s Bulletin: – Which are, in your own assessment, your main contributions to the field of materials?

Oswaldo Luiz Alves: – It is always very hard to make such assessments, but I believe that some points could be listed.

In terms of scientific research, my main contributions have been the research works on quantum dot-doped glass and glass for non-linear optics, the development of synthesis techniques of several two-dimensional materials and their intercalation chemistry, the development of integrated chemical systems (conductor polymer glass, semiconductor glass), purification of carbon nanotubes (effect of oxidized debris) and interaction of new carbons with biosystems (protein “corona” effect and aggregation) and silicon nanoparticles with antagonistic functionality for drug delivery.

I created the Solid State Chemistry Laboratory (LQES), a pioneer in solid state chemistry research in Brazil, where I have worked to this day as scientific coordinator. Another contribution that I believe deserves to be highlighted was my work as coordinator of the “Chemistry Program for Electronic Materials” by FINEP (Funding Authority for Studies and Projects) (late 80s). Several of the more important materials research groups that worked, or still work, in Brazil at a high level, in several states, received funding from this successful program. My participation as founder and first Director of the Materials Chemistry Division of the Brazilian Chemistry Society is worthy of mention. I coordinated the FAPESP project that funded the construction of the first line of EXAFS (XAS) at LNLS (Synchrotron Light Brazilian National Laboratory), and I had direct participation in the user formation programs in a spectroscopic technique that had never been used in Brazil. I am currently working as scientific coordinator of the Laboratory of Nanostructure Synthesis and Interaction with Biosystems (NanoBioss/SisNano).

In 2014 I completed 40 years of teaching at Unicamp’s Institute of Chemistry, where I supervised over 50 students (both for master’s and doctorate degrees), many of whom are, today, leaders in research that stand out in the national and international scenario, and who exercise their activities in several Brazilian states.

I have worked as scientific editor of two news bulletins. The first one is the LQES News, a fortnightly publication that has been running for 14 years, with its editorial line connected to the developments in science and technology (general) and innovation and nanotechnologies. The second one is the “NANO em Foco” bulletin, edited in partnership with the Brazilian Agency of Industrial Development (ABDI), published on a monthly basis and running for 7 years, with an editorial line connected to commercial products, risks and regulation of nanotechnologies. In addition to that, I have published, also in partnership with the ABDI, the “Nanotechnology Guidebook (two editions), aimed at introducing nanotechnologies for the general public.

The several systems and materials studied and developed at the LQES have allowed the filing of 27 patents of process and application, including international ones, and a licensing of an innovative technology for the industry. In addition to that, I have taken part, as a consultant, in two processes related to the Program of Economic Subvention for Companies (Nanotechnology) by FINEP, which led to the development of 8 commercial products.

Along these many years, I participated in several activities connected to the Brazilian scientific policies, out of which we can highlight: coordinator of  councils (Chemistry) at CNPq and Fapesp. Member of the Deliberating Council at CNPq (2 terms of offices) and of the Nanotechnology Council (MCTI/SisNano) in all of its compositions. I have worked, until this time, as consultant for the nanotechnology segment of the Brazilian Agency of Industrial Development and the Management and Strategic Studies Center (CGEE). I have provided consultancy to the State Council for Science and Technology of the Economic Development, Science, Technology and Innovation Office of the State of São Paulo, for the nanotechnology segment. I am part of the scientific council of APAE São Paulo – a non-governmental organization for prevention and inclusion of people with intellectual disabilities.

SBPMat’s Bulletin: – Leave a message for our readers starting their careers in science.

Oswaldo Luiz Alves: – First of all, I would like to say that a scientific career is fascinating, especially in the times we live in, where paradigms are frequently broken. Another aspect, no less fascinating, is living with the intermulti and transdisciplinarities that, at the same time as they expand our knowledge, point out our limitations. In such relations, it is clear that a sound and in-depth knowledge of concepts, techniques and tools is fundamental. It is a process based on an attitude of openness and the acquisition of a “common language” that allows the interaction of different experts and expertises in the solution of problems, very well identified, in science, technology and innovation. Thus, we must, whenever possible, seek a balance between paper-oriented and knowledge-oriented research stances and, particularly, not forget to make a second reading of our research results, therefore seeking to examine their possible connection with the needs of the Brazilian citizens and of the national development.