Boletim da SBPMat. 78ª edição.


 

logo header 400

Boletim da
Sociedade Brasileira
de Pesquisa em Materiais

Edição nº 78. 28 de fevereiro de 2019.

Anuidades 2019 e novos sócios

Sócios da SBPMat já podem encontrar os boletos referentes à anuidade 2019 em suas áreas de sócios, inserindo login e senha no cabeçalho do site da SBPMat. Estudantes e profissionais que ainda não são sócios estão convidados a fazer parte. Mais informações.

Artigo em Destaque

Uma equipe de pesquisadores da UFPR desenvolveu um método simples, limpo e muito eficiente para produzir hidrogênio. Os cientistas utilizaram filmes finos de grafeno e nanopartículas metálicas como catalisadores de uma reação química espontânea que ocorre entre borohidreto e água. O trabalho foi reportado no Journal of Materials Chemistry A. Saiba mais.

hidrogenio_news

Cientista em Destaque

Entrevistamos Juliana Davoglio Estradioto. Esta jovem de 18 anos é detentora de uma coleção de prêmios nacionais e internacionais recebidos por trabalhos de pesquisa realizados durante o ensino médio no IFRS, nos quais desenvolveu materiais biodegradáveis a partir de resíduos agroindustriais e criou aplicações para eles. Veja nossa entrevista.

juliana news

Novidades dos Sócios SBPMat

– O sócio da SBPMat Sidney Ribeiro (IQ – UNESP Araraquara) foi nomeado editor associado da revista Frontiers in Chemistry- Inorganic Chemistry. Saiba mais.

Notícias da SBPMat

– O Programa University Chapters comemora o estabelecimento de sua 9ª unidade, formada por um grupo de 15 estudantes de diversas áreas da UFPE. Saiba mais.

banner evento

XVIII B-MRS Meeting/ Encontro da SBPMat
(Balneário Camboriú, SC, 22 a 26 de setembro de 2019)

Site do evento: www.sbpmat.org.br/18encontro/

Veja o convite à submissão de trabalhos, aqui.

Submissão de trabalhos. A submissão de resumos está aberta até 15 de abril. Notificações de aprovação, modificação ou rejeição serão enviadas até 31 de maio. Notificações finais para resumos que precisarem de modificação serão enviadas até 21 de junho. Veja as instruções para autores, aqui.

Simpósios. 23 simpósios propostos pela comunidade científica internacional compõem esta edição do evento. Veja a lista de simpósios, aqui.

Prêmios para estudantes. Para participar do Bernhard Gross Award, os autores deverão submeter um resumo estendido até 11 de julho, além do resumo convencional. Saiba mais, aqui.

Inscrições. Já estão abertas as inscrições. Saiba mais, aqui.

Local do evento. O encontro será realizado no turístico Balneário Camboriú (SC), no Hotel Sibara Flat & Convenções, localizado no centro da cidade, próximo a hotéis, restaurantes e lojas, e a apenas 100 metros do mar. Saiba mais, aqui.

Palestra memorial. A tradicional Palestra Memorial Joaquim da Costa Ribeiro será proferida pela professora Yvonne Primerano Mascarenhas (IFSC – USP).

Palestras plenárias. Destacados cientistas de instituições da Alemanha, Espanha, Estados Unidos e Itália proferirão palestras plenárias sobre temas de fronteira no evento. Também haverá uma plenária do brasileiro Antônio José Roque da Silva, diretor do CNPEM e do projeto Sirius. Saiba mais sobre as plenárias, aqui.

Organização. O chair do evento é o professor Ivan Helmuth Bechtold (Departamento de Física da UFSC) e o co-chair é o professor Hugo Gallardo (Departamento de Química da UFSC). O comitê de programa é formado pelos professores Iêda dos Santos (UFPB), José Antônio Eiras (UFSCar), Marta Rosso Dotto (UFSC) e Mônica Cotta (Unicamp). Conheça todos os organizadores, aqui.

Expositores e patrocinadores. 29 empresas já confirmaram participação no evento e apoio/patrocínio. Empresas interessadas em participar podem entrar em contato com Alexandre no e-mail comercial@sbpmat.org.br.

Dicas de Leitura

– Ao encapsular grafeno em nitreto de boro, cientistas conseguem imprimir padrões com nanolitografia, abrindo possibilidades de uso do material em nanoeletrônica (paper da Nature Nanotechnology). Saiba mais.

– Cientistas melhoram atividade de nanocatalisadores de alumínio ao revesti-los com MOFs usando estratégia inspirada no processo de petrificação natural da madeira (paper da Science Advances). Saiba mais.

– Materiais quânticos: Cientistas confirmam experimentalmente que material topológico de espessura atômica conduz eletricidade nas bordas, abrindo possibilidade de uso em computadores quânticos (paper da Science Advances). Saiba mais.

Oportunidades

Invitation to organize the official International Sol-Gel Society Conference in 2021. Saiba mais.

– Concurso para professor do Instituto de Física da UFU. Saiba mais.

– Processo seletivo para ingresso ao mestrado em Ciência e Engenharia de Materiais do PPGCEM-UFABC. Saiba mais.

Eventos

International Workshop on Advanced Magnetic Oxides (IWAMO 2019). Aveiro (Portugal). 15 a 17 de abril de 2019. Site.

2019 E-MRS Spring Meeting e IUMRS – ICAM. Nice (França). 27 a 31 de maio de 2019. Site.

20th International Symposium on Intercalation Compounds (ISIC). Campinas, SP (Brasil). 2 a 6 de junho de 2019. Site.

10th International Conference on Materials for Advanced Technologies (ICMAT 2019). Cingapura. 23 a 28 de junho de 2019. Site.

20th International Sol-Gel Conference. São Petersburgo (Rússia). 25 a 30 de agosto de 2019. Site.

XVIII B-MRS Meeting. Balneário Camboriú, SC (Brasil). 22 a 26 de setembro de 2019. Site.

19th Brazilian Workshop on Semiconductor Physics. Fortaleza, CE (Brasil). 18 a 22 de novembro de 2019. Site.

Siga-nos nas redes sociais

Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.

 

 

Artigo em destaque: Filmes de grafeno e níquel, melhores catalisadores para a produção de hidrogênio.


O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Nanocatalysts for hydrogen production from borohydride hydrolysis: graphene-derived thin films with Ag- and Ni-based nanoparticles. Leandro Hostert, Eduardo G. C. Neiva, Aldo J. G. Zarbin, Elisa S. Orth. J. Mater. Chem. A, 2018,6, 22226-22233. DOI 10.1039/C8TA05834B.

Filmes de grafeno e níquel: melhores catalisadores para a produção de hidrogênio

Milhares de veículos movidos a gás hidrogênio já circulam em algumas regiões do mundo soltando apenas água pelo escapamento. Enquanto combustível ou fonte de energia, o hidrogênio é, de fato, uma opção extremamente limpa (não gera emissões nocivas) e eficiente (pode produzir mais energia do que qualquer outro combustível). Entretanto, o hidrogênio em forma pura não existe na natureza no planeta Terra. Ele precisa ser produzido, e a maior parte dos métodos de geração de hidrogênio conhecidos até o momento pecam tanto no aspecto econômico quanto no ecológico.

Uma alternativa a esses métodos foi recentemente apresentada por uma equipe de pesquisadores da Universidade Federal do Paraná (UFPR), ligados ao programa de pós-graduação em Química. Esses cientistas brasileiros propuseram um método limpo, eficiente, simples e de baixo custo para produzir hidrogênio. A equipe desenvolveu novos catalisadores (compostos que modificam a velocidade de uma reação química sem ser consumidos nela), feitos de grafeno e nanopartículas metálicas, que tornaram viável a produção de hidrogênio por meio da hidrólise de borohidreto – uma reação química ainda pouco utilizada na geração de hidrogênio apesar do enorme potencial que apresenta por ser limpa e muito simples.

Fotografias e esquemas representativos da geração de H2 por hidrólise de borohidreto catalisada com filmes finos de grafeno e nanopartículas metálicas. Os filmes, de cerca de 500 nm de espessura, recobrem os dois lados de uma plaqueta de vidro, cobrindo 15 cm2, a qual fica imersa numa solução de borohidreto de sódio e água. Nas fotos podem ser vistas as bolhas de gás hidrogênio geradas na superfície do catalisador.
Fotografias e esquemas representativos da geração de H2 por hidrólise de borohidreto catalisada com filmes finos de grafeno e nanopartículas metálicas. Os filmes, de cerca de 500 nm de espessura, recobrem os dois lados de uma plaqueta de vidro, cobrindo 15 cm2, a qual fica imersa numa solução de borohidreto de sódio e água. Nas fotos podem ser vistas as bolhas de gás hidrogênio geradas na superfície do catalisador.

Nessa reação, que é realizada em temperatura ambiente, moléculas de borohidreto de sódio (NaBH4), reagem espontaneamente com moléculas de água gerando moléculas de hidrogênio (H2). O processo ocorre em apenas uma etapa, e é realizado com o auxílio de materiais catalisadores, que aceleram a velocidade da reação.

“O trabalho desenvolvido tem como principal contribuição a possibilidade de geração de H2 por meio de filmes finos de nanocompósitos de grafeno”, diz a professora Elisa Souza Orth, autora correspondente de um artigo sobre o trabalho, recentemente publicado no Journal of Materials Chemistry A (fator de impacto= 9,931). “Os nanocompósitos de materiais à base de carbono com nanopartículas metálicas têm mostrado muitas aplicações promissoras e mostramos que, para a hidrólise de borohidreto, menos explorada, eles também poderiam ser empregados com eficiência”, completa.

Dentre os filmes finos catalisadores produzidos pela equipe da UFPR, os que apresentaram melhor desempenho foram os de óxido de grafeno reduzido com nanopartículas de níquel (rGO/Ni). De fato, esse nanocompósito, produzido com um metal relativamente barato, o níquel, apresentou um desempenho superior ao da maior parte dos catalisadores já reportados na literatura científica, inclusive aqueles preparados com metais nobres, cujo custo é muito maior. Em linhas gerais, isso significa que pequenas quantidades de rGO/Ni (algumas dezenas de mg) geraram grandes volumes de hidrogênio (400 ml) em curtos prazos de tempo (5 horas).

Além disso, os filmes desenvolvidos pela equipe brasileira apresentaram mais uma característica importante para um catalisador: eles podem ser facilmente retirados do recipiente de reação, lavados e secados sem sofrer danos, possibilitando assim seu reuso. “Nesse trabalho, conseguimos reutilizar o mesmo nanocatalisador em 10 ciclos consecutivos, sem perder atividade”, conta a professora Orth.

Esses resultados foram possíveis graças à união das competências em fabricação de nanomateriais de carbono do Grupo de Química de Materiais, coordenado pelo professor Aldo José Gorgatti Zarbin com a expertise em processos de catálise do Grupo de Catálise e Cinética, liderado pela professora Orth. Esses dois grupos da UFPR têm um histórico de colaboração na aplicação de materiais de carbono; inicialmente, no estudo de pesticidas e, atualmente, no desenvolvimento de materiais multifuncionais com atividade catalítica extraordinária.

O doutorando Leandro Hostert em laboratório do programa de pós-graduação em Química da UFPR.
O doutorando Leandro Hostert em laboratório do programa de pós-graduação em Química da UFPR.

Além do desenvolvimento dos catalisadores e da sua aplicação na produção de hidrogênio, o trabalho publicado no Journal of Materials Chemistry A incluiu uma análise das diversas formas de se medir a atividade catalítica de um material. Os autores conseguiram uniformizar critérios e comparar diversos resultados obtidos no laboratório e encontrados na literatura científica. “Desenvolvemos um estudo cinético que complementa a discussão dessas reações complexas e pode ajudar a orientar para uma compreensão mais concisa da atividade catalítica”, explica Elisa Orth.

A pesquisa foi realizada dentro do doutorado em andamento de Leandro Hostert, orientado pela professora Orth, e contou com financiamento do CNPq, CAPES, Fundação Araucária, INCT Nanocarbono e L´Oréal–UNESCO-ABC por meio do Prêmio para Mulheres na Ciência (2015) e International Rising Talents (2016) recebidos por Elisa Orth.

Entrevista com Susan Trolier-McKinstry (PennState – EUA), presidente da Materials Research Society (MRS).


foto susan
Prof. Susan Trolier-McKinstry

Materiais piezoelétricos convertem energia mecânica em elétrica e vice-versa. Eles já são amplamente utilizados em ultrassonografia, impressoras de jato de tinta, sistemas de sonar, sensores e métodos de posicionamento preciso. Sistemas microeletromecânicos (MEMS) de filmes finos piezoelétricos permitem as comunicações por telefones celulares e poderão gerar novas mudanças tecnológicas de alto impacto social. De fato, o campo dos MEMS  já está gerando máquinas microscópicas capazes de captar informações do ambiente, processá-las e, a partir delas, realizar operações envolvendo movimento.

O assunto será abordado em palestra plenária do XVI Encontro da SBPMat/ B-MRS Meeting pela professora Susan Trolier-McKinstry, que lidera um grupo de pesquisa na Penn State (The Pennsylvania State University, EUA) com ampla experiência no estudo e desenvolvimento de filmes finos piezoelétricos e seu uso em MEMS. Na palestra, a cientista revelará como faz para melhorar o desempenho de seus filmes finos piezoelétricos para utilizá-los, por exemplo, como sensores e atuadores e na chamada “colheita de energia” (captura de pequenas quantidades de energia mecânica espalhadas no ambiente para transformá-las em energia elétrica e utilizá-las em dispositivos de baixo consumo).

Trolier-McKinstry ocupa a cadeira Steward S. Flaschen de Ciência e Engenharia de Materiais Cerâmicos na Penn State, além de ser professora de Engenharia Elétrica e diretora do Laboratório de Nanofabricação nessa universidade. A cientista também é a atual presidente da Materials Research Society (MRS), a sociedade de pesquisa em materiais dos Estados Unidos que conta com um quadro de membros internacional e interdisciplinar formado por cerca de 14 mil indivíduos. Anteriormente, Trolier-McKinstry foi presidente da IEEE Ultrasonics, Ferroelectrics and Frequency Control Society e da Keramos National Professional Ceramic Engineering Fraternity.

Susan Trolier-McKinstry nasceu em Syracuse, no estado de Nova Iorque. Depois de realizar seus estudos primários e secundários em escolas públicas de cidades dos estados vizinhos de Nova Iorque e Pensilvânia, entrou na universidade do Estado de Pensilvânia para estudar Ciência e Engenharia de Materiais Cerâmicos. Em 4 anos de estudos, que incluíram seu primeiro trabalho de pesquisa sobre cerâmicas piezoelétricas, obteve os diplomas de graduação e mestrado. Logo depois, em 1987, iniciou o doutorado em Ciência dos Materiais Cerâmicos, também na Penn State, que incluiu um estágio de pesquisa no Laboratório Central de Pesquisa da Hitachi em Tóquio (Japão). Tanto no mestrado quanto no doutorado, Trolier-McKinstry foi orientada pelo professor Robert E. Newnham, um especialista em minerais e cristalografia que criou, no final da década de 1970 criou um transdutor de material compósito piezoelétrico que hoje é amplamente utilizado em aparelhos de ultrassom. Susan Trolier-McKinstry obteve o diploma de PhD em 1992 e, no mesmo ano, iniciou sua carreira acadêmica na Penn State.

A professora Trolier-McKinstry é editora associada do periódico Applied Physics Letters. É fellow da American Ceramic Society, IEEE e Materials Research Society e acadêmica da World Academy of Ceramics. Ela já recebeu vários prêmios e distinções por seu trabalho de pesquisa e ensino, como o “Ferroelectrics Achievement Award” da IEEE, o “Outstanding Educator Award” do Ceramic Education Council e o “Robert L. Coble Award for Young Scholars” da American Ceramic Society, entre outros. Além disso, sua biografia foi incluída no livro “Successful Women Ceramic and Glass Scientists and Engineers: 100 Inspirational Profiles”, lançado em 2016.

Além de ter desenvolvido uma destacada trajetória em pesquisa, com mais de 12 mil citações a seus trabalhos e um índice h de 56 segundo o Google Scholar, a professora Trolier-McKinstry é uma professora apaixonada por dar aulas e orgulhosa dos estudantes que orientou.

Segue uma breve entrevista com a cientista.

SBPMat: – Descreva brevemente quais são, na sua opinião, as suas principais contribuições científicas no assunto da palestra plenária. Fique à vontade para compartilhar referências bibliográficas.

Susan Trolier-McKinstry: – O meu grupo de pesquisa trabalha em três áreas principais: 1) compreensão dos fatores que controlam a magnitude das respostas dielétricas e piezoelétricas dos materiais, 2) ciência do processamento de filmes eletrocerâmicos, 3) demonstração de sistemas microeletromecânicos de baixa tensão para atuadores, sensores e colheita de energia. Na área fundamental, estudamos o papel que a estrutura de domínios e as paredes de domínio desempenham no controle das propriedades de filmes piezoelétricos de alta deformação baseados em composições ferroelétricas. Nós demonstramos a escala do comprimento em que paredes de domínio se movem coletivamente e quantificamos o papel que as bordas de grãos e a química de defeitos têm na influência da mobilidade da parede do titanato de zirconato de chumbo. Também contribuímos para o desenvolvimento de materiais com coeficientes piezoelétricos que são várias vezes maiores que os dos filmes finos convencionais, bem como os filmes cujo desempenho na colheita de energia é dezenas de vezes maior que o dos filmes convencionais. Em muitos casos, foi necessário inventar e calibrar novas ferramentas para avaliar as propriedades piezoelétricas. Uma vez que os materiais interessantes são desenvolvidos, trabalhamos em compreender como escalar a deposição para grandes tamanhos de substrato e substratos alternativos, como polímeros, vidros e metais. Também é crítico poder modelar lateralmente os filmes piezoelétricos sem degradar suas propriedades. Assim, o grupo também estuda métodos de padronização para comprimentos que variam de 100 nm a 200 mm. Como as propriedades dos materiais piezoelétricos de alta deformação têm forte relação com a composição e cristalinidade, é imperativo desenvolver processos de padronização que não degradem nenhum desses fatores. Finalmente, criamos sistemas microeletromecânicos em uma ampla gama de espaços de aplicação, incluindo óptica adaptativa, switches rf, sensores de aceleração, colheitadeiras de energia e interruptores de substituição CMOS.

SBPMat: – Por que utilizar materiais piezoelétricos na tecnologia MEMS?

Susan Trolier-McKinstry: – Muitos dispositivos MEMS destinam-se a gerar ou a detectar o movimento. Os materiais piezoelétricos permitem que isso seja feito com sensibilidade muito alta nos sensores e com baixas tensões nos atuadores. Assim, é possível substituir dispositivos eletrostáticos de alta tensão por alternativas piezoelétricas de baixa tensão. Isso, por sua vez, simplifica o sistema elétrico e permite uma miniaturização significativa de dispositivos. Por exemplo, agora estamos trabalhando em um sistema médico de ultrassom para imagens que é pequeno o suficiente para que todo o dispositivo (incluindo toda a eletrônica) possa ser colocado em uma pílula e engolido para investigação do trato gastrointestinal.

SBPMat: – Seu grupo de pesquisa já fabricou dispositivos MEMS piezoelétricos. Algum desses sistemas saiu do laboratório para ser comercializado?

Susan Trolier-McKinstry: – O campo dos MEMS piezoelétricos está explodindo agora. Assim, muitos dos desenvolvimentos de materiais que fizemos ao longo dos anos estão sendo utilizados em sistemas que estão sendo comercializados agora.

SBPMat: – Quais são, na sua opinião, os principais desafios ou objetivos que as sociedades de pesquisa em materiais têm hoje?

Susan Trolier-McKinstry: – As sociedades científicas desempenham papéis cruciais para melhorar a comunicação científica e ajudar seus membros a terem carreiras produtivas. As sociedades de pesquisa em materiais sustentam a essencial comunicação interdisciplinar através de reuniões e publicações, porque nosso campo se enquadra na junção de química, física e engenharia. Assim, é comum ver colegas de diferentes disciplinas se reunirem e discutir questões-chave interdisciplinares em reuniões de pesquisa de materiais. É chave para o nosso futuro promover a diversidade de pessoas e campos abrangidos pela sociedade.

SBPMat: – Na sua visão, de que maneira as comunidades da MRS e SBPMat poderiam aprofundar interação de maneira produtiva?

Susan Trolier-McKinstry: – Existem muitas possibilidades aqui. Bons exemplos podem ser identificar um determinado programa conjunto em torno de um objetivo de educação, divulgação ou comunicação. Uma possibilidade seria estabelecer um programa conjunto para traduzir materiais educacionais de um idioma para outro para aumentar a qualidade da educação em materiais em todo o mundo. Outras possibilidades podem ser a programação conjunta de um simpósio em um encontro, ou utilizar veículos de publicação como a MRS Advances para tornar os trabalhos apresentados nos encontros da SBPMat mais amplamente disponíveis. Tudo isso dependerá de boas interações entre as pessoas e as sociedades envolvidas.


Mais informações

No site do XVI Encontro da SBPMat, clique na foto de Susan Trolier-McKinstry e o mini CV dele e o resumo da palestra que proferirá no evento: http://sbpmat.org.br/16encontro/home/

Artigo em destaque: Muita ciência e uma dose de acaso para chegar à receita de um nanocompósito multifuncional.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Eduardo G. C. Neiva, Marcela M. Oliveira, Márcio F. Bergamini, Luiz H. Marcolino Jr & Aldo J. G. Zarbin. Scientific Reports 6, 33806 (2016). doi:10.1038/srep33806. Link para o artigo: http://www.nature.com/articles/srep33806

 

Muita ciência e uma dose de acaso para chegar à receita de um nanocompósito multifuncional

boxnioh2Artigo recentemente publicado no periódico científico Scientific Reports, do grupo Nature, reporta um estudo realizado em universidades do estado do Paraná (Brasil) sobre um material baseado no hidróxido de níquel Ni(OH)2 – composto de grande interesse tecnológico [ver box ao lado]. A equipe de autores desenvolveu um método inovador para fabricar um material formado por grafeno e nanopartículas de hidróxido de níquel, fez filmes finos com esse material e demonstrou a eficiência desses filmes quando usados como eletrodos de baterias recarregáveis, sensores de glicerol e materiais eletrocrômicos.

O trabalho foi realizado dentro da pesquisa de doutorado de Eduardo Guilherme Cividini Neiva, sob orientação do professor Aldo José Gorgatti Zarbin, no Programa de Pós-Graduação em Química da Universidade Federal do Paraná (UFPR). Neiva começou a realizar trabalhos de pesquisa sobre nanopartículas de níquel na graduação, orientado pelo professor Zarbin. No mestrado, ainda com Zarbin, o estudante desenvolveu uma rota de preparação de nanopartículas de níquel metálico para aplicações eletroquímicas. Finalizado o mestrado, Neiva e Zarbin se propuseram a dar continuidade à pesquisa no doutorado de Neiva, incluindo o grafeno na preparação das nanopartículas de níquel metálico para obter nanocompósitos de níquel e grafeno com propriedades diferenciadas. “A maior parte dos meus interesses científicos estão voltados na preparação de materiais com nanoestruturas de carbono, como nanotubos e grafeno”, contextualiza o professor Zarbin, que assina o artigo da Scientific Reports como autor correspondente.

Os primeiros trabalhos no laboratório já surpreenderam a dupla. Na presença do óxido de grafeno (usado como precursor do grafeno na preparação do material), o processo tomava um rumo diferente. Nesse momento, Neiva e Zarbin enxergaram o potencial dessas particularidades: se bem compreendidas, poderiam ser controladas e utilizadas para preparar nanocompósitos, não apenas de níquel metálico, mas também de hidróxido de níquel, o que abriria novas possibilidades de aplicação. “Há uma frase que gosto muito, do Louis Pasteur, que se aplica perfeitamente nesse caso: “o acaso favorece as mentes bem preparadas””, diz Zarbin.

Partindo dessa base, orientando e orientador criaram um processo simples e direto para fabricação de nanocompósitos de grafeno e hidróxido de níquel. Nesse processo inovador, ambos os componentes são sintetizados em conjunto, em uma única reação de apenas uma etapa. Usando essa técnica, Neiva fabricou os nanocompósitos. Amostras de hidróxido de níquel puro também foram produzidas, para poder compará-las com os nanocompósitos.

As amostras foram estudadas por meio de uma série de técnicas: difração de raios X, espectroscopia Raman, espectroscopia no infravermelho com transformada de Fourier (FT-IR), termogravimetria, microscopia eletrônica de varredura com emissão de campo (FEG-MEV), e também por meio de imagens de microscopia eletrônica de transmissão (TEM) realizadas pela professora Marcela Mohallem Oliveira, da Universidade Tecnológica Federal do Paraná (UTFPR). A comparação entre os dois materiais foi favorável ao nanocompósito. “O grafeno teve papel fundamental na estabilização das partículas em escala nanométrica, no aumento da estabilidade química e eletroquímica das nanopartículas, e no aumento da condutividade do material, fundamental para uma melhora nas aplicações desejadas”, comenta Aldo Zarbin.

Aldo José Gorgatti Zarbin (à esquerda de quem olha) e Eduardo Guilherme Cividini Neiva, autores principais do trabalho, no equipamento FEG-MEV do Grupo de Química de Materiais da UFPR.
Aldo José Gorgatti Zarbin (à esquerda de quem olha) e Eduardo Guilherme Cividini Neiva, autores principais do trabalho, no equipamento FEG-MEV do Grupo de Química de Materiais da UFPR.

A etapa seguinte consistiu no processamento dos nanocompósitos e das nanopartículas de hidróxido de níquel puro para obter filmes finos, formato que possibilita seu uso nas aplicações desejadas. “Depositar materiais na forma de filmes, recobrindo diferentes superfícies, é um desafio tecnológico imenso, que se torna maior e mais desafiador quando se trata de materiais multicomponentes e materiais insolúveis, infusíveis e intratáveis (todas características do material reportado nesse artigo)”, explica Zarbin.

Para superar esse desafio, Neiva utilizou uma rota de processamento, chamada de método interfacial líquido/líquido, desenvolvida em 2010 pelo grupo de pesquisa liderado por Zarbin, o Grupo de Química de Materiais da UFPR. Essa rota, além de ser simples e barata, afirma o professor Zarbin, permite depositar materiais complexos na forma de filmes homogêneos e transparentes sobre vários tipos de materiais, incluindo plásticos. “Essa rota se baseia na alta energia existente na interface de dois líquidos imiscíveis (água e óleo, por exemplo), onde o material é inicialmente estabilizado para minimizar essa energia, possibilitando sua posterior transferência para substratos de interesse”, detalha o cientista.

Com os nanocompósitos, Neiva obteve filmes finos transparentes de cerca de 100 a 500 nm de espessura, com nanopartículas de cerca de 5 nm de diâmetro homogeneamente distribuídas sobre as folhas de grafeno. O hidróxido de níquel puro, diferentemente, gerou filmes formados por nanopartículas esféricas porosas de 30 a 80 nm de diâmetro, distribuídas de modo heterogêneo, formando aglomerados em algumas regiões.

Na fase final do trabalho, os filmes depositados sobre vidro e ITO (óxido de índio e estanho), foram testados em três aplicações, nas quais o nanocompósito teve desempenho superior ao hidróxido de níquel puro.  Enquanto material para eletrodos de baterias alcalinas recarregáveis, o nanocompósito apresentou alta energia e alta potência – dois pontos positivos que não é fácil encontrar num mesmo material. O nanocompósito também demonstrou uma boa performance como sensor eletroquímico. De fato, experimentos idealizados pelos professores Márcio Bergamini e Luiz Marcolino Jr, também da UFPR, mostraram que o nanocompósito é um sensor sensível de glicerol (composto conhecido comercialmente como glicerina e usado em várias indústrias). Finalmente, o nanocompósito agiu como eficiente material eletrocrômico. Com essas características, os filmes do grupo da UFPR têm chances sair do laboratório e fazer parte de produtos inovadores. “Isso depende de parceiros que se interessem em escalonar o método e testar em dispositivos reais”, diz Zarbin.

Por enquanto, além de artigos científicos como o publicado na revista Scientific Reports, o trabalho gerou várias patentes, tanto sobre o método de deposição dos filmes finos quanto sobre suas aplicações em sensores de gases, eletrodos transparentes, dispositivos fotovoltaicos e catalisadores. “E já desenvolvemos uma bateria flexível, que só foi possível graças à técnica de deposição de filmes que desenvolvemos”, complementa o professor Zarbin.

O trabalho, que foi desenvolvido dentro dos projetos macro “INCT de nanomateriais de carbono” e “Núcleo de Excelência em Nanoquímica e Nanomateriais”, contou com financiamento das agências federais Capes e CNPq, e da Fundação Araucária, de apoio ao desenvolvimento científico e tecnológico do estado do Paraná.

 

Esta figura, enviada pelos autores do paper, condensa as principais contribuições do trabalho. No centro, um balão com dois líquidos e o filme na interface representa o método de processamento de filmes finos. À esquerda consta um esquema do filme, com as nanopartículas de hidróxido de níquel sobre a folha de grafeno. Logo à direita do balão, uma fotografia do filme depositado sobre um substrato de quartzo mostra a homogeneidade e transparência do filme (é possível ler um texto que está debaixo dele). Finalmente, à direita, de cima pra baixo, as três aplicações são mostradas através de uma curva de descarga (bateria), de uma curva de variação de transmitância pelo potencial aplicado (eletrocromismo) e de uma curva analítica mostrando a variação linear da intensidade da corrente em função da concentração de glicerol no meio (sensor).

 

Entrevistas com palestrantes de plenárias do XIV Encontro: Ichiro Takeuchi.


A busca pelos materiais mais apropriados para desempenharem funções determinadas da melhor maneira possível talvez aconteça desde os primórdios da humanidade. Nessa busca, no extremo oposto do método de tentativa e erro, existe atualmente a abordagem combinatória, que tem como objetivo aumentar a eficiência do processo de descoberta ou criação de materiais. A base dessa abordagem é a triagem de grandes quantidades de materiais de composições levemente diferentes entre si, usando bancos de dados, técnicas de síntese e caracterização rápida, simulações, robôs e outros recursos. Aplicada na indústria farmacêutica desde os anos 1990 para identificar novos compostos úteis, a abordagem combinatória também tem seu lugar na Ciência e Engenharia de Materiais.

Prof. Ichiro Takeuchi

No XIV Encontro da SBPMat, o professor Ichiro Takeuchi oferecerá uma palestra plenária sobre a abordagem combinatória na descoberta de materiais – um tema que faz parte de seu dia-a-dia. Takeuchi é professor do departamento de Ciência e Engenharia de Materiais da Universidade de Maryland, nos Estados Unidos, desde 1999. Nessa instituição, ele lidera o Centro de Síntese Combinatória e Caracterização Rápida e o Laboratório de Nanosíntese Combinatória e Caracterização em Multiescala. É professor visitante da Universidade de Ciência de Tokyo desde 2010, além de membro do comitê executivo do Fórum de Física Industrial e Aplicada da Sociedade Estadunidense de Física (APS).

Takeuchi graduou-se em Física em 1987 pelo Instituto de Tecnologia de California (Caltech). Durante quatro anos, trabalhou no Japão em laboratórios de pesquisa em microeletrônica da empresa NEC e depois voltou aos Estados Unidos. Em 1996, obteve seu diploma de Ph.D. pela Universidade de Maryland. Na sequência, foi ao Laboratório Nacional Lawrence Berkeley, onde permaneceu até 1999 como pós-doc. Em 2004 foi chairman da “Gordon Conference on Combinatorial and High-throughput Materials Science”. Em 2009, fundou uma empresa voltada ao desenvolvimento de materiais e sistemas para aplicações no campo da energia, a Maryland Energy and Sensor Technologies, LLC.

Ichiro Takeuchi foi professor visitante de universidades do Japão e da Alemanha. Recebeu prêmios e distinções da National Science Foundation (Career Award), do Escritório de Investigação Naval dos Estados Unidos (Young Investigator Program Award) e da Universidade de Maryland, entre outras instituições. O cientista, cujo índice H é de 40 segundo o Google Scholar, é autor de mais de 180 artigos com mais de 5.900 citações e de um livro sobre síntese combinatória de materiais.

Segue uma entrevista com o cientista.

Boletim da SBPMat: – Ajude-nos a visualizar como é realizada a pesquisa combinatória. Por exemplo, escolha um exemplo de material surgido em seus laboratórios a partir dessa abordagem e relate, em grandes linhas, o passo-a-passo do método.

Síntese de uma biblioteca combinatória de filmes finos: neste exemplo, usamos a técnica de co-sputtering (a) para produzir uma ampla variação composicional em um wafer de 3’’ (b);  essa amostra é chamada de wafer de composição estendida; a variação composicional é mapeada num diagrama ternário de fases composicionais, usando uma sonda de elétrons (c).

Ichiro Takeuchi: – Produzimos pesquisa combinatória de materiais baseada em filmes finos. O objetivo é realizar uma rápida triagem de combinações composicionais até então inexploradas a fim de descobrir novos materiais com propriedades físicas melhoradas. Criamos wafers ou chips com grandes variações na composição dos filmes finos depositados. Às vezes, os filmes finos são separados em diferentes camadas, enquanto em outras há um filme contínuo cuja composição muda ao longo do wafer. Queremos que as combinações sejam tão amplas e diversas quanto possível, para que possamos mapear grandes variações composicionais em um único experimento. Então, empregamos diferentes técnicas de caracterização para conseguir uma rápida triagem de várias propriedades físicas. Por exemplo, no momento, temos um projeto de pesquisa de novos materiais magnéticos permanentes. Para isso, usamos técnicas como medidas de varredura por SQUID ou pelo efeito Kerr magneto-óptico. Essas medições podem ser usadas para mapear as propriedades magnéticas de todas as composições encontradas em um único wafer. Esses wafers e chips são chamados de bibliotecas combinatórias. Também trabalhamos muito com caracterização estrutural. Para este fim, geralmente usamos linhas de luz síncrotron. Devido ao grande fluxo de feixes, nos mesmos locais podemos realizar a difração de raios X de um wafer inteiro, muito rapidamente. No momento, podemos fazer a varredura de 200 a 300 pontos em 2 horas.

Boletim da SBPMat: – Quais são, na sua opinião, suas contribuições mais significativas no campo da ciência de materiais combinatória? Explique-as muito brevemente e compartilhe as referências dos artigos ou livros gerados, ou comente se esses estudos geraram patentes, produtos, empresas spin-off etc.

Exemplos de bibliotecas combinatórias de materiais funcionais e visualização de seus dados: (a) biblioteca de materiais magnéticos permanentes para pesquisa sistemática do acoplamento de troca, exibindo os laços de histerese magnética encontrados em cada ponto da biblioteca (do Physical Review B75, 144429 (2007)); (b) biblioteca ferroelétrica exibindo os laços de histerese magnética encontrados em cada ponto (do Journal of Materials Research 27, 2691 (2012)); (c) biblioteca de um supercondutor com curvas de resistência – temperatura mapeadas nas posições onde foram medidas (do APL Materials 1, 042101 (2013)).

Ichiro Takeuchi: – Ao longo dos anos, temos conduzido pesquisas combinatórias em uma variedade de tópicos no campo geral dos materiais funcionais, o que inclui supercondutores, ligas com memória de forma, materiais magnetostritivos, materiais ferroelétricos e dielétricos, entre outros. Realizando esses experimentos, tivemos que desenvolver e estabelecer técnicas para aplicar nossas estratégias de forma eficaz. Nós descobrimos alguns compostos novos. Por exemplo, trabalhando juntamente com colegas teóricos, encontramos ligas com memória de forma com capacidade para longas vidas em fadiga. Tenho patentes de uma série de materiais dielétricos com baixa perda, além de novos materiais piezoelétricos.  Atualmente, muitos grupos têm realizado um trabalho de acompanhamento do material piezoelétrico na fronteira de fase morfotrópica, sem chumbo, que encontramos há alguns anos. Além dos materiais que descobrimos, estabelecemos estratégias combinatórias como uma técnica para delinear rapidamente a relação entre composições, estruturas e propriedades, em diferentes sistemas de materiais. Recentemente publicamos um artigo de revisão abrangente, chamado “Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials,” Journal of Applied Physics 113, 231101 (2013) por Martin L. Green, Ichiro Takeuchi, e Jason R. Hattrick-Simpers.

Boletim da SBPMat: – Se desejar, deixe uma mensagem ou convite para sua palestra para os leitores que participarão do XIV Encontro da SBPMat.

Ichiro Takeuchi: – A noção de busca e descoberta é fundamental na pesquisa em materiais. A metodologia combinatória é um contraponto natural aos esforços concentrados na concepção teórica de materiais, praticada em todo o mundo. Ao efetivamente combinar a teoria com a experimentação de alto desempenho, podemos realmente acelerar a frequência com que novos materiais são descobertos. Apresentarei um modelo de pesquisa que chamamos de “mecanismo integrado de materiais” (integrated materials engine), no qual teoria e experimentos se entrelaçam e desenvolvem a partir de um banco de dados e de uma plataforma de gestão flexíveis.

Mecanismo integrado para descoberta de materiais: propomos unir a exploração combinatória de alto desempenho de materiais com a investigação teórica. Múltiplos pontos de feedback entre as duas linhas nos permitem realizar uma pesquisa acelerada, de forma eficaz.

Mais

Artigo em destaque: Filmes finos magnéticos para dispositivos miniaturizados.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Annealing effects on the microwave linewidth broadening of FeCuNbSiB ferromagnetic films. Alves, M.J.P.; Gonzalez-Chavez, D. E.; Bohn, F.; Sommer, R. L. Journal of Applied Physics. 117, 123913(2015) DOI: 10.1063/1.4915330.

“Filmes finos magnéticos para dispositivos miniaturizados”

Esquema do equipamento de ressonância ferromagnética de banda larga usado na pesquisa. A fonte Kepco alimenta o circuito de magnetização (bobinas de Helmholtz) e o sinal é medido com um analisador de rede vetorial (VNA). A amostra é colocada sobre uma guia de onda coplanar com dimensões micrométricas.

Uma equipe de cientistas do Centro Brasileiro de Pesquisas Físicas (CBPF) e da Universidade Federal do Rio Grande do Norte (UFRN) realizou um estudo sobre propriedades magnéticas de filmes finos feitos de um material nanocristalino (ou seja, formado por grãos nanométricos) de tipo FINEMET. As conclusões dessa investigação científica podem ajudar a fabricar materiais magnéticos de alta qualidade adequados para serem usados em dispositivos de dimensões reduzidas, como memórias magnéticas de acesso aleatório (MRAMs) ou nanoosciladores. Resultados do estudo foram reportados em um artigo recentemente publicado no periódico Journal of Applied Physics.

Os materiais do tipo FINEMET são a ligas a base de ferro (Fe), silício (Si) e boro (B) com pequenas adições de cobre (Cu) e nióbio (Nb). Apresentam propriedades magnéticas muito boas quando são produzidos por resfriamento rápido seguido de tratamento térmico. Porém, ainda não há uma rota bem estabelecida que permita obter o material com essas propriedades em forma de filmes finos, os quais são mais adequados a aplicações miniaturizadas.

No trabalho dos cientistas brasileiros, filmes finos magnéticos de FeCuNbSiB foram sintetizados no CBPF pela equipe da UFRN e CBPF. As amostras do filme foram analisadas usando diversas técnicas, como difração de raios X de incidência rasante, magnetometria e, em particular, ressonância ferromagnética (FMR) de banda larga. “Exploramos essa técnica até o limite”, comenta Rubem L. Sommer, um dos autores do paper do Journal of Applied Physics. “Ela é poderosa e vem permitindo o estudo de materiais nanoestruturados com grande eficiência”, completa o pesquisador do CBPF. Sommer e seu grupo vêm contribuindo ao desenvolvimento da técnica de ressonância ferromagnética de banda larga desde 2011.

A técnica de ressonância ferromagnética, usada para estudar a magnetização dos materiais, mede a quantidade de radiação eletromagnética na faixa das micro-ondas que determinado material absorve. Na versão convencional dessa técnica, explica Sommer, essa absorção é  medida em uma frequência fixa, e o campo magnético externo é variado para sintonizar o equipamento na ressonância. Na faixa das micro-ondas, a frequência pode estar entre 300 MHz e 300 GHz, sendo que 1 Hz equivale a 1 oscilação por segundo. “No caso da ressonância ferromagnética por banda larga, varremos a frequência e o campo externo, realizando um mapeamento direto da relação de dispersão do material”, explica Sommer.

Resultado típico de FMR de banda larga: curva de absorção em microondas (cor) em função do campo e frequência.

Baseando-se na combinação dos resultados das análises dos filmes pelas diversas técnicas utilizadas, a equipe de cientistas desvendou os mecanismos responsáveis pelo alargamento de linha de ressonância ferromagnética no material. “Quanto mais fina a linha de ressonância, maior é a qualidade do material para as aplicações”, diz Sommer. Os cientistas puderam afirmar que as tensões residuais (aquelas que permanecem nos materiais depois da eliminação de suas causas) estão na origem do alargamento da linha de ressonância, e que essas tensões se reduzem com tratamentos térmicos.

O estudo reportado no artigo contou com financiamento do CNPq e da CAPES e foi desenvolvido, principalmente, na pesquisa de doutorado de Marcos Alves, realizada no CBPF e recém defendida. A tese de doutorado de Diego González-Chávez, defendida em 2013, também foi importante para o artigo, já que permitiu desenvolver com sucesso a técnica de FMR usada no trabalho.

Os autores do artigo fazem parte de uma rede maior de colaboração que inclui, além de pesquisadores da CBPF e UFRN, colaboradores PUC-Rio e das universidades federais de Santa Maria (UFSM) e do Rio Grande do Sul (UFRGS), conta Sommer. “Creio que este trabalho e atuação do grupo em rede espalhada em diversas instituições é um aspecto muito positivo da atual realidade brasileira no âmbito da pesquisa científica e tecnológica”, diz o pesquisador do CBPF. A rede desenvolve pesquisas em materiais e dispositivos magnéticos nanoestruturados para uso em altas frequências. “As nossas pesquisas têm sempre um viés duplo: pesquisa básica para compreender os fenômenos envolvidos e sua descrição e o desenvolvimento de aplicações”, afirma Sommer.

Gente da nossa comunidade: entrevista com o pesquisador Israel Baumvol.


Israel Jacob Rabin Baumvol nasceu no Rio Grande do Sul, na cidade de São Gabriel, no último dia de 1947. Ainda criança, mudou-se para Porto Alegre com seus pais e irmãos. Aos 19 anos de idade, ingressou na Universidade Federal do Rio Grande do Sul (UFRGS) para estudar Física. Nos anos seguintes, Baumvol dedicou muitos esforços aos estudos tentando atender o padrão de exigência acadêmica do bacharelado em Física da federal gaúcha, além de participar da atividade política que ocorria na universidade contra o governo militar vigente. Em 1971, concluiu a graduação – sem ter se destacado como um bom estudante, segundo ele. No ano seguinte, mudou-se para São Paulo para realizar o mestrado na Universidade de São Paulo (USP), em Física nuclear e sob orientação do professor Oscar Sala. Em 1975, retornou à UFRGS para fazer doutorado com orientação do professor Fernando Zawislak, estudando compostos de estrutura perovskita. Durante o doutorado, tornou-se professor da UFRGS. Em 1977 defendeu sua tese. Para o pós-doutorado, Baumvol escolheu uma instituição de pesquisa industrial na Inglaterra, hoje conhecida como Harwell campus. Ali, entre 1979 e 1981, trabalhou com técnicas de implantação iônica e suas aplicações, principalmente a implantação iônica por imersão em plasma (PIII), participando de contratos de pesquisa com grandes empresas. A partir da sua expertise em PIII, Baumvol ingressou no mundo dos materiais para microeletrônica, área na qual fez significativas contribuições científico-tecnológicas e ganhou reputação internacional.

Nos Estados Unidos, Israel Baumvol foi pesquisador convidado do centro de pesquisa da IBM (1984 a 1988) e dos Laboratórios Bell, da empresa Lucent (1998 a 1999). Na França, entre 1992 e 1996, foi professor convidado da Université Pierre et Marie Curie e da Université Paris Diderot (Paris 7). Em 1997, após ficar em primeiro lugar em concurso público, foi nomeado professor titular de Paris 7, mas não assumiu o cargo para permanecer na UFRGS. De 1995 a 1996, foi professor convidado da Ruhr Universität, na Alemanha.

Baumvol também foi coordenador de eventos internacionais realizados fora do Brasil. Em 2000 e 2005, foi coordenador (chairman) de simpósios internacionais de Físico-Química do óxido de silício e da interface silício – dióxido de silício, organizados pela Electrochemical Society. Em 2001, coordenou o International Workshop on Device Technology, da Materials Research Society(MRS), realizado em Porto Alegre. Em 2004, foi meeting chair do Spring Meeting & Exhibit da MRS, que ocorre anualmente em San Francisco (Estados Unidos).

Em 2003, ao se aposentar do seu cargo de professor titular da UFRGS, liderou a criação do Programa de Pós-Graduação em Engenharia e Ciência dos Materiais da Universidade de Caxias do Sul (UCS), na região da serra gaúcha, e foi coordenador e pesquisador do programa até 2014.

De 2002 a 2003, Baumvol presidiu a Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). Mais recentemente, entre 2011 e 2013, foi vice-coordenador da Área de Materiais na Capes. Baumvol também coordenou grandes projetos do CNPq na área de Materiais, como a primeira Rede Nacional de Pesquisa em Materiais Nanoestruturados (2001-2005) e o INCT de Engenharia de Superfícies (2009 a 2010).

Ao longo de sua carreira científica, Israel Baumvol tem desenvolvido pesquisas em temas relacionados à implantação iônica, Física de filmes finos e modificação de superfícies, além de materiais para microeletrônica. Bolsista de produtividade de nível 1A no CNPq, Baumvol é autor de mais de 270 artigos publicados em periódicos científicos com revisão por pares, além de livros e capítulos de livros. Sua produção científica conta com 3.000 citações, aproximadamente. Orientou cerca de 30 trabalhos de mestrado e doutorado.

No ano 2000 foi escolhido Pesquisador Destaque pela FAPERGS; em 2010 foi nomeado Comendador da Ordem Nacional do Mérito Científico pela Presidência da República e, no ano seguinte, foi diplomado Professor Emérito pela UFRGS. Em maio deste ano, foi inaugurado o laboratório “Central de Microscopia Professor Israel Baumvol” na UCS.

Segue uma entrevista com o cientista.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar em temas da área de Materiais.

Israel Baumvol: – Foi a junção de três fatores. O primeiro foi o desejo de utilizar meus conhecimentos, para um dia poder contribuir para o progresso do país e dos seus cidadãos. Este desejo desenvolveu-se através de leituras e forte participação política durante o curso de graduação. Porém, como em Porto Alegre a tradição de pesquisa fundamental era muito forte e não havia ninguém que trabalhasse em Física aplicada, eu fiz uma formação estritamente acadêmica, o que foi muito bom para o meu futuro. O segundo fator foi o meu pós-doutorado, para o qual escolhi uma instituição de pesquisa industrial, na Inglaterra. Fui para lá em 1979, para aprender implantação iônica, pois a instituição era pioneira neste método. Lá eu entrei em contato com a implantação iônica, sobretudo as suas aplicações, tais como redução do atrito em componentes metálicos (por exemplo ligas Ti-Al) por implantação de espécies e compostos iônicos pesados, aumento da resistência ao desgaste e à corrosão de aços por nitretação, oxinitretação e nitrocarbetação, usando o método da  implantação iônica por imersão em plasma (PIII). Naquela época estavam construindo ali o primeiro reator de PIII para escala industrial, com volume de, aproximadamente, 30 m3, que depois multiplicou-se por todo mundo, inclusive com empresas especializadas na fabricação destes reatores, tais como a Eaton e várias outras, inclusive duas empresas no Brasil. Este ambiente de Física aplicada me fascinou pelas possibilidades. Participei de vários contratos de pesquisa, como o de próteses ósseas para uma empresa fabricante japonesa, o de lâminas de turbina para a Rolls-Royce e o de lâminas de corte do projeto de futuros barbeadores elétricos para a Philips. Estes projetos, além de me fascinarem, tinham um componente que para mim era romântico: tratava-se de projetos confidenciais. O terceiro e último fator ocorreu ao fim do meu pós-doutorado. Fui a um congresso na Alemanha, onde dei uma palestra de 50 minutos, algo muito difícil nos dias de hoje, em que as palestras têm da ordem de 20 minutos apenas. Quando terminei de falar e responder as perguntas, houve um coffee break. O Dr. James F. Ziegler aproximou-se de mim, apresentou-se e entregou-me seu cartão de visitas, no qual estava escrito “Research Director, Thomas J. Watson Research Center, IBM”. Ele convidou-me para ir para lá porque, durante a minha palestra, ele se deu conta que o método PIII poderia resolver um problema sério que a IBM tinha com os discos rígidos. Outra vez, o canto de sereia de projeto confidencial. Aceitei o convite e, durante alguns anos, passei as férias de verão e de inverno, três a quatro meses por ano, na IBM – Yorktown. Lá entrei em contato com algo inusitado para mim, a tecnologia do silício, que estava no nascedouro. Outro fascínio e a minha cabeça estava feita, Engenharia e Ciência dos Materiais.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais?

Israel Baumvol: – Trabalhei em muitos temas diferentes na minha atividade profissional, alguns deles já mencionados acima. Vou destacar três deles. O primeiro foi a minha participação dos primórdios da tecnologia PIII, a qual hoje é vastamente utilizada em todo o mundo, inclusive no Brasil, onde há pelo  menos quatro serviços de processamento de componentes de aço por PIII para a indústria metal-mecânica. O segundo é a minha contribuição, ao longo de dez anos de trabalho, para explorar e atingir o limite físico do óxido de silício como dielétrico de porta na tecnologia metal oxide semiconductor (MOS). Formei uma rede de cooperação com laboratórios acadêmicos em quatro países diferentes e com laboratórios industriais, entre eles IBM, Motorola, Texas Instruments, Bell-Lucent. Atingimos o limite físico, 1 nm. A partir daí, toda a rede começou a trabalhar em um substituto para o óxido de silício, o que constituía a primeira mudança na tecnologia MOS, depois de quarenta anos. Houve uma convergência para o óxido de háfnio e, eventualmente, alguns óxidos duplos com base no háfnio. Este material se impôs, permitindo um aumento de velocidade de processamento e hoje é o utilizado como óxido de porta em processadores avançados. Ele permitiu a continuidade da lei de Moore que estava ameaçada. Esta área de pesquisa levou a formação de uma geração de ouro de doutores, todos em torno do óxido de porta, tema crucial para a micro e nanoeletrônica.  Muitos deles estão em atividade profissional em empresas industriais, tanto em tecnologia do silício como em outras atividades.  Finalmente, destaco a criação de um ambiente de pesquisa em Engenharia e Ciência dos Materiais e de um programa de pós-graduação nesta área. Comecei esta atividade com um único elemento: Caxias do Sul e região possuem um sem número de empresas industriais, pequenas, médias e grandes, necessitando de pesquisa e formação de recursos humanos. Só isso, mais nada. Então, a partir do zero, consegui reunir um punhado de jovens doutores bem formados e construir o ambiente de pesquisa desejado, com muitos excelentes laboratórios e um programa de pós-graduação bastante respeitável. O impacto disto no contexto industrial da região é notável e muito reconhecido.

Boletim da SBPMat: – Deixe uma mensagem para nossos leitores que estão iniciando suas carreiras de cientistas.

Israel Baumvol: – Sigam o coração e não as conveniências. Aproveitem o doutorado, pois esta é a melhor época da carreira: pesquisa criativa e livre de responsabilidades administrativas. Não hesitem em expor suas ideias. Ideias novas não são necessariamente más ideias. Usem o pós-doutorado para entrar em contato com o novo e inaudito. Não procurem um lugar que trabalha no mesmo assunto de suas teses de doutorado. Não hesitem em mudar de área, isto é muito estimulante e constitui um importante fator de progresso individual. Eu tenho pena dos profissionais que continuam trabalhando no assunto da tese de doutorado, dez ou vinte anos depois de terem concluído o mesmo. Pesquisa aplicada pode ser muito boa pesquisa. Livrem-se dos preconceitos, tanto faz se a pesquisa é fundamental, ou aplicada ou diretamente industrial. O que conta é a qualidade. A única distinção é entre pesquisa de boa qualidade ou de má qualidade.

Artigo em destaque: Medidas de luminescência para identificar defeitos de filmes finos de óxido de zinco.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

Fernando Stavale, Niklas Nilius, and Hans-Joachim Freund. STM Luminescence Spectroscopy of Intrinsic Defects in ZnO(0001̅) Thin Films. J. Phys. Chem. Lett., 2013, 4 (22), pp 3972–3976. DOI: 10.1021/jz401823c.

Texto de divulgação: Medidas de luminescência para identificar defeitos de filmes finos de óxido de zinco.

O óxido de zinco (ZnO) é um material muito presente na vida cotidiana. Pode ser encontrado em parafusos, em protetores solares,em catalisadores para a síntese de metanol e em dispositivos optoeletrônicos sofisticados, como telas flexíveis para computadores, citando apenas alguns exemplos. Entretanto, para viabilizar algumas aplicações promissoras, como transistores e novos dispositivos, é importante controlar as propriedades elétricas desse semicondutor, as quais estão relacionadas com defeitos pontuais na sua estrutura atômica.

Nesse contexto, três cientistas ligados a instituições da Alemanha e do Brasil realizaram uma identificação dos defeitos pontuais de filmes de óxido de zinco por meio de uma abordagem original, aproveitando a capacidade luminescente (emissão de luz não provocada pelo aquecimento do material) do óxido de zinco. Os pesquisadores prepararam filmes finos de óxido de zinco com diferentes tipos e quantidades de defeitos pontuais. Sistematicamente, os cientistas foram medindo a luminescência de cada um dos filmes e, dessa maneira, conseguiram relacionar picos nas medidas de emissão com diversos tipos de defeitos na rede cristalina. Os resultados do trabalho foram publicados no periódico The Journal of Physical Chemistry Letters (JPCL).

“Neste estudo, crescemos filmes ultrafinos de óxido de zinco de alta qualidade e alteramos a quantidade de defeitos pontuais utilizando desorção térmica, foto-desorção induzida por laser e redução por tratamentos em atmosfera controlada de hidrogênio”, detalha Fernando Stavale, pesquisador do Centro Brasileiro de Pesquisas Físicas (CBPF)que assina o artigo como primeiro autor.

A técnica de caracterização

Para realizar os experimentos, os cientistas utilizaram um microscópio de varredura por tunelamento (STM, na sigla em inglês) em ultra-vácuo com algumas particularidades destinadas à gerar a luminescência, coletar os fótons emitidos e obter as medidas (os espectros) de luminescência. Com essa configuração, o STM é chamado de fóton-microscópio de tunelamento. De acordo com Stavale, um dos grandes expoentes no desenvolvimento e aplicação dessa técnica é o professor Niklas Nilius, autor para correspondência do artigo do JPCL com quem Stavale trabalhou diretamente durante três anos em seu pós-doutorado no Instituto Fritz-Haber da Sociedade Max-Planck, em Berlim, mais precisamente no departamento de Física Química liderado pelo professor Hans-Joachim Freund, último autor do artigo do JPCL. “O fóton-microscópio de tunelamento tem sido empregado de forma pioneira na caracterização de óxidos metálicos no departamento dirigido pelo professor Freund”, comenta Stavale. “A técnica ainda é pouco utilizada no Brasil e é parte fundamental dos projetos que desenvolvo atualmente no meu grupo de pesquisa no CBPF, localizado no Rio de Janeiro”, finaliza.

Uma característica fundamental do fóton-microscópio de tunelamento é a utilização dos elétrons emitidos pela ponta do STM para excitar as amostras e, no caso do óxido de zinco, gerar a luminescência desejada. Esse fenômeno de emissão de luz gerada pelo impacto de elétrons sobre o material é chamado de catôdo-luminescência.

Esquema do experimento, no qual pode ser observada, na foto, a ponta do microscópio de tunelamento excitando o filme de óxido de zinco. O gráfico inserido mostra um espectro de câtodo-luminescência do óxido. Ao fundo, a imagem de microscopia de tunelamento de um filme de óxido de zinco com espessura de 20 camadas (~5 nm), mostra degraus monoatômicos e defeitos pontuais contidos na superfície do filme. As vacâncias de oxigênio e zinco, defeitos pontuais, correspondem às áreas indicadas pelas setas. As áreas escuras com forma hexagonal correspondem a regiões onde o filme é descontínuo com profundidade de até 8 camadas atômicas.

Esse trabalho sistemático permitiu aos cientistas afirmar que alguns picos dos espectros de luminescência do óxido de zinco são devidos a defeitos como vacâncias de oxigênio e de zinco (pontos da rede cristalina nos quais, no lugar dos átomos de oxigênio ou zinco que seriam esperados, existem “vagas”). “Esses defeitos pontuais estão relacionados às propriedades elétricas geralmente observadas no óxido de zinco, como dopagem do tipo-n”, acrescenta Stavale.

O contexto do trabalho

Os experimentos do artigo no JPCL foram concebidos e realizados pelo brasileiro Fernando Stavale em 2012 durante seu último ano de pós-doutorado no grupo do professor Nilius, no no Instituto Fritz-Haber da Sociedade Max-Planck. Stavale chegou a esse grupo em 2010 com uma bolsa da Fundação Humboldt, da Alemanha. “Em um período de três anos investigamos pela primeira vez o papel de diversos dopantes, como cromo, európio e lítio em óxidos de magnésio e zinco, combinando filmes ultrafinos crescidos em ultra-alto vácuo com microscopia de tunelamento e catôdo-luminescência local”, conta Stavale sobre seus estudos do pós-doutorado.

A interpretação dos resultados e a redação do artigo do JPCL foram realizados em 2013, quando Fernando Stavale já havia assumido seu cargo de pesquisador no CBPF e Niklas Nilius, sua posição de professor na Universidade de Oldenburgo, na Alemanha.

Artigo em destaque: trabalho vencedor do Prêmio Bernhard Gross.


Neste mês, a seção “Artigos em destaque” do boletim traz a divulgação do trabalho vencedor do Prêmio Bernhard Gross ao melhor trabalho de estudantes apresentado no XII Encontro da SBPMat:

Self-organized 2-D Ni particles deposited on titanium oxynitride coated Si crystal sculpted by low energy ion beam. M. Morales, R. B. Merlo, R. Droppa Jr, and F. Alvarez.

Texto de divulgação:

Silício revestido para promover a auto-organização de partículas metálicas

Uma pesquisa de doutorado que está sendo desenvolvida no Instituto de Física “Gleb Wataghin”, da Unicamp, gerou uma contribuição à engenharia de superfícies ao propor um método simples para promover a formação de estruturas auto-organizadas sobre superfícies nanoestruturadas. Apresentada no XII Encontro da SBPMat pela doutoranda Mónica Morales Corredor, a pesquisa mereceu o Prêmio Bernhard Gross ao melhor trabalho do evento.

No trabalho, os pesquisadores descrevem a realização de três passos sucessivos. Num primeiro momento, um substrato de silício (Si) é esculpido mediante bombardeamento com íons de xenônio (Xe+), formando um padrão regular de sulcos e ondulações. Em seguida, essa superfície ondulada é revestida com um filme de oxinitreto de titânio (TiNxOy) que acompanha os relevos da lâmina de silício. Finalmente, partículas de níquel (Ni) são depositadas sobre o filme usando a técnica de pulverização catódica por feixe de íons. De maneira espontânea, as partículas se organizam num padrão que lembra uma malha ou rede de pesca.

 

À esquerda, imagem topográfica de AFM das partículas de Ni depositadas sobre substratos de TiNxOy em Si nanoestruturado. À direita apresenta-se o esquema do sistema formando uma rede com simetria 2D.

O tema das superfícies nanoestruturadas combinadas com arranjos de partículas metálicas tem sido alvo de estudos pelas suas possibilidades de aplicação para fins ópticos, magnéticos ou catalíticos, como por exemplo, no crescimento de nanotubos de carbono. Nesse contexto, um dos principais méritos ou novidades do trabalho premiado é o uso do filme de oxinitreto de titânio. “Ele preserva as nanoestruturas geradas pelo bombardeamento iônico e atua como barreira à difusão superficial das partículas metálicas”, diz Mónica. No trabalho apresentado no encontro, além de descreverem os passos necessários para a fabricação do sistema, os autores discutem os processos de difusão e nucleação envolvidos na formação dessa rede de partículas regularmente distribuídas.

A estudante premiada

Mónica Morales Corredor, primeira autora do trabalho vencedor, tem graduação, mestrado e doutorado (este último, em curso) em Física. “O fato de eu escolher a Física como carreira já implica um interesse por querer entender a natureza, e a pesquisa faz parte desse entendimento”, comenta Mónica, que trabalha com Materiais desde a graduação.

De nacionalidade colombiana, a estudante se formou em seu país de origem e depois veio para o Brasil para fazer o mestrado, no qual estudou o efeito das superfícies no crescimento de nanotubos de carbono. “Depois de acabar o mestrado, vi que ainda faltava muito por entender e por trabalhar nesse tema, motivo pelo qual decidi continuar com meu doutorado, ainda na mesma área e com o mesmo orientador, o professor Fernando Alvarez”, relata Mónica.

O Prêmio Bernhard Gross

Homenagem a um dos pioneiros da pesquisa em Materiais no Brasil, o professor Bernhard Gross, o prêmio foi instituído pela SBPMat para promover e reconhecer a participação de jovens no estudo da ciência e tecnologia de Materiais ao selecionar os melhores trabalhos de estudantes de graduação e pós-graduação apresentados nos encontros anuais da sociedade. De acordo com os professores José Alberto Giacometti e Julio Sambrano, coordenadores do XII Encontro da SBPMat, o prêmio deve incentivar a melhora crescente na qualidade dos resumos submetidos e no preparo dos alunos para apresentar os painéis.

Entrega do Prêmio Bernhard Gross ao melhor trabalho do simpósio. À esquerda, o representante da empresa Shimadzu, patrocinadora do prêmio. À direita e à esquerda do estudante que recebeu o prêmio, respectivamente, os professores José Alberto Giacometti e Julio Sambrano, coordenadores do XII Encontro da SBPMat.

Prêmios Bernhard Gross 2013

No XII Encontro da SBPMat, foram selecionados dentro do Prêmio Bernhard Gross os melhores trabalhos de onze simpósios e, entre eles, o melhor trabalho de todo o evento. Os melhores trabalhos dos simpósios foram escolhidos pelas comissões julgadoras montadas pelos organizadores de cada simpósio. Para a seleção do melhor trabalho do evento, os membros de todas as comissões se reuniram. “Neste ano o júri teve muita dificuldade em escolher, pois o evento teve um número muito grande de excelentes trabalhos”, diz o professor Roberto Faria, presidente da SBPMat.

A cerimônia de premiação ocorreu durante a solenidade de encerramento do encontro, no dia 3 de outubro. O melhor trabalho do evento recebeu mil reais da empresa Shimadzu, patrocinadora do Prêmio Bernhard Gross 2013. Veja a relação dos trabalhos premiados:

Melhor trabalho do XII Encontro da SBPMat: Self-organized 2-D Ni particles deposited on titanium oxynitride coated Si crystal sculpted by low energy ion beam, M. Morales, R. B. Merlo, R. Droppa Jr, and F. Alvarez. Trabalho apresentado no simpósio L (Surface Characterization: Techniques and Applications).

Melhor trabalho do simpósio A (Sol-Gel Materials: From Fundamentals to Advanced Applications): Impedance electrical immunosensor for hepatitis C diagnostics based on biorecognition between the antigenic peptide NS5A-1 and the antibody anti-HCV. Marli Leite de Moraes, Alem-Mar Bernardes Gonçalves, Lais Roncalho Lima, Fernando Vieira Paulovich, Osvaldo Novais Oliveira Jr and Sidney José Lima Ribeiro.

Melhor trabalho do simpósio B (Inorganic Thin Films – Methods and Applications):  Improvement of the wear properties of a diamond-like carbon film coated on ultrahigh molecular weight polyethylene for biomaterials. Jéssica Pereira dos Santos and Sérgio Camargo.

Melhor trabalho do simpósio C (Synthesis and Properties of Nanometric Materials): Cytotoxicity and Genotoxicity Evaluations of Nitric Oxide Donor Superparamagnetic Iron Oxide Nanoparticles. Amanda Franco Ludescher, Renata de Lima, Jhones Luis Oliveira, Ana Carolina Ferrarini, Amedea Barozzi, Seabra and Paula Silvia Haddad.

Melhor trabalho do simpósio D (Materials and Devices for Renewable Energy, Sustainability and Environment Protection): Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic aiming at sustainability. Fabiane Leocádia Silva, Fernando Gabriel Araújo, Fernando Leopoldo Kruger, Ana Paula Silva and Rodrigo Claudiano Gomes.

Melhor trabalho do simpósio E (Structure- properties relationship of advanced metallic materials): Deformation and Recrystalization of a trip/twip steel with 17% Mn and low C. Mirele Oliveira, Sara Ferreira de Dafé.

Melhor trabalho do simpósio F (Organic Electronics and hybrids: materials and devices): A facile combination of electroluminescence and photoluminescence properties to produce white light based on polymeric light-emitting diodes. Fernando Junior Quites, Teresa Dib Zambon Atvars and Gregorio Couto Faria.

Melhor trabalho do simpósio G (Molecular Modeling Materials Science): Hydrogen bonding of N-methylformamide with acetone. Glauco Garrido Almeida and João Marques Cordeiro.

Melhor trabalho do simpósio H (New Trends in Biomaterials and Nanomaterials Applied to Biosystems): Magnetic nanoparticles coupled with β-cyclodextrin as a delivery system for doxorubicin. Amanda Watanabe Paraguassú, Célia Machado Ronconi and Maria Domingues Vargas.

Melhor trabalho do simpósio N (Materials Education Symposium): An integrated project-based course for teaching of biomaterial biocompatibility to undergraduate students. Daniela Costa Silva, Juliana Alves Côrtes, Róber Freitas Bachinski, Carolina Nascimento Spiegel and Gutemberg Gomes Alves.

Melhor trabalho do simpósio O (Science, Engineering, and Commercialization of Next Generation of Industrial, Electronic and Biomedical Devices): Exploiting graphite-epoxy composite as electrode material for bioelectroanalysis. André Luiz Maia Azevedo, Renato Soares de Oliveira, Eduardo Ariel Ponzio, Juan Manuel Pardal and Felipe Silva Semaan.

Melhor trabalho do simpósio P (Advances in New Materials): Facile control of PFP morphology (glassy and α phases) in silicone-based polymer hosts. Fernando Junior Quites, Raquel Aparecida Domingues, René Alfonso Nome, Guilherme Ferreira Ferbonink and Teresa Dib Zambon Atvars.

Fotos de alguns dos premiados na cerimônia: