Due to the high participation in the XVIII B-MRS meeting (Balneário Camboriú, September 22 to 26), and to ensure everyone’s comfort, the sessions and activities will take place in two hotels, 300 meters apart: Hotal Sibara Flat & Conventions and Mercure Camboriu Hotel. Both venues are located in the center of the city, close to many hotels, restaurants and shops, and some meters from the sea.
In addition, the opening session of the event will be held at the Cristo Luz Complex, one of the main tourist attractions in the city, with impressive panoramic views.
Opening session (opening ceremony, memorial lecture and welcome cocktail):
Where? Cristo Luz Complex. Rua Indonésia, 800, Balneário Camboriú.
When? September 22 (Sunday), starting at 7:30 pm.
How to get? The complex is a 10-minute taxi/Uber ride from the Sibara Hotel. There will be free shuttle service between Sibara Hotel and “Complexo Cristo Luz” from 5:00 pm on. It is recommended to arrive in advance.
Oral sessions of symposia K, M, S and U: at the Mercure Camboriú Hotel. Avenida Atlântica, 2010, Balneário Camboriú.
All other program sessions and activities (oral sessions of all other symposia, all poster sessions, plenary lectures, technical lectures of exhibitors, pre-event tutorial, exhibitors fair, coffee breaks, secretariat, workshops and round tables): at Hotel Sibara. Avenida Brasil, 1500, Balneário Camboriú.
Conference Party
Where? Lounge of the Green Valley Club.
When? September 25 (Wednesday), starting at 9 pm.
How much? 20 reais. Tickets (limited) will be on sale at the event secretariat from September 23 (Monday).
After blood, bone is the most frequently implanted/ transplanted tissue, with about 2 million bone grafts performed each year worldwide – a number that tends to increase at the rate of population aging. A well-known case is that of the jaw graft to allow firmer dental implants. However, many other causes, such as tumors, severe fractures, congenital malformations or even infections, may cause a patient to need a graft, that is to say, an implant of a natural or synthetic piece of bone to support the natural growth of bone tissue.
In Barcelona, at the Universitat Politècnica de Catalunya (UPC), a research group has been successfully working on the development of innovative tissue regeneration biomaterials. Led by Professor Maria-Pau Ginebra, the multidisciplinary group consists of 30 researchers. After many published papers and patents obtained, Professor Ginebra decided to found, along with other members of the group, a spin-off company to bring the results of years of research into real life. Thus, in 2013, Mimetis Biomaterials was created, dedicated to nature-inspired bone regeneration solutions.
On the afternoon of September 24, Prof. Maria-Pau Ginebra will deliver a plenary lecture at the XVIII B-MRS Meeting. She will talk about a new generation of bone graft biomaterials, made through nature-inspired methods that allow control of the structure and composition of the material at the nano scale. The resulting biomaterials bring together the benefits of both natural and artificial bones, including the possibility of producing personalized grafts on 3D printers.
See our mini-interview with this Spanish scientist, Full Professor and Head of the Department of Materials Science and Metallurgy at UPC, President of Mimetis Biomaterials, and Member of the Editorial Board of Acta Biomaterialia, Journal of Tissue Engineering and the International Journal of Molecular Sciences.
B-MRS Newsletter: – You work in a research area that has a direct impact on society. What, in your opinion, is your scientific discovery with the greatest actual or potential impact? Please describe it very briefly.
One of the great challenges in the field of bone regeneration is the development of synthetic materials that are able to be degraded and transformed in newly formed bone. In this case, the synchronization between material degradation and new bone deposition is critical, and very difficult to achieve. We have demonstrated that this can be accomplished by using biomimetic processing routes, which allow tuning the nanostructure and composition of hydroxyapatite, mimicking more closely the mineral phase of bone. In this way the synthetic material can enter the natural bone remodeling cycle, allowing for this progressive transformation in new bone tissue.
B-MRS Newsletter: – Turning scientific knowledge into products is not an easy task. In your experience, what are the most important factors in getting a lab research to become a product on the market?
The transformation of the scientific achievements into real products is indeed a great challenge. This is particularly difficult in the biomedical field, where the scientists face a number of regulatory restrictions which were often overlooked during the previous stages of more “academic” research. In my experience, to be successful, you need the confluence of a good idea and the right people. Moreover, you need money. In summary, in my experience there are three main aspects that determine the success of the translation of a good idea to the market: 1) selecting a good team, with people mastering the different aspects of entrepreneurship, which we, as scientist, do not know; from regulation/legislation to marketing and financial aspects; 2) finding appropriate investors is always necessary; the innovation in the biomedical field is particularly expensive; 3) being willing to work really hard.
For more information on this speaker and the plenary talk she will deliver at the XVIII B-MRS Meeting, click on the speaker’s photo and the title of the lecture here https://www.sbpmat.org.br/18encontro/#lectures.
Many shades of blue, red and purple that we can see in the vegetable kingdom (for example, in grapes, raspberries, eggplants and flowers such as violets) are known to be generated by the presence of natural pigments called anthocyanins. However, what makes anthocyanin express in a plant a certain tone of this wide range? This intriguing basic science issue has applications of great interest to the food industry in its quest for healthier dyes from natural components.
A thorough answer will be presented in a plenary lecture of the XVIII B-MRS Meeting by Stefano Baroni, Full Professor of Condensed Matter Theoretical Physics at Scuola Internazionale Superiore di Studi Avanzati (SISSA) – an institution located in Trieste (Italy), dedicated to research and graduate studies in various areas of science. Baroni has been studying that issue, using, mainly, a computational method that considers phenomena occurring at the molecular level over several time scales.
Prof. Stefano Baroni is an internationally renowned Italian scientist who loves to invent and improve computational methods to unveil the properties of matter at the molecular scale and apply them to problems of fundamental and applicative interest. For example, Baroni is one of the principal creators of Density Functional Perturbation Theory (DFPT), a computational tool that allows the study of physical properties of materials that depend on responses to external perturbations. He is also the founder and one the main instigators of the Quantum ESPRESSO, project, one of the most popular open source softwares for quantum materials modeling and calculations at the nanoscale, and founding director of the Quantum ESPRESSO Foundation.
Stefano Baroni obtained a degree in Physics from the Università di Pisa (Italy) in 1978. After that, until 1984, he was a postdoctoral fellow at the École Polytechnique Fédérale de Lausanne (EPFL), in Switzerland. Later, he became Assistant Professor at the Department of Theoretical Physics at the Università degli Studi di Trieste until he joined SISSA in 1988. From 1994 to 1998, he was Director of CECAM, a European center for research in computational sciences and their applications, then based at the École Normale Supérieure de Lyon, in France. Thereafter, until 2003, he served as coordinator in Trieste of the Istitituto Nazione per la Fisica della Materia (INFM). From 2001 to 2008, he was Founding Director of the DEMOCRITOS national simulation center, now part of the Italian CNR. Baroni has been a visiting professor at many institutions around the world, including Université Pierre et Marie Curie (France), Princeton University (USA), University of Minnesota (USA), University of Sydney (Australia), University College London (UK).
See our mini interview with Prof. Stefano Baroni.
B-MRS Newsletter: – We´d like to know more about your scientific work. Please choose one or two of your favorite/ high-impact contributions, briefly describe them, and share the references.
For forty years my research has been motivated by the attempt to solve the fundamental equations that determine the properties of materials at the atomic scale, in the most realistic conditions practically accessible to computational science. While this effort, which I shared with many scientists more talented than me around the world, is having a tremendous impact in many and diverse technologies, as this Conference convincingly witnesses, my own motivation has been, how to say?, a bit “swotty”? Theorists like me strive to understand. Geniuses sometimes understand what they cannot teach or do not care to implement. Ordinary swots have to do, implement, and teach in order to convince themselves they have understood, and this is what I have been doing all my life, like a Renaissance craftsman. I am probably mostly known for density functional perturbation theory [https://doi.org/10.1103/RevModPhys.73.515], a technique that Paolo Giannozzi and I introduced in the late 80s [https://doi.org/10.1103/PhysRevLett.58.1861] and that is now considered the state of the art in the simulation of the vibrational properties of condensed matter. In the late 00s my colleagues and I generalised this technique to account for the dynamical phenomena that are probed in optical spectroscopies [https://doi.org/10.1103/PhysRevLett.96.113001, https://doi.org/10.1063/1.2899649]. This work provided the methodological motivation for me to enter the field of molecular spectroscopy, which eventually led me to study the color of flowers and fruits. The challenge to compute what others believe cannot be computed was also the motivation for me to enter the fascinating field of heat and charge transport in condensed matter, a senile passion I will have the privilege to report on in Symposium S of this conference on September 24 at 9:30 [https://doi.org/10.1038/nphys3509, https://doi.org/10.1038/s41598-017-15843-2, https://doi.org/10.1038/s41467-019-11572-4, https://doi.org/10.1103/PhysRevLett.122.255901, https://doi.org/10.1038/s41567-019-0562-0].
B-MRS Newsletter: – The subject of the talk aroused our curiosity. Could you tell us what led you to study these pigments? Does it have to do with industrial interest? With the search for fundamental answers? With the application of a new methodology?
As mentioned before, I was drawn to molecular spectroscopy while seeking useful applications for a new computational method that my collaborators and I had devised to deal with dynamical perturbations to quantum-mechanical systems. Ask around what would be the most important application of molecules absorbing light, and many would answer: “solar cells to produce clean, inexhaustible, energy”. So we went, and we were induced into the wrong thinking that efficient and inexpensive solar cells could be manufactured “using fruit juice” (i.e. using anthocyanins as the light-absorbing element of a photovoltaic device). It soon became clear that while the principle per se is not wrong (in fact, organic solar cells based on it are routinely assembled and used for educational purposes https://www.teachengineering.org/activities/view/uoh_organic_activity1, https://education.mrsec.wisc.edu/titanium-dioxide-raspberry-solar-cell/) the stability and efficiency of the resulting device are far too poor for industrial purposes. Meanwhile, our work attracted some attention, and I was invited to some important meetings on solar energy. On one occasion, I declined the invitation knowing that our work could not have a real impact in the field. The organisers flatteringly insisted, and I finally accepted under the condition that I would not talk of solar energy, but of the color of fruits and flowers, which had meanwhile started to arouse my curiosity. A few months later I was approached by a representative of a head-hunting company who, seeking an expert in the molecular simulation of natural dyes on behalf of a major multinational food manufacturer, had stumbled across the abstract of my talk. When I received the telephone call I thought it was a prank and I almost hung up on her. I resisted the impulse, and that was the beginning of an exciting five-years adventure in industrial research, which I never thought I would have lived and whose story I will tell in Balneário Camboriú …
For more information on this speaker and the plenary talk he will deliver at the XVIII B-MRS Meeting, click on the speaker’s photo and the title of the lecture here https://www.sbpmat.org.br/18encontro/#lectures.
Boletim da
Sociedade Brasileira
de Pesquisa em Materiais
Edição nº 84. 31 de agosto de 2019.
Notícias da SBPMat
– Petição pelo CNPq. A SBPMat, junto a mais de 100 entidades científicas, endossa petição em defesa dos recursos para o CNPq e contra a sua extinção. O abaixo-assinado, que já conta com mais de 900.000 assinaturas, foi entregue nesta semana ao presidente da Câmara dos Deputados. A SBPMat convida sua comunidade a assinar e compartilhar a petição para incrementar o apoio. Saiba mais.
– Eleições na SBPMat. Foi divulgado o documento que contém o plano de ação da chapa candidata à Diretoria Executiva e os minicurrículos de seus membros. Acesse o documento e saiba mais sobre a eleição aqui.
– Sociedades parceiras. Sócios quites da SBPMat têm desconto na anuidade da Sociedade Brasileira para o Progresso da Ciência (SBPC), que está em campanha de sócios com um site modificado para facilitar a associação. Saiba mais.
Artigo em Destaque
Cientistas do Brasil descobriram um potente efeito anti-inflamatório em nanobastões de germanato de zinco dopados com manganês. Além disso, a equipe científica otimizou o processo de síntese dos nanobastões, conseguindo reduzi-lo a poucos minutos de duração. As nanoestruturas são promissoras para o desenvolvimento de fármacos. O trabalho foi recentemente publicado no Journal of Materials Chemistry C. Saiba mais.
Da Ideia à Inovação
Pronta para lançar duas linhas de cosméticos baseados em nanotecnologia, a Nanomed atua desde 2012 no desenvolvimento de tecnologias na escala nano com foco nos segmentos de saúde e bem-estar (notadamente, nanocápsulas que protegem e entregam substâncias de interesse). Conheça um pouco mais a Nanomed e sua fundadora, aqui.
Novidades dos Sócios SBPMat
– O sócio da SBPMat Bartolomeu Cruz Viana Neto (UFPI) acaba de ser diplomado membro afiliado de uma regional da Academia Brasileira de Ciências (ABC). Veja matéria da ABC sobre o pesquisador,aqui.
XVIII B-MRS Meeting/ Encontro da SBPMat
(Balneário Camboriú, SC, 22 a 26 de setembro de 2019)
Inscrições. Sócios da SBPMat têm descontos especiais na inscrição. No ato da inscrição, é possível optar por pagar a anuidade 2019 e, dessa maneira, ficar quite com a sociedade e se beneficiar dos descontos. Saiba mais,aqui.
Tutorial pré-evento para participantes. O professor Valtencir Zucolotto (USP), junto à editora Elsevier, oferecerá o Young Researchers School: How to Produce and Publish High Impact Papers, para participantes do evento, sem custo. O tutorial será ministrado no dia 22 de setembro das 13:00 às 17:00 no local do evento.
Palestras técnicas. Dentro da programação do evento, empresas da área de instrumentação científica oferecerão 13 palestras técnicas, de 20 minutos cada uma, sobre técnicas e equipamentos de caracterização de materiais.
Programa. Está no ar a programação resumida do evento, com as atividades técnicas e sociais, e a distribuição de sessões orais e de pôster. Veja aqui.
Impressão de pôsteres. É possível enviar o arquivo do pôster por e-mail e retirar a impressão no local do evento. Saiba mais.
Local da abertura. A cerimônia de abertura, a palestra memorial e o coquetel de boas-vindas serão realizados no dia 22 de setembro (domingo) no complexo Cristo Luz, uma das principais atrações turísticas da cidade. Haverá transporte para o local, saindo do Hotel Sibara a partir das 17:00. Conheça o local, aqui.
Palestra memorial. A tradicional Palestra Memorial Joaquim da Costa Ribeiro será proferida pela professora Yvonne Primerano Mascarenhas (IFSC – USP). Saiba mais sobre a palestrante homenageada, aqui.
Festa do evento. Será realizada no lounge do Green Valley, um destacado clube noturno. Saiba mais sobre o Green Valley, aqui. A festa contará com a impactante banda Brothers. Assista à Brothers,aqui.
Cidade-sede. Balneário Camboriú (SC) é um importante destino turístico que oferece praias urbanas e agrestes, ecoturismo e esportes de aventura, além de passeios de barco, bondinho, bicicleta e teleférico – tudo dentro de uma paisagem única que combina serra, mar e arranha-céus. O visitante tem acesso a muitíssimas opções de gastronomia, hospedagem e compras, bem como à agitada vida noturna que se destaca no cenário brasileiro.
Hospedagem, passagens, transfers etc. Confira as opções do hotel e da agência oficial do evento,aqui.
Palestras plenárias. Destacados cientistas de instituições da Alemanha, Espanha, Estados Unidos e Itália proferirão palestras plenárias sobre temas de fronteira no evento. Também haverá uma plenária do brasileiro Antônio José Roque da Silva, diretor do CNPEM e do projeto Sirius. Saiba mais sobre as plenárias, aqui.
Simpósios. 23 simpósios propostos pela comunidade científica internacional compõem esta edição do evento. Veja a lista de simpósios, aqui.
Organização. O chair do evento é o professor Ivan Helmuth Bechtold (Departamento de Física da UFSC) e o co-chair é o professor Hugo Gallardo (Departamento de Química da UFSC). O comitê de programa é formado pelos professores Iêda dos Santos (UFPB), José Antônio Eiras (UFSCar), Marta Rosso Dotto (UFSC) e Mônica Cotta (Unicamp). Conheça todos os organizadores, aqui.
Expositores e patrocinadores. 50 patrocinadores e apoiadores participam do evento com interessantes atividades e ações. Mais detalhes, em breve, no próximo boletim e nas redes sociais da SBPMat.
XIX B-MRS Meeting + IUMRS ICEM 2020
(Foz do Iguaçu, Brasil, 30 de agosto a 3 de setembro de 2020)
Evento conjunto. O evento reunirá a 19ª edição do encontro anual da SBPMat e a 17ª edição da conferência internacional sobre materiais eletrônicos organizada bienalmente pela União Internacional de Sociedades de Pesquisa em Materiais (IUMRS).
Chamada de simpósios. A SBPMat e a IUMRS convidam a comunidade científica internacional a enviar propostas de simpósio até 31 de outubro de 2019. Saiba mais.
Organização. Prof. Gustavo Martini Dalpian (UFABC) é o coordenador geral, Carlos Cesar Bof Bufon (LNNANO) é coordenador de programa e Flavio Leandro de Souza (UFABC) é o secretário geral. No comitê internacional, o evento conta com cientistas da América, Ásia, Europa e Oceania. Saiba mais no site do evento.
Plenárias. Cinco cientistas internacionalmente destacados já confirmaram presença como palestrantes do evento. Saiba mais no site do evento.
Expositores e patrocinadores. Empresas e outras entidades interessadas em participar do evento como expositores, patrocinadores ou apoiadores, podem entrar em contato com Alexandre pelo e-mail comercial@sbpmat.org.br.
Dicas de Leitura
– Em comemoração ao XVIII B-MRS Meeting, a Royal Society of Chemistry preparou uma coleção de artigos de autores brasileiros publicados por sua editora entre 2017 e 2019. Saiba mais.
– Cientistas tornam ferroelétrico um material paraelétrico por alguns picossegundos ao aplicar pulso de luz na frequência dos THz, abrindo possibilidades de desenvolvimento de dispositivos de reconfiguração ultrarrápida (paper da Science). Saiba mais.
– OLEDs: Cientistas inovam ao combinar camadas grossas de perovskitas com filmes orgânicos em material que pode ser usado para desenvolver nova geração de telas e lâmpadas (paper da Nature). Saiba mais.
– Cientistas conseguem fabricar folhas de ouro de apenas dois átomos de espessura e mostram que são catalisadores dez vezes mais eficientes do que as nanopartículas. Método de síntese abre possibilidades de versões 2D de outros metais (paper da Advanced Science). Saiba mais.
– Pesquisadores desenvolvem líquido injetável que vira gel e pode ser usado para tornar mais simples e seguros procedimentos médicos como a remoção de pólipos em colonoscopias (paper da Advanced Science). Saiba mais.
– Cientistas conseguem aplanar moléculas de polímeros conjugados, as quais tendem a curvar, aumentando assim sua capacidade de conduzir eletricidade (paper da Science Advances). Saiba mais.
– Fatores de impacto 2018: resultados dos periódicos da Royal Society of Chemistry. Saiba mais.
– Pesquisa conduzida por cientistas do Brasil mostra forte ação contra fungos e tumores de um material obtido pela irradiação de tungstato de prata (paper da Scientific Reports). Saiba mais.
Oportunidades
– Pós-doc no IQSC-USP com bolsa Fapesp em eletrocatalisadores para a eletrogeração de H2O2. Saiba mais.
Eventos
21st Materials Research Society of Serbia Annual Conference (YUCOMAT 2019) and 11th IISS World Round Table Conference on Sintering (WRTCS 2019). Herceg Novi (Montenegro). 2 a 6 de setembro de 2019. Site.
Research to Business Itália-Rio de Janeiro. Rio de Janeiro, RJ (Brasil). 19 de setembro de 2019. Site.
XVIII B-MRS Meeting. Balneário Camboriú, SC (Brasil). 22 a 26 de setembro de 2019.Site.
XL CBRAVIC (Brazilian Congress on Vacuum Applications in Industry and Science). 7 a 11 de outubro de 2019.Site.
2° Encontro – Fronteiras Tecnológicas em Engenharia. Lorena, SP (Brasil). 9 a 10 de outubro de 2019.Site.
XII Brazilian Symposium on Glass and Related Materials. Lavras, MG (Brasil). 22 a 25 de outubro de 2019.Site.
19th Brazilian Workshop on Semiconductor Physics. Fortaleza, CE (Brasil). 18 a 22 de novembro de 2019.Site.
XIX B-MRS Meeting e 2020 IUMRS ICEM (International Conference on Electronic Materials). Foz do Iguaçu, PR (Brasil). 30 de agosto a 3 de setembro de 2020.Site.
Siga-nos nas redes sociais
Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Uma combinação de espírito empreendedor, nascido na infância, e formação científica, desenvolvida na etapa universitária, levou Amanda Luizetto dos Santos a criar a Nanomed dois anos depois de concluir seu doutorado. “A fundação da Nanomed foi algo natural, sempre quis empreender, apenas precisei de um tempo para amadurecer o conceito como imaginava”, comenta.
Quando era uma criança, Amanda costumava montar uma banca na rua para vender seus desenhos. “Desde pequena o empreendedorismo roubou meu coração”, diz ela. O tempo passou e as brincadeiras foram se tornando um objetivo de vida. No final da graduação em Farmácia, cursada na PUC-Campinas, ela participou de uma iniciativa do Sebrae para formar jovens empreendedores, na qual abriu, manteve e encerrou (com saldo positivo, esclarece) uma empresa de velas de decoração. “Essa experiência foi muito enriquecedora e, de fato, reavivou meu interesse pelo mundo do empreendedorismo”, relembra.
Da graduação, Amanda pulou direto para o doutorado em Química Analítica, realizado no Instituto de Química de São Carlos (USP), no qual lidou com pesquisa em óleos essenciais. O doutorado incluiu um estágio científico nos Estados Unidos, na Cleveland State University. Depois, trabalhando junto à indústria de cosméticos, Amanda notou a demanda desse mercado por inovação e conseguiu conceber uma primeira versão da empresa. “Encontrei o que buscava desde pequena”, ela diz.
Localizada em São Carlos (SP), a Nanomed se dedica a desenvolver e comercializar nanossistemas sempre inovadores, pensados para resolver desafios específicos de segmentos da indústria como o cosmético e o de saúde e bem-estar. Um exemplo de tecnologia da Nanomed é o das nanocápsulas que protegem substâncias de interesse (moléculas hidratantes para a pele, aromatizantes usados em remédios, repelentes de insetos), as transportam em doses mínimas e as entregam no local desejado. As nanocápsulas e demais nanopartículas da Nanomed, reforça Amanda, passam por avaliações científicas para conferir se apresentam toxicidade com relação a tecidos vivos e ao meio ambiente.
Além de desenvolver nanossistemas para outras empresas, a startup está construindo seu portfólio de produtos. Os primeiros produtos próprios, duas linhas de cosméticos baseados em nanotecnologia, entrarão no mercado (via e-commerce) em breve. E, entre final deste ano e início do próximo, será a vez do lançamento de produtos dos segmentos de alimentos e saneantes.
A Nanomed foi formalmente criada em 2012 após a aprovação de um projeto no programa PIPE da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp). O PIPE apoia a pesquisa científica e tecnológica em pequenas empresas do estado de São Paulo. Pouco depois da criação, a Nanomed incubou-se no Parque Tecnológico de São Carlos (ParqTec), onde permaneceu até sua graduação, em 2017.
Desde o início, a startup tem se dedicado à pesquisa e desenvolvimento (P&D) de suas tecnologias e produtos e, simultaneamente, tem aproveitado a sua capacidade de realizar análises e ensaios para prestar serviços, principalmente a empresas dos ramos cosmético e farmacêutico. Graças à prestação de serviços, a Nanomed hoje é autossustentável, conta Amanda, que atua como CEO da empresa. “Contudo, o lucro ainda vem sendo reinvestido”, diz ela.
Para suas atividades de P&D e prestação de serviços, a Nanomed conta com equipamentos na sede da empresa, alguns deles adquiridos em projetos apoiados pela Fapesp e pelas agências federais Finep e CNPq. Além disso, a startup contrata ensaios específicos em laboratórios de universidades e outros parceiros.
Atualmente, atuam na Nanomed quinze pessoas – sócios, colaboradores, bolsistas e consultores. A maior parte da equipe é composta por mestres e doutores, formados em Farmácia, Química, Engenharia e Física, que trabalham no desenvolvimento de produtos e na prestação de serviços. A startup também conta com profissionais que atuam nas áreas jurídica e administrativa.
Sócia fundadora da Nanomed: Amanda Luizetto dos Santos.
Veja nossa entrevista com Amanda Luizetto dos Santos, sócia-fundadora e CEO da Nanomed.
Boletim da SBPMat: – Quais foram os fatores mais importantes no sentido de viabilizar a criação e desenvolvimento da startup?
Amanda Luizetto dos Santos: – Os fatores fundamentais para a viabilização da Nanomed foram o apoio da Fapesp e do ParqTec. A Fapesp desde o começo da Nanomed é um pilar fundamental nos desenvolvimentos de tecnologia e produtos, através do financiamento de projetos inovadores e de alto risco. O ParqTec, que é a incubadora mais antiga da América Latina e está situada em São Carlos (SP), foi muito importante pois possibilitou a imersão no ambiente do empreendedorismo inovador, além de dar suporte na construção do negócio.
Boletim da SBPMat: – Quais foram, para você, os momentos mais importantes na história da startup?
Amanda Luizetto dos Santos: – O momento mais importante foi participar de uma reunião no parlatório da Anvisa para defender um produto cosmético grau 2 desenvolvido pela Nanomed e, que será lançado e comercializado ainda este ano.
[Nota da reportagem: produtos grau 2 são aqueles produtos de higiene pessoal ou cosmética cujas características exigem comprovação de segurança e/ou eficácia, bem como informações sobre modo e restrições de uso]
Boletim da SBPMat: –Quais foram as principais dificuldades enfrentadas até momento pela startup?
Amanda Luizetto dos Santos: – A principal dificuldade, ainda encontrada, é a morosidade e a burocracia regulatória que está atrelada ao fato de trabalharmos na área de saúde.
Boletim da SBPMat: – Qual é, na sua visão, a principal contribuição da startup para a sociedade?
Amanda Luizetto dos Santos: – A principal contribuição é oferecer produtos seguros e inovadores para sociedade e contribuir para a qualidade de vida da população.
Boletim da SBPMat: – Qual é sua meta/ seu sonho para a startup?
Amanda Luizetto dos Santos: – A meta da Nanomed é deixar as pessoas felizes e satisfeitas, oferecendo ao mercado nacional e internacional uma linha de produtos inovadores e de alta performance.
Boletim da SBPMat: – Deixe uma mensagem para nossos leitores do boletim e seguidores das redes sociais que avaliam a possibilidade de criar uma startup.
Amanda Luizetto dos Santos: – Acredito que precisamos ser realistas quando pensamos no futuro, em especial quando fala-se de abrir um negócio próprio. Aquela máxima de que empreender é não ter patrão não existe, na verdade, você tem milhares de patrões, como cliente, colaborador, governo, entre muitos outros. Então, empreender é sinônimo de trabalhar muito e, em todos setores do negócio (todos mesmo!). Criar uma startup e mantê-la viva exige muito trabalho (mas muito), dedicação, resiliência e cabeça fria.
O universo do empreendedorismo é uma adrenalina constante, particularmente acho viciante, ao mesmo tempo que traz satisfação imensa ao ver as coisas se concretizando, o frio na barriga é inevitável. Eu, ainda não sei se feliz ou infelizmente, não vivo sem.
O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Characterization of the structural, optical, photocatalytic and in vitro and in vivo anti-inflammatory properties of Mn2+ doped Zn2GeO4 nanorods. Suzuki, V. Y.; Amorin, L. H. C; Lima, N. M; Machado, E. G; Carvalho, P. E.; Castro, S. B. R.; Souza Alves, C. C.; Carli, A. P.; Li, Maximo Siu; Longo, Elson; Felipe La Porta. J. Mater. Chem. C, 2019, 7, 8216. DOI: 10.1039/c9tc01189g
Nanobastões para desenvolver novos anti-inflamatórios
Uma equipe de pesquisadores de universidades brasileiras descobriu, em nanoestruturas de formato cilíndrico chamadas de nanobastões, um efeito anti-inflamatório equivalente ao conseguido por fármacos de uso corriqueiro. Os pesquisadores também demonstraram a eficiência desses nanobastões como catalisadores (aceleradores) na degradação de um poluente. Essas aplicações se tornam ainda mais relevantes considerando que a equipe científica conseguiu produzir grandes quantidades do material mediante um processo simples e rápido. O trabalho realizado mostra o potencial desses nanobastões para o desenvolvimento de novos medicamentos e para o tratamento de efluentes.
O trabalho originou-se cerca de três anos atrás, quando o professor Felipe de Almeida La Porta, que tinha se incorporado recentemente ao corpo docente da Universidade Tecnológica Federal do Paraná (UTFPR), campus Londrina, estava implementando um grupo de pesquisa em Nanotecnologia e Química Computacional (NANOQC) nessa universidade. “Nosso laboratório começou a investigar algumas classes de materiais emergentes, com a perspectiva de conciliar teoria e prática, impulsionado assim novas descobertas e aplicações.”, conta La Porta. Um dos materiais estudados pelo grupo, foi o germanato de zinco (Zn2GeO4), um versátil semicondutor com aplicações em sensores, catalisadores, baterias entre outros dispositivos.
Junto ao bolsista de iniciação científica Victor Yuudi Suzuki, o professor iniciou um projeto em que sintetizou, no laboratório da UTFPR, nanobastões de Zn2GeO4 puro e com porcentagens muito pequenas de íons de manganês. Para produzir essa série de nanobastões, eles utilizaram a chamada “síntese hidrotérmica assistida por micro-ondas”. O método consiste, em grandes linhas, em misturar soluções aquosas contendo determinados compostos, aquecer a solução final com ajuda de um forno de micro-ondas e deixar que os compostos reajam por um determinado tempo a uma pressão e temperatura controlada. No caso do Zn2GeO4 dopado com íons manganês que foram preparados neste estudo, essas reações foram realizadas a 140 °C durante 10 minutos. O material que resulta dessas reações é recolhido na temperatura ambiente, posteriormente lavado e secado, gerando os nanobastões.
O professor La Porta e seu grupo de pesquisa conseguiram otimizar uma das etapas do processo, a cristalização dos materiais, de modo a diminuir o tempo de síntese de horas para alguns minutos, mantendo assim a qualidade do material e a possibilidade de controlar seu formato.
Depois de preparar as amostras, a dupla viajou de Londrina até São Carlos (SP) para caracterizar os materiais no Centro de Desenvolvimento de Materiais Funcionais (CDMF) da Universidade Federal de São Carlos (UFSCar) e no Instituto de Física da Universidade de São Paulo (USP). Ali, junto a pesquisadores locais, puderam analisar o formato, estrutura e a luminescência dos quatro tipos de composições de nanobastões produzidos: sem manganês e com 1, 2 e 4% desse elemento incorporado à estrutura do Zn2GeO4.
Finalmente, sabendo que compostos contendo zinco, germânio ou manganês apresentam atividade biológica considerável (efeitos benéficos ou negativos sobre os seres vivos), a equipe resolveu contatar colaboradores para investigar esse tipo de propriedades nos nanobastões. Dessa maneira, uma série de experimentos foi realizada nos Departamentos de Química e Farmácia da Universidade Federal de Juiz de Fora e na Universidade Federal dos Vales do Jequitinhonha e Mucuri, ambas no estado de Minas Gerais.
Os autores do trabalho. A partir da esquerda: Victor Suzuki, Luís Amorin, Felipe La Porta, Maximo Si Li, Elson Longo, Sandra de Castro, Paloma de Carvalho, Alessandra Carli, Emanuelle Machado, Caio Alvez, Nerilson Lima.
Para estudar a ação anti-inflamatória, a equipe realizou testes in vitro (em contato com células em recipientes laboratoriais) e também in vivo (usando ratos com edemas nas patas, dentro das normas do código brasileiro de uso de animais em laboratório). Ambos os tipos de experimentos revelaram que os nanobastões com cerca de 4% de manganês foram os mais eficazes no controle da inflamação. Nos testes in vitro, essas nanoestruturas foram capazes de modular moléculas que regulam a inflamação sem causar morte de células (sem citotoxicidade). Nos experimentos in vivo, os nanobastões reduziram edemas induzidos nas patas dos ratos com resultados similares aos da aplicação de dexametasona, um conhecido fármaco do grupo dos corticoides.
“No primeiro momento, pensamos que a combinação desses elementos para formação de um óxido ternário poderia de certo modo potencializar esses efeitos. Mais não tínhamos ideia que os resultados seriam tão significativos. Tendo em vista que os medicamentos atualmente disponíveis na terapêutica estão se mostrando cada dia menos eficazes, estes resultados podem encorajar o uso destes nanobastões, por exemplo, na produção de uma nova formulação farmacêutica, especialmente para casos de inflamação”, diz Felipe La Porta, que é o autor correspondente da pesquisa que foi recentemente publicado pela equipe de pesquisadores no Journal of Materials Chemistry C (fator de impacto 6,641).
Além de comprovar o potencial do material para essa aplicação do campo da saúde, os autores do artigo verificaram experimentalmente a capacidade dos nanobastões de degradarem um corante químico bastante encontrado em efluentes industriais, chamado azul de metileno. Para esta aplicação, as nanoestruturas com 2% de manganês foram as mais eficientes, decompondo completamente o corante em 10 minutos. “Devido à simplicidade de fabricação deste sistema aliado a suas excelentes propriedades, este material também é promissor para limpeza de diversos poluentes ambientais, e pode ser facilmente recuperado no final deste processo”, comenta o professor da UTFPR.
No centro, aglomerado de nanobastões de germanato de zinco com 4% de manganês. Ao redor, em sentido horário: medidas de fotoluminescência das amostras; representação da estrutura do germanato de zinco dopado com manganês; mecanismo de degradação de poluentes e medidas da degradação do azul de metileno; ação anti-inflamatória dos nanobastões e de outros tratamentos em pata de rato com edema induzido.
As propriedades superiores que a equipe científica brasileira encontrou nos nanobastões com manganês podem ser relacionadas aos defeitos estruturais observados nessas amostras. De fato, a rede tridimensional de átomos que forma o germanato de zinco é cristalina, ou seja, organizada em padrões regulares. Com a introdução de manganês, irregularidades são geradas, e delas surgem novas propriedades.
O artigo científico que reporta este trabalho foi selecionado para compor a coleção Materials and Nano Research in Brazil, preparada pela Royal Society of Chemistry em comemoração do XVIII B-MRS Meeting, e, portanto, pode ser acessado sem custo até 15 de outubro deste ano, aqui.
O trabalho foi realizado com financiamento de agências brasileiras de apoio à pesquisa: as federais CNPq e Capes, e as estaduais Fundação Araucária, Fapesp e Fapemig.
A Royal Society of Chemistry (RSC) preparou uma coleção online de artigos de autores brasileiros em comemoração ao XVIII B-MRS Meeting (Balneário Camboriú, 22 a 26 de setembro de 2019). A RSC é apoiadora desta edição do evento anual da SBPMat.
Intitulada Materials and Nano Research in Brazil, a coleção reúne 55 artigos publicados em periódicos da editora RSC entre 2017 e 2019. Todos os artigos selecionados podem ser acessados sem custo (open access) até 15 de outubro de 2019.
Boletim da
Sociedade Brasileira
de Pesquisa em Materiais
Edição nº 83. 31 de julho de 2019.
Nota Pública da SBPMat
A diretoria e o conselho da Sociedade Brasileira de Pesquisa em Materiais (SBPMat) se solidarizam com o Diretor do INPE, Prof. Ricardo Magnus Osório Galvão, sobre comentários infundados do Sr. Presidente Jair Bolsonaro (…)
– Eleições na SBPMat. A comissão eleitoral já homologou as candidaturas. Conheça a chapa candidata à Diretoria Executiva e a lista de sócios que mostraram interesse em ser votados para o Conselho Deliberativo, aqui. O período para votação será de 22 de setembro a 04 de outubro 2019. Sócios com anuidade em dia poderão votar online em suas áreas de sócios no portal da SBPMat, ou presencialmente durante o XVIII B-MRS Meeting, no local do evento.
– XIX B-MRS Meeting + IUMRS-ICEM 2020 (Foz do Iguaçu, Brasil, 30 de agosto a 3 de setembro de 2020). A Sociedade Brasileira de Pesquisa em Materiais (SBPMat/ B-MRS) e a União Internacional de Sociedades de Pesquisa em Materiais (IUMRS) convidam a comunidade científica internacional a enviar propostas de simpósio para o evento conjunto que agregará o evento anual da SBPMat e a conferência internacional de materiais eletrônicos da IUMRS. A chamada de simpósios está aberta até 31 de outubro de 2019. Saiba mais, aqui.
Artigo em Destaque
Uma equipe científica multidisciplinar desenvolveu em laboratórios brasileiros um nanomaterial com interessantes propriedades magnéticas, luminescentes e bioquímicas, e verificou sua baixa toxicidade em testes in vivo realizados com embriões de peixe-zebra. O nanomaterial é uma nanoplataforma promissora para o desenvolvimento de aplicações nas áreas de saúde, biotecnologia e meio ambiente. Um artigo sobre o trabalho foi recentemente publicado, com destaque em capa, na ACS Applied Nano Materials. Saiba mais.
Cientista em Destaque
Entrevistamos a professora Julia Greer, do California Institute of Technology (EUA). Autora de contribuições seminais à nanomecânica, a cientista, que também é pianista, atualmente desenvolve inovadoras estruturas tridimensionais baseadas em nanomateriais, e estuda de que maneira suas propriedades superiores surgem da interação entre as escalas atômica, nano e micro. No XVIII B-MRS Meeting, ela proferirá uma palestra sobre esses interessantes metamateriais. Veja nossa entrevista.
Da Ideia à Inovação
A Innoma pretende espalhar inovação na indústria brasileira. A startup desenvolve tecnologias para produzir nanoativos de alta eficiência que podem ser usados como matérias-primas por empresas de diversos segmentos. O primeiro produto, um nanoativo de prata antimicrobiano, já está sendo comercializado. Veja nossa matéria sobre a Innoma, aqui.
Novidades dos Sócios SBPMat
– Artigo de sócio da SBPMat Oswaldo Luiz Alves (IQ – Unicamp) é selecionado para compor coleção da Royal Society of Chemistry. Saiba mais.
XVIII B-MRS Meeting/ Encontro da SBPMat
(Balneário Camboriú, SC, 22 a 26 de setembro de 2019)
Inscrições. O período para pagar a taxa de inscrição com desconto encerra no dia 2 de agosto. Além disso, sócios da SBPMat têm descontos especiais na inscrição, sendo que é possível pagar a anuidade de sócio no ato da inscrição. Saiba mais, aqui.
Programa. Está no ar a programação resumida do evento, com as atividades técnicas e sociais, e a distribuição de sessões orais e de pôster. Veja aqui.
Impressão de pôsteres. É possível enviar o arquivo do pôster por e-mail e retirar a impressão no local do evento. Saiba mais.
Local do evento. O encontro será realizado no Hotel Sibara Flat & Convenções, localizado no centro da cidade, próximo a hotéis, restaurantes e lojas, e a apenas 100 metros do mar. Saiba mais,aqui.
Local da abertura. A cerimônia de abertura, a palestra memorial e o coquetel de boas-vindas serão realizados no dia 22 de setembro (domingo) no complexo Cristo Luz, uma das principais atrações turísticas da cidade. Haverá transporte para o local, saindo do Hotel Sibara a partir das 17:00. Conheça o local, aqui.
Palestra memorial. A tradicional Palestra Memorial Joaquim da Costa Ribeiro será proferida pela professora Yvonne Primerano Mascarenhas (IFSC – USP). Saiba mais sobre a palestrante homenageada, aqui.
Festa do evento. Será realizada no lounge do Green Valley, um destacado clube noturno. Saiba mais sobre o Green Valley, aqui. A festa contará com a impactante banda Brothers. Assista à Brothers,aqui.
Cidade-sede. Balneário Camboriú (SC) é um importante destino turístico que oferece praias urbanas e agrestes, ecoturismo e esportes de aventura, além de passeios de barco, bondinho, bicicleta e teleférico – tudo dentro de uma paisagem única que combina serra, mar e arranha-céus. O visitante tem acesso a muitíssimas opções de gastronomia, hospedagem e compras, bem como à agitada vida noturna que se destaca no cenário brasileiro.
Hospedagem, passagens, transfers etc. Confira as opções do hotel e da agência oficial do evento,aqui.
Palestras plenárias. Destacados cientistas de instituições da Alemanha, Espanha, Estados Unidos e Itália proferirão palestras plenárias sobre temas de fronteira no evento. Também haverá uma plenária do brasileiro Antônio José Roque da Silva, diretor do CNPEM e do projeto Sirius. Saiba mais sobre as plenárias, aqui.
Simpósios. 23 simpósios propostos pela comunidade científica internacional compõem esta edição do evento. Veja a lista de simpósios, aqui.
Organização. O chair do evento é o professor Ivan Helmuth Bechtold (Departamento de Física da UFSC) e o co-chair é o professor Hugo Gallardo (Departamento de Química da UFSC). O comitê de programa é formado pelos professores Iêda dos Santos (UFPB), José Antônio Eiras (UFSCar), Marta Rosso Dotto (UFSC) e Mônica Cotta (Unicamp). Conheça todos os organizadores, aqui.
Expositores e patrocinadores. 41 empresas e instituições já confirmaram participação no evento e apoio/patrocínio. Organizações interessadas em participar podem entrar em contato com Alexandre no e-mail comercial@sbpmat.org.br.
Dicas de Leitura
– Fatores de impacto 2018: resultados dos periódicos da ACS Publications. Saiba mais.
– Cientistas do Brasil desenvolvem nanocápsulas de membrana celular tumoral que transportam fármacos pelo organismo e os liberam em tumores para combater o câncer combinando hipertermia e quimioterapia (paper da Applied Bio Materials). Saiba mais.
Oportunidades
– Pós-doc na Alemanha em projeto internacional sobre revestimentos de hidroxiuretanas para implantes de PEEK modificados com enzimas. Saiba mais.
– Pós-doc no CTNano (UFMG) em dispositivos de grafeno para sensoriamento de gases (parceria com Petrobras). Saiba mais.
– Doutorado em membranas com bolsa CNPq na UFPR. Saiba mais.
Eventos
II Simpósio Multidisciplinar em Materiais do Centro-Oeste. Caldas Novas, GO (Brasil). 7 a 9 de agosto de 2019. Site.
20th International Sol-Gel Conference. São Petersburgo (Rússia). 25 a 30 de agosto de 2019. Site.
2nd CINE-M2P workshop. São Paulo, SP (Brasil). 26 e 27 de agosto de 2019. Site.
V Reunião Anual sobre Argilas Aplicadas. Franca, SP (Brasil). 28 a 30 de agosto de 2019. Site.
21st Materials Research Society of Serbia Annual Conference (YUCOMAT 2019) and 11th IISS World Round Table Conference on Sintering (WRTCS 2019). Herceg Novi (Montenegro). 2 a 6 de setembro de 2019. Site.
R2B Research to Business Itália-Rio de Janeiro. Rio de Janeiro, RJ (Brasil). 19 de setembro de 2019. Site.
XVIII B-MRS Meeting. Balneário Camboriú, SC (Brasil). 22 a 26 de setembro de 2019.Site.
XL CBRAVIC (Brazilian Congress on Vacuum Applications in Industry and Science). 7 a 11 de outubro de 2019.Site.
XII Brazilian Symposium on Glass and Related Materials. Lavras, MG (Brasil). 22 a 25 de outubro de 2019.Site.
19th Brazilian Workshop on Semiconductor Physics. Fortaleza, CE (Brasil). 18 a 22 de novembro de 2019.Site.
XIX B-MRS Meeting + 2020 IUMRS ICEM (International Conference on Electronic Materials). Foz do Iguaçu, PR (Brasil). 30 de agosto a 3 de setembro de 2020.Site.
Siga-nos nas redes sociais
Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Fe3O4@SiO2 Nanoparticles Concurrently Coated with Chitosan and GdOF:Ce3+,Tb3+ Luminophore for Bioimaging: Toxicity Evaluation in the Zebrafish Model. Latif U. Khan, Gabriela H. da Silva, Aline M. Z. de Medeiros, Zahid U. Khan, Magnus Gidlund, Hermi F. Brito, Oscar Moscoso-Londoño, Diego Muraca, Marcelo Knobel, Carlos A. Pérez, Diego Stéfani T. Martinez. ACS Appl. Nano Mater. 2019, 2,6, 3414-3425. https://doi.org/10.1021/acsanm.9b00339.
Nanoplataforma magneto-luminescente de baixa toxicidade
Capa do periódico científico destacando o artigo.
Em um trabalho de pesquisa realizado em uma série de laboratórios brasileiros, uma equipe científica multidisciplinar desenvolveu um nanomaterial magnético, luminescente e capaz de se ligar quimicamente a moléculas de interesse, como fármacos ou proteínas. O nanomaterial também apresentou baixa toxicidade em testes com organismos vivos. Tendo esse conjunto de características, o novo material pode ser visto como uma nanoplataforma multifuncional, promissora para o desenvolvimento de diversas aplicações, principalmente nas áreas de biotecnologia, saúde e ambiente. O estudo foi reportado em artigo publicado na ACS Applied Nano Materials (periódico da American Chemical Society lançado em 2018), e destacado em capa da edição de junho da revista.
As propriedades dessa nanoplataforma provêm da presença de diversos compostos e elementos com propriedades distintas: nanopartículas de óxido de ferro (Fe3O4, conhecido como magnetita) responsáveis pelo magnetismo; íons de elementos lantanídeos (Gd3+, Ce3+ e Tb3+, conhecidos como terras raras) responsáveis pela luminescência ou emissão de luz, e quitosana (biopolímero obtido a partir do exoesqueleto de crustáceos), fundamental para propiciar, na superfície na nanoplataforma, as ligações químicas com moléculas externas de interesse.
A nanoplataforma foi desenvolvida no Laboratório Nacional de Nanotecnologia do Centro Nacional de Pesquisa em Energia e Materiais (LNNano – CNPEM). O processo utilizado para sua síntese abrange uma série de etapas. Inicialmente, as nanopartículas de óxido de ferro que formam o núcleo das nanoplataformas são sintetizadas e revestidas com dióxido de silício (SiO2). Depois, os elementos luminescentes e a quitosana são incorporados às nanopartículas formando uma camada externa. O resultado são nanoplataformas de aproximadamente 170 nm de diâmetro (em média), denominada Fe3O4@SiO2/GdOF:xCe3+,yTb3+.
À esquerda, ilustração esquemática de uma das nanoplataformas desenvolvidas, mostrando seu núcleo e a camada externa. No quadro preto à direita, fotografias de soluções aquosas com nanoplataformas. À esquerda do quadro, pode ser visto o efeito de se irradiar a solução com luz ultravioleta: as nanoplataformas emitem luz verde. À direita, distingue-se o efeito da aplicação de um campo magnético: as nanoplataformas se concentram perto do ímã.
Para estudar as propriedades magnéticas e luminescentes da nanoplataforma e caracterizar sua estrutura e morfologia, participaram do trabalho grupos de pesquisa da Universidade Estadual de Campinas (Unicamp) e da Universidade de São Paulo (USP), especialistas nesses estudos.
Além disso, os autores principais do trabalho decidiram avaliar a toxicidade das nanoplataformas com relação a organismos vivos – um passo fundamental quando se pensa em aplicações na área de saúde ou meio ambiente. Os cientistas optaram por realizar um ensaio in vivo bastante consolidado no meio acadêmico, no qual embriões de peixe-zebra, mais conhecidos pelo nome em inglês zebrafish (nome científico Danio rerio), são expostos ao material cuja toxicidade se deseja avaliar. Esses peixes de água doce, de fato, apresentam alta semelhança genética com a espécie humana (cerca de 70%) e, ao mesmo tempo, são mais baratos e fáceis de se estudar do que camundongos ou ratos , entre outras vantagens.
No ensaio de toxicidade, algumas dezenas de ovos de peixe-zebra recém-fecundados foram colocados em meio aquoso contendo as nanoplataformas em diversas concentrações. Os embriões foram examinados em diferentes momentos de seu desenvolvimento usando um microscópio óptico para conferir se ocorria mortalidade, malformação, edema ou mudanças no tamanho. Os testes incluíram embriões com e sem córion (membrana que protege o embrião nos estágios iniciais do desenvolvimento). Os resultados do ensaio, que foi realizado no LNNano, mostraram que as nanoplataformas, mesmo em elevadas concentrações (100 mg/L), apresentam baixa toxicidade para todos os grupos de embriões.
Embriões de zebrafish utilizados nos ensaios de nanotoxicidade. (A) Embriões de 24 horas de idade, na presença e ausência do córion, onde setas indicam o córion (membrana que protege os embriões nos estágios iniciais de desenvolvimento). (B) Embriões após 96 horas de desenvolvimento.
“Este trabalho traz uma contribuição inédita envolvendo a avaliação da toxicidade de nanomateriais híbridos utilizando o modelo zebrafish, um promissor método alternativo em nanotoxicologia, e a influência do córion”, destaca Diego Stéfani Teodoro Martinez , pesquisador do CNPEM no LNNano e um dos autores correspondentes do artigo.
Os embriões também foram analisados no Laboratório Nacional de Luz Síncrotron (LNLS – CNPEM) com o objetivo de verificar a distribuição e concentração das nanoplataformas no organismo dos embriões. Para isso, os cientistas utilizaram a técnica de microscopia por fluorescência de raios X com luz sincrotron (SXRF), a qual consegue fazer um mapeamento preciso de determinados elementos químicos em sistemas biológicos. Essa técnica está disponível em uma das estações experimentais do LNLS, coordenada pelo pesquisador Carlos Alberto Pérez, que é um dos autores correspondentes do artigo.
Análises de microscopia de fluorescência de raios X com luz síncrotron (SXRF) dos embriões de zebrafish após exposição à nanoplataforma por 72 horas. (A) Imagem de microscopia óptica dos embriões; (B) Imagem de SXRF dos embriões demonstrando a acumulação da nanoplataforma no trato intestinal; e (C) Intensidade de fluorescência de raios-X ao longo da linha branca indicada em (B), demonstrando a co-localização espacial dos elementos Fe e Gd no trato intestinal dos embriões de zebrafish.
As análises por SXRF mostraram que as nanoplataformas tinham se acumulado nos embriões em função do tempo de exposição, com concentrações maiores no trato gastrointestinal no caso dos embriões que já tinham a boca desenvolvida – um resultado que pode ser significativo, por exemplo, no contexto de aplicações na área de saúde envolvendo a ingestão das nanoplataformas por via oral.
O estudo foi realizado no contexto de um projeto de pós-doutorado do bolsista Latif Ullah Khan, também autor correspondente do artigo. A realização do projeto, afirma Martinez, foi possível graças à disponibilidade de competências e facilidades nos laboratórios multiusuários do CNPEM. Entretanto, parcerias com outros laboratórios também foram fundamentais, acrescenta o pesquisador do CNPEM. Na Unicamp, o grupo do professor Marcelo Knobel realizou os estudos de magnetometria. Na USP, os grupos dos professores Hermi Felinto Brito e Magnus Gidlund fizeram os estudos de luminescência e funcionalização. Finalmente, o professor Diego Muraca (Unicamp) e o pesquisador Jefferson Bettini (CNPEM) contribuíram com a caracterização estrutural e morfológica por técnicas de microscopia eletrônica de transmissão.
“Este artigo surgiu com a união da experiência de diferentes grupos brasileiros; um trabalho interdisciplinar na fronteira do conhecimento em nanobiotecnologia e nanotoxicologia”, diz Martinez, acrescentando que um dos principais desafios do trabalho foi a integração de conhecimentos e técnicas de diferentes áreas, como Materiais, Biologia e Toxicologia, no qual atuaram como coordenadores ele mesmo e Carlos Pérez.
Autores principais do artigo. A partir da esquerda: Latif Khan, Carlos Pérez e Diego Stéfani Martinez.
O estudo contou com apoio financeiro das agências brasileiras CAPES (inclusive por meio do acordo CAPES-CNPEM), FAPESP e CNPq (inclusive por meio do INCT-Inomat); do Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) por meio do SisNANO, e TheWorld Academy of Sciences for the advancement of science in developing countries (TWAS). O estudo também contou com apoio financeiro do Centro Brasil-China Pesquisa e Inovação em Nanotecnologia (CBC-Nano).
Aplicações: biotecnologia, saúde e meio ambiente
De acordo com Martínez, a nanoplataforma desenvolvida abre perspectivas para aplicações em biotecnologia, saúde e meio ambiente, como, por exemplo, sistemas para imageamento de tecidos biológicos e células, kits para diagnósticos médicos e sistemas para detecção e remediação de poluentes ambientais.
As aplicações aproveitariam o interessante conjunto de propriedades da nanoplataforma. Por ser magnéticas, usando um ímã externo, as nanoplataformas poderiam ser direcionadas e retidas em determinado tecido biológico ou isoladas de, por exemplo, sangue ou águas contaminadas. Além disso, a luminescência do nanomaterial permitiria a visualização das nanoplataformas dentro dos tecidos biológicos e células de interesse. Finalmente, a presença de quitosana propiciaria a ligação química de fármacos e outras moléculas que serviriam ao diagnóstico e/ou tratamento de doenças. “Todavia, ainda é preciso muitos estudos para aplicações reais e comercialização desta nanoplataforma, uma vez que se trata de um novo material e que precisa ser testado em diferentes modelos futuramente”, esclarece Martinez.
As if she were an architect of the nanoscale, Prof. Julia R. Greer, together with her research group at Caltech (California Institute of Technology) creates three-dimensional structures based on innovatively engineered nanomaterials. The result are metamaterials (artificial materials in which properties depend not only on chemical composition but also on the specific arrangements of nano-sized components into an architected structure) with superior properties. For example, structures with simultaneous extreme lightness and strength or thermal conductivity. Professor Greer and her group develop methods to create such 3D nano-architected materials using an approach called additive manufacturing, and to understand how these properties are generated as a result of multi-scale interactions: atomic, nano and micro scales.
Julia Rosolovsky Greer was born in Moscow (Russia). She began her musical education at the age of 6 and started attending the renowned Gnessin School of Music in Moscow in 5th grade; concurrently in 7th grade she transferred to a Math high school, which in a way served as a foreshadow of her “double-career” as a scientist and a pianist. At 16, she moved with her family to the United States, where she studied and works in three of the top five universities in the world according to the rankings available. For her undergraduate studies she attended the Massachusetts Institute of Technology (MIT), where she obtained in 1997 her major in Chemical Engineering and a minor in Advanced Music Performance. After that, Greer was accepted at Stanford University to undertake graduate studies in Materials Science and Engineering. In 2000, she obtained a M.S. degree, but was discouraged by her at-the-time-supervisor to follow a scientific career. After working for a few years at Intel, Greer decided to return to Stanford to get a Ph.D. Working under the guidance of materials scientist Prof. William D. Nix, who she considers an incredible mentor, Julia made a seminal contribution to nanomechanics and obtained her Ph.D. degree in 2005. After that, she was a postdoctoral fellow at PARC until she joined the faculty of Caltech in 2007, where she is currently a Ruben F. and Donna Mettler Professor of Materials Science, Mechanics, and Medical Engineering.
Professor Greer has an h-index of 56 and over 13,000 citations, according to Google Scholar. She has received a couple of dozen distinctions from scientific institutions, journals and media, and has given more than 100 invited lectures, including named lectures, at scientific events, universities, World Economic Forums and TEDx events. Greer serves as an associate editor for Nano Letters and Extreme Mechanics Letters.
This scientist and concert pianist will be in September in Balneário Camboriú (Brazil), giving a plenary lecture at the XVIII B-MRS Meeting.
See our mini interview with Professor Julia Greer.
B-MRS Newsletter: – In your PhD research, you developed an innovative method to measure mechanical properties of materials at the nanoscale and with it you have made an amazing discovery, right? We would like you to tell us, as briefly as possible, the history of this work, its results and its impact.
When I first arrived at Stanford to start my Ph.D. research with the amazing mentor, Professor W.D. Nix, he vaguely suggested that I should learn how to make small things to test mechanically and see if I could figured out how to use the new-at-the-time instrument, the Focused Ion Beam (FIB). Having worked at Intel for a couple of years, I had learned to do what the Boss tells you to do, so I had learned a very new at the time technique that carves nano-sized shapes by etching the parent material with Ga+ ions. Soon, I had become quite proficient at making nano-cylinders, whose diameters ranged from 1/10,000th of your hair diameter to something like half a thickness of a sheet of paper. I then figured out how to compress them using an instrument called nanoindenter to assess their strength and modulus, and we discovered that as we made those pillars smaller, i.e. reducing the diameter from several microns to a few hundred nanometers, resulted in much higher stresses, i.e. they were able to exhibit much greater strengths. I spent the rest of my 3-year Ph.D. trying to figure out how and why that happened. Together with Prof. Nix, we stumbled upon a pretty impactful finding that smaller was, in fact, stronger, because of the specific behavior and interactions of defects called dislocations within very small, nano- and micro-sized volumes. We did all this work on single crystals of gold, i.e. a relatively malleable metal at the macroscale, whose properties are well understood. When its dimensions were reduced to ~200 nm, it became as strong as steel, exhibiting compressive (and we showed later, tensile, too) stresses close to 800 MPa or even higher; for comparison, the bulk strength of gold is roughly 25 MPa, so it’s 50 times higher! Since then many other research groups have confirmed this type of size effect in many different metals, using different experimental and computational techniques and materials, so it had turned out to be not only a reproducible but seemingly ubiquitous size effect in many different material systems. It has significant implications for how to properly understand material behavior at the nano- and microscale.
B-MRS Newsletter: – In your plenary talk at the B-MRS Meeting, you will talk about three-dimensional nano-architected meta-materials. Could you please choose one of your favorite metamaterials, briefly describe how it is made and mention its (possible) applications?
Well, our meta-materials are like children, I don’t really have a favorite one. What I will do is describe how we usually make these materials, what are their solid constituents – they are all so different: metals, semiconductors, polymers, carbon, ceramics, etc. – and what kind of properties they exhibit. I will describe quite a bit of chemical synthesis, mechanical properties, and show (hopefully 😉 ) interesting visual examples of their response to various stimuli. I am looking forward to the conference!
For more information on this speaker and the plenary talk she will deliver at the XVIII B-MRS Meeting, click on the speaker’s photo and the title of the lecture here https://www.sbpmat.org.br/18encontro/#lectures.