Processo Seletivo para pós-graduação em Ciência e Engenharia de Materiais, USP/São Carlos.

Inscrições abertas na pós-graduação em Ciência e Engenharia de Materiais, USP/São Carlos.

O Programa recebeu nota 6 na última avaliação da CAPES e oferece vagas de mestrado e doutorado.

Inscrições até 12/11/2017.

http://www.smm.eesc.usp.br/pgrcem/index.php/75-processo-seletivo-1-semestre-de-2018

See folder in English, here.

People from our community: interview with Angelo Fernando Padilha.

Prof. Angelo Fernando Padilha (USP).
Prof. Angelo Fernando Padilha (USP).

Angelo Fernando Padilha was born on August 30, 1951 in Novo Horizonte, a small city in the state of São Paulo, Brazil. He attended primary school and the first years of high school in his native city, and when he was 16 years old he moved to São Carlos, some 170 km from Novo Horizonte, to enroll in a “scientific course” that covered the last three years of secondary education and that provided the student a more in depth education than the “classical course” in Mathematics, Physics, Chemistry and Biology.

In 1970, he enrolled in the just created undergraduate course in Materials Engineering at the Federal University of São Carlos (UFSCar). He graduated in 1974. The following year he participated in a specialization in Nuclear Science and Technology of the Brazilian National Nuclear Energy Commission (CNEN), offered at the Institute of Atomic Energy (IEA), currently the Nuclear and Energy Research Institute (IPEN), in the city of Sao Paulo. That same year he began working at IEA with research and development of materials for nuclear reactors. Also in 1975, Padilha began his master’s degree in Metallurgical Engineering at the University of São Paulo (USP), which he concluded in 1977 with the approval of his dissertation on recovery and recrystallization in aluminum alloy.

In 1978, still with the IEA, he began his PhD in Mechanical Engineering at the Universität Karlsruhe, now Karlsruher Institut für Technologie (KIT), Germany, obtaining a Doktor-Ingenieur diploma in 1981 after defending his thesis on precipitation in stainless steel, used in the fuel element of the German fast breeder reactor SNR-300. The following year, at the Max Planck Institut für Metallforschung in Stuttgart, Germany, Padilha participated in a three-month specialization in Materials Science in which he studied phase diagrams involving refractory metals.

From 1984 to 1986, in addition to his research activities at IPEN, he was professor in the undergraduate course in Metallurgical Engineering at the Mackenzie Presbyterian University, also in São Paulo.

From 1987 to 1988, he was a postdoctoral researcher at Ruhr Universität Bochum (RUB) in Germany.

In 1988, after 13 years working at IPEN, Angelo Padilha became a lecturer at the Department of Metallurgical and Materials Engineering at the Polytechnic School of the University of São Paulo (EPUSP). At the Polytechnic he became Adjunct Professor in 1989, and in 1993 he was approved as a Full Professor.

In 1993, he returned to RUB, Germany, for a specialization in duplex stainless steels. In 1998, he held a second postdoctoral fellowship at the University of Wales Swansea, now Swansea University, UK.

From July 2011 to November 2015, USP granted him a leave of absence to hold management positions in agencies linked to the Ministry of Science, Technology and Innovation (MCTI), currently Science, Technology, Innovations and Communications (MCTIC). During this period he was president of CNEN and of its deliberative commission, president of the National Fusion Network – RNF (created in 2006 to coordinate and expand nuclear fusion research in Brazil) and president of the board of directors of two nuclear companies linked to the MCTI , Nuclebras Heavy Equipment (NUCLEP) and Nuclear Industries of Brazil (INB). He was also a member of the sector funds coordination committee and from 2012 to 2014 he was a member of the technical-scientific council of the Brazilian Center for Research on Physics (CBPF).

He is the author of more than 100 papers published in indexed scientific journals and about twenty books and book chapters, such as the well-known in Brazil textbook “Materiais de Engenharia.” His academic work has approximately 2,800 citations, according to Google Scholar. He has supervised 25 master’s dissertations and 24 doctoral theses.

Throughout his professional career, Padilha received several awards from the Presidency of the Republic, the Brazilian Navy and the Brazilian Association of Metallurgy and Materials (ABM), among other entities.

Currently, Angelo Padilha is a full professor at EPUSP where he teaches undergraduate and graduate courses and carries out research on metals. He has been a full member of the Academy of Sciences of the State of São Paulo since 2012 and a senior level CNPq productivity grant holder (level awarded to active scientists in research and teaching of human resources who have been 1 A or B level for a minimum of 15 years). His h index is 27, according to Google Scholar.

Our interview with the researcher.

SBPMat Bulletin: Tell us what led you to study materials engineering in the first group of Materials Engineering in Latin America (UFSCar, 1970-1974) and then become a researcher in the field.

Angelo F. Padilha: I had already decided to be an engineer while in high school, but I was not sure about which engineering modality I would choose. After completing high school in my hometown (Novo Horizonte, SP), I went to São Carlos to begin the scientific course. São Carlos was fundamental for my academic background. The city offered everything a 16-year-old boy could wish for! In the student environment there was plenty of culture, debate and rebelliousness. I’m talking about the beginning of 1967. The worst period of the military regime that had started in 1964 was yet to come.

My aunt told me about the creation of a materials engineering course in São Carlos after reading an article or an interview by Professor Sérgio Mascarenhas in the city newspaper, which made an impression. It was the first time I had heard of this Engineering modality. The entrance examination aroused my curiosity as it was very different from the exams of that time. I did very well and later I enrolled. The first group of materials engineering at UFSCar consisted of 50 students: 2 girls and 48 boys. The university had been installed on a farm of more than 200 acres, not far from the city, and the initial facilities were adapted. It was a calm and warm environment. Today, I can better evaluate what that meant and I am convinced that the course as a whole was excellent. The course offered us a consistent and modern scientific basis. The experimental classes were of the highest quality I know of for an engineering course. Thanks to the scientific and technological base acquired during my five years at UFSCar, I was able to take full advantage of the master’s degree in metallurgical engineering at the Polytechnic School and then the PhD at the Faculty of Mechanical Engineering at the University of Karlsruhe. Many students in our class carried out postgraduate studies at top universities in Brazil and abroad.

SBPMat Bulletin: From your perspective, what are your main contributions to the materials field? Please give us a brief description of the contributions you believe had the greatest or most outstanding impacts considering all aspects of your scientific activity.

Angelo F. Padilha: The materials area did a lot more for me than I did for it. I have never worked on the frontier of knowledge, nor have I sought scientific niches. I use modern scientific concepts and advanced experimental techniques to study, understand and perfect traditional and widely used materials such as steels and aluminum alloys. For example, my most read and cited paper (in co-authorship with Paulo Rangel Rios) is a review paper published in 2002, which discusses the microstructure of austenitic stainless steels; a material discovered in 1911 which is still widely used.

I consider writing technical books in Portuguese as a gratifying commitment. I published my first book on techniques of microstructural analysis, in co-authorship with Francisco Ambrózio Filho, in 1985. I am very grateful to see my books distributed throughout several libraries in the country. Although they are all very simple, they are read as well as cited.

I truly enjoy teaching, I have had hundreds, maybe thousands of students and have supervised dozens of students. To this day I am pleased to mentor students and to teach first-year materials science classes at Poli as well as more specific subjects in the final years of undergraduate and graduate studies. I believe the interaction with the industry is fundamental for a professor and researcher in the area of engineering. More than half of the work I did was in cooperation with the industry.

SBPMat Bulletin: Your trajectory in research and management in institutions of the nuclear energy segment is significant. From your perspective, what are the research materials challenges for the nuclear area?

Angelo F. Padilha: My first job as an engineer was in the nuclear area, in the Coordination of Materials Science and Technology (CCTM) of the Institute of Atomic Energy (IEA), now IPEN-CNEN. The group was created and headed by Professor Shigueo Watanabe. It consisted of about 50 people, nearly all solid-state physicists. My interaction with them was an important school for me.

The applications of nuclear technology include not only nuclear power generation, but also numerous applications in industry, medicine, agriculture, in addition to nuclear propulsion. For example, the number of people who have already benefited from the radioactive drugs produced at IPEN is comparable to the number of people who benefit from the electricity generated by the reactors installed in Angra dos Reis.

Almost all materials used in the construction of a nuclear reactor, a nuclear powered submarine, or a centrifuge for enriching uranium isotopes are materials that were not developed for these applications. In the 1950s, when Americans built the first nuclear-power generating reactor and the first nuclear-powered submarine, in terms of materials, they had to primarily develop uranium and zirconium technology. Hundreds of other materials crucial for the aforementioned applications were already available or only needed some adaptation.

On the other hand, nuclear technologies have some particular characteristics: i) they are dominated by few countries; ii) many of them cannot be purchased on the market; iii) there is little international cooperation, especially in sensitive nuclear technologies; iv) they are complex technologies and require a great deal of human and economic resources to be developed; v) they are generally mature technologies, mastered and perfected over decades. By mastering a mature technology a country can quickly turn it into geopolitical or economic advantage.

Over the last sixty years Brazil has built a nuclear program that can be classified as one of the ten or twelve most important on the planet. Additionally, we have large uranium reserves. From a materials point of view, we still depend on imports, which often encounter enormous obstacles. I believe the biggest challenges and opportunities in the area of materials for nuclear applications lie in national production, in adaptations and in improvements. Future innovations are more likely to be incremental than radical.

SBPMat Bulletin: Leave a message for our readers who are initiating their scientific careers.

Angelo F. Padilha: Go after a consistent scientific education, the rest will be a consequence. A researcher with a deep understanding of the fundamental disciplines such as thermodynamics, crystallography and phase transformation will always be welcome in any research group. Do not be discouraged when facing our gargantuan and tangled bureaucracy.

SBPMat Bulletin: Your name appears in the “interdisciplinary materials commission,” created at the end of 2000 to make possible the foundation of SBPMat. Could you share some recollections or comments about your participation in the creation this society?

Angelo F. Padilha: I believe SBPMat was created at the right time and with the right profile. I consider this to be the main reason for its enduring success. Overall, the “Interdisciplinary Materials Commission” contributed in some way; some more than others. I am certainly among the least contributors. I think the articulating ability of Guillermo Solórzano and the scientific leadership of Edgar Zanotto were decisive. I am proud to have participated in the creation of SBPMat.

 

Victor C. Pandolfelli receives for the third time the ACerS award for the best paper on refractory ceramics.

Prof. Victor Carlos Pandolfelli (UFSCar).
Prof. Victor Carlos Pandolfelli (UFSCar).

Since the 1980s, The American Ceramic Society (ACerS) has selected and awarded publications on high temperature ceramics that have most contributed knowledge to the field and has honored them with the Alfred Allen Award.

There is no submission for this award, since the choice is based on queries in the journals indexed in the Web of Science, which are analyzed by a team of experts.

This year, in its 18th edition, the award was bestowed to an article published in the journal Ceramics International, authored by three researchers from the Brazilian Federal University of São Carlos (UFSCar), Professor Victor Carlos Pandolfelli and the researchers Ana Paula da Luz and Mariana Braulio, besides Analía Tomba Martinez, a researcher from the Research Institute of Materials Science and Technology (INTEMA), in Argentina. Victor C. Pandolfelli and Mariana Braulio had already received this award in two previous editions, and thus far they have been the only researchers to have been honored three times with the ACERS Alfred Allen Award since it has been created.

The award was received by the authors during the 53rd Annual Symposium on Ceramic Refractories, held in late March in St Louis (United States).

On this occasion, Professor Pandolfelli presented an invited lecture on high temperature ceramics inspired by nature.

  • See the list of award-winning papers in all editions of the Alfred Allen Award, here.
  • See the award-winning paper in the 2017 issue, here.
  • See the article on the ACerS website about the symposium, with an account of Professor Pandolfelli’s lecture, here.

Interviews with plenary speakers of the XV Brazil-MRS Meeting: Lei Jiang (Chinese Academy of Science, China).

By studying spider webs, fish scales, lotus leaves and cactus, the Chinese scientist Lei Jiang (Technical Institute of Physics and Chemistry – Chinese Academy of Science) and his group have developed artificial systems that can be extremely useful for human being. For example, surfaces that exhibit superphobic or superphilic properties concerning water, oil and air. Professor Jiang´s surfaces and interfaces can also be intelligent and switch from superhydrophilicity to superhydrophobicity.

Prof. Jiang will come to Brazil at the end of September to present all these discoveries, and also the concept of “binary cooperative complementary nanomaterials” (BCCNMs), in a plenary lecture of the XV Brazil-MRS Meeting.

Lei Jiang obtained a B.S. in solid-state physics in 1987 and a M.S. in physical chemistry in 1990 from Jilin University of China. Then, he embraced doctoral studies in the same university. After a period in the University of Tokyo (Japan), he obtained his Ph.D. diploma in physical chemistry from Jilin University of China. From 1994 to 1996, he was postdoctoral fellow in the Akira Fujishima‘s group at Tokyo University of Science. Then, he remained in Japan as a researcher of Kanagawa Academy of Sciences and Technology. In 1999, he joined, as a Professor, the Institute of Chemistry at CAS. From 2004 to 2006, he also served as Chief Scientist of the National Center for Nanoscience and Technology of China.

Prof. Jiang (H index=92) is author of two books, 8 review papers and book chapters, and over 500 papers including articles in Nature, Nature Nanotechnology, Nature Materials, among many other high-impact journals. He holds dozens of granted patents and patent applications. His publications have been cited more than 38,000 times.

Lei Jiang is academician of CAS since 2009, foreign member of the US National Academy of Engineering since 2016, fellow of the Royal Society of Chemistry since 2010, and fellow of The World Academy of Sciences (TWAS) since 2012. Jiang acts in the boards of scientific journals Small, Advanced Functional Materials, Advanced Materials Interfaces, NPG Asia Materials, Journal of Inorganic Biochemistry and Materials Research Innovations. He has received many awards and honors granted by Chinese entities. His contributions have also been recognized with the TWAS Chemistry Award in 2011 and the MRS Mid-Career Researcher Award in 2014.

Here follows an interview with Professor Jiang.

SBPMat newsletter: – Explain in a few words your approach to learning from nature.

Lei Jiang: – We learn from nature mainly focusing on biological interfaces with superwettability, and then we investigated the correlation between the multiscale structures and superwettability. After that we design target molecules to prepare bioinspired functional materials with promising applications, such as self-cleaning coatings, water/oil separation, water collection, and energy conversion. Finally, by combining two complementary properties and achieving reversible switching between them, we were able to develop bioinspired smart interfacial materials with superwettability.

SBPMat newsletter: – Do you and your group perform nature observation by yourselves?

Lei Jiang: – Yes, we perform nature observation by ourselves.

SBPMat newsletter: – Do you search for specific plants or animals having in mind specific applications?

Lei Jiang: – Yes, we mainly focus on specific plants or animals with superwettability.

SBPMat newsletter: – Do you work in collaboration with biologists and materials engineers from other groups to understand nature and produce the artificial materials systems?

Lei Jiang: – Yes, we always work in collaboration with other groups, who are focused on materials, mechanics, biology etc., to understand nature and produce the artificial materials systems.

SBPMat newsletter: – Are there products in the market, or almost there, based on your discoveries? How were they created (through patent licensing, spinoff companies, joint development)?

Lei Jiang: – We have transferred several research findings in the laboratory to practical products in the market. Until now, we have cofounded 3 technology companies.  As one of the very first commercially available bioinspired material produced in large scale, our superhydrophilic coatings have been applied to landmark buildings such as the China National Grand Theatre, and the Beijing International Airport. Our oil/water separation system has also been applied to more than 630 ships travelling around the world. Based on the materials with special wettability, a bioinspired green printing technology is also currently being used to print newspapers by many publishers.

SBPMat newsletter: – To those readers who may be very curious about your concept of “binary cooperative complementary nanomaterials”, please say a couple of words about it. Is there a philosophical idea behind that concept?

Lei Jiang: – Binary cooperative complementary materials, consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel principle for the design and construct of functional materials. By summarizing recent achievement in materials science, it can be found that the cooperative interaction distance between the pair of complementary properties must be comparable with the scale of related physical or chemical parameter. When the binary components are in the cooperative distance, the cooperation between these building blocks becomes dominant and endows the macroscopic materials with unique properties and advanced functionalities that cannot be achieved by either of building blocks. The law of unity and interpenetration of opposites was proposed in “Dialectics of Nature,” an unfinished 1883 work by Friedrich Engels. He stated “Everywhere we look in nature, we see the dynamic co-existence of opposing tendencies. This creative tension is what gives life and motion.” Dialectic was derived from the works of philosophers G. W. F. Hegel (1831) and Heraclitus (500 BC), who thought that everything was constantly changing and that all things consisted of two opposite elements that could change into each other. Ancient Chinese philosophers also utilized “Yin” and “Yang” as two basic polarities of the universe to interpret the binary cooperative complementary phenomenon in nature and the universe. However, Engels simply thought the idea of “Yin” and “Yang” was just an embryo of dialectics in ancient China. However, Chinese philosophers had already studied the evolution process and unity of two opposite elements quantitatively. For example, “I Ching” (1000–750 BC), an ancient Chinese book of changes, stated that 64 Yin-Yang combinations known as “64-gua” are possible with hexagrams (patterns of 6 broken and unbroken lines).

Please find the details about “binary cooperative complementary materials” in ” Science China Materials, 2016, 59, 239–246, http://link.springer.com/article/10.1007/s40843-016-5051-6 ”

——————-

Link to the abstract of the XV Brazil-MRS Meeting plenary talk “Smart Interfacial Materials from Super-Wettability to Binary Cooperative Complementary Systems”: http://sbpmat.org.br/15encontro/speakers/abstracts/5.pdf