“Nanoscience and Nanotechnology: Principles and Applications” is a work distributed in 3 volumes, with a total of 22 chapters written by distinguished experts and scientists from different regions of Brazil. Volume 1 presents topics related to nanostructures; Volume 2, nanocharacterization techniques, and volume 3, examples of applications.
The book was organized by PhDs Alessandra da Róz (IFSP), Fábio de Lima Leite (UFSCar/CCTS), Marystela Ferreira (UFSCar/CCTS) and Osvaldo Novais Oliveira Jr (USP/IFSC). “We noticed that there were few books in Portuguese on Nanoscience and Nanotechnology and we got together to organize the series,” says Marystela Ferreira.
The work was released in 2015 by Elsevier’s Campus publishing house. “The series launched in 2015 was so successful that Elsevier invited us to edit this series in English,” adds Ferreira. The new challenge was accepted and is being carried out by the organizers, with help from the authors and the publisher. The first two volumes in English were released in 2016, and Volume 3 is scheduled to be released in June 2017. In the English language edition, new chapters have been added in order to cover as much material and techniques as possible. “In volume 1 carbon structures was added, and volume 3 presents the SPR technique (surface plasmon resonance),” clarifies Ferreira.
According to Ferreira, the book addresses the basic concepts and fundamental principles of Nanoscience and Nanotechnology, as well as topics such as nanosensors, nanostructured films and nanocharacterization techniques (this was included bearing in mind undergraduate and graduate students conducting experimental research). The series also includes topics on quantum mechanics and computer simulation – topics that have not yet been addressed in Brazilian Nanoscience books – written in simple and direct language, which include applications and illustrations, asserts Ferreira. New lines of research, such as Nanomedicine, Nanoelectronics and Nanoneurobiophysics were also covered in the series. “This work brings together topics in areas such as Biology, Biotechnology, Materials Physics, Medicine, Chemistry and related areas,” emphasizes Ferreira.
The volumes are available on Science Direct (Elsevier’s website for articles and books) and are sold in the form of e-book and printed book on Elsevier’s website.
Abstract submission for the XVI B-MRS/ SBPMat Meeting is open until May 5. This edition of the annual event of the Brazilian Materials Research Society will be held from September 10 to 14, 2017, in the city of Gramado (Rio Grande do Sul state, Brazil), at the FAURGS event center.
This interdisciplinary and international event is dedicated to the presentation and discussion, in English language, of scientific and technological advances achieved in the field of materials. In recent editions, the meeting has gathered around 2,000 participants from various points of Brazil and dozens of other countries.
This edition of the event comprises 23 thematic symposia, in which researchers and students from Brazil and abroad can submit abstracts for oral or poster presentation. The symposia cover a wide range of research topics in Materials, from the study, synthesis and modification of various materials (polymers, metals, composites, hydrogels, nanomaterials, biomaterials) to their use in the fields of energy, aeronautics, health, electronics, bioelectronics, photonics, plasmonics, photocatalysis and other. The environmental impact and safe use of some materials will also be addressed in the symposia.
The best contributions from each symposium presented by undergraduate or graduate students will be highlighted at the end of the event through the Bernhard Gross Award from B-MRS, which honors one of the pioneers of materials research in Brazil.
The symposia coordinators of this edition of the event are researchers from all Brazilian regions and from Argentina, Canada, Portugal, Spain, UK, and USA. The chair of the event is Professor Daniel Eduardo Weibel, from the Institute of Chemistry of the Federal University of Rio Grande do Sul (UFRGS).
In addition to technical sessions and invited lectures, the event will feature a series of plenary lectures with internationally renowned scientists, as well as an industrial exhibition.
The newsletter of the Brazilian Materials Research Society
News update from Brazil for the Materials community
English edition. Year 4, issue 2.
B-MRS (SBPMat) news
Young Researcher Award. SBPMat launches an award for postdocs in partnership with E-MRS. Application submission is open. Here.
Registration exemption for the E-MRS Meeting. Meet the selected students who will attend the 2017 E-MRS Spring Meeting exempt from registration fee. Here.
SBPMat Membership. The discount period for the 2017 annuity is still open. See the reasons and advantages of being a member of SBPMat and how to pay the annuity. Here.
Institutional members. Companies and organizations of all types are also welcome to SBPMat’s membership community. Meet the new institutional partners of SBPMat: Altmann and Interprise. Here.
XVI B-MRS Meeting (Gramado, Brazil, September 10-14)
Symposia. The list of approved symposia will be on the event’s website soon.
Organization. Meet the organizing committee. Here.
Exhibitors. The event website shows the 14 companies that have already confirmed their participation. Companies interested in participating in the event with booths and other means of dissemination should contact Alexandre via this e-mail: comercial@sbpmat.org.br.
Featured paper
A team of researchers from Unicamp has developed an innovative “formula” to manufacture luminescent perovskite nanocrystals (quantum dots) that can be purified without degradation. With the robust nanocrystals, the team prepared brilliant and efficient LEDs with innovative architecture. The work was reported in a paper published in Advanced Functional Materials. See our news article.
People from our community
We interviewed Aloísio Nelmo Klein, professor at UFSC and one of the architects of Materials research and teaching at that university. With more than 60 patents and a history of interaction with companies, Klein defines himself as a researcher who is convinced that science is one of the main driving forces for a nation’s development. Learn more about this researcher and his background, starting with his childhood in a village of German descendants in Rio Grande do Sul, and see the message he left for the younger audience and readers. See the interview.
Two new laboratories of the Federal University of Pelotas are named after former presidents of SBPMat Elson Longo (UNESP, UFSCar) and José Arana Varela (in memoriam). Know more.
Reading tips
Technological innovations made in Brazil in steels used in electric motors and transformers improve energy efficiency. Here.
Collaboration of LNNano (CNPEM) with alcohol plant generates technology for the transformation of sugarcane bagasse into active coal, which can be used in the purification of water and air. Here.
Striving for aerospace applications, a team with Brazilian participation studies what happens with nanotubes during high-speed impacts and improves the material. Here.
9th International Conference on Materials for Advanced Technologies. Suntec (Singapore). June 18 – 23, 2017. Site.
XXXVIII Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência (CBRAVIC) + III Workshop de Tratamento e Modificação de Superfícies (WTMS). São José dos Campos (Brazil). August, 21 – 25, 2017. Facebook.
Paper: Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes. Emre Yassitepe, Zhenyu Yang, Oleksandr Voznyy, Younghoon Kim, Grant Walters, Juan Andres Castañeda, Pongsakorn Kanjanaboos, Mingjian Yuan, Xiwen Gong, Fengjia Fan, Jun Pan, Sjoerd Hoogland, Riccardo Comin, Osman M. Bakr, Lazaro A. Padilha, Ana F. Nogueira, and Edward H. Sargent. Adv. Funct. Mater. 2016. DOI: 10.1002/adfm.201604580.
How to make more stable perovskite nanocrystals for more efficient LEDs.
In this illustrative image, sent by Emre Yassitepe, blue, green and red quantum dots excited by ultraviolet radiation exhibit a brilliant luminescence.
Perovskite quantum dots have been seen as great candidates to compose a next generation of displays and lighting devices. In fact, these luminescent nanoparticles are able to emit high brightness light and very vivid and pure colors when receiving external energy. But the technological use of perovskite quantum dots still runs into some limitations, mainly linked to their instability, for these tiny particles can quickly react with the medium, agglomerate or increase in size, for example.
A team of scientists from institutions in Canada, Brazil and Saudi Arabia has found a solution to one of the problems limiting the advance of research and development in the field, the degradation of perovskite quantum dots during their synthesis. The study was reported in an article recently published in the journal Advanced Functional Materials (impact factor: 11.38).
The manufacture of perovskite quantum dots is traditionally carried out by placing in a flask a solution with a series of compounds which react among them and generate perovskite nanoparticles coated (passivated) with oleic acid (C18H34O2) and oleylamine (C18H35NH2).
The team performed experiments and computational simulations to understand how the formation of perovskite quantum dots occurred step by step and thus formulate a manufacturing method that would avoid the problem of degradation. The scientists realized that the key to the solution was to reformulate the “ingredients” of the process in order to remove the oleylamine that eventually created the conditions for the degradation of the quantum dots, which precipitated to the bottom of the flask.
“We focused on developing the new synthetic technique to passivate perovskite quantum dots with oleic acid,” says Emre Yassitepe, postdoc at the Nanotechnology and Solar Energy Laboratory of the Institute of Chemistry of Unicamp, who signs the article as the first author. “Oleic acid is one of the most common ligands to date to stabilize the quantum dots and we wanted to see the impact on stabilization and LED performance between different ligands.”
Following the new “recipe”, the team was able to produce quantum dots of about 8 nm, coated only with oleic acid, made of cesium, lead and elements of the group of halogens and having perovskite structure (which is a certain organization of the atoms). Green quantum dots (CsPbBr3), blue (CsPb (Br, Cl) 3) and red (CsPb (Br, I) 3) were produced and characterized.
One of the main gains achieved with the new method was the colloidal stability of the quantum dots: they remained intact more than oleylamine capped perovskite quantum dots after the purification step, which removes from the nanocrystals the residual compounds that usually remain from the manufacturing process.
The team went beyond the manufacturing and experimental analysis of quantum dots and built with them LED devices (light-emitting diodes, now widely used in lamps and displays) emitting green, blue and red light, in order to check their efficiency. They made thin films with the obtained perovskite quantum dots and placed a layer of this material “sandwiched” between a layer of titanium dioxide, in charge of transporting electrons (carriers of negative charge) and a polymer layer, destined to transport the so-called “holes” (positive charge carriers). In this LED, when applying an electric field, electrons and holes move to the quantum dots layer and excite them, causing them to emit photons and thus generate the desired light.
The use of polymer transport layers processed from solution instead of layers processed from evaporation to make perovskite LEDs was also an innovation made possible by the new “recipe”, which made quantum dots more robust against this type of processing.
As a final result, the team of scientists achieved bright and efficient blue and green LEDs. Perovskite LEDs made with oleylamine-free quantum dots demonstrated better performance in some respects than conventional perovskite LEDs produced with oleylamine coated quantum dots.
Pictures from the authors of the paper from Brazilian institutions. From the left: Ana Flávia Nogueira and Emre Yassitepe (Institute of Chemistry, Unicamp), Juan Andrés Castañeda and Lázaro Padilha (Institute of Physics, Unicamp).
“We have demonstrated a new synthetic method that enhances the colloidal stability of perovskite quantum dots by capping them solely by oleic acid”, summarizes Yassitepe. “The enhancement of stability of oleic acid capped perovskite quantum dots allows us to remove excess organic content in thin films. The excess inorganic content acts as an insulator between quantum dots reducing performance. By reducing the excessive ligands we are able to make more efficient and solution-processed perovskite quantum dot light emitting diodes” concludes the postdoc.
The work was funded by Canadian agencies, FAPESP (São Paulo State Research Foundation) and King Abdullah University of Science and Technology (Saudi Arabia). The experiments of transient ultra-fast absorption and analysis by transmission electron microscopy were carried out at Unicamp to characterize the quantum dots. The synthesis of the nanocrystals and the manufacture of LEDs were carried out at the University of Toronto in the group of Professor Edward H. Sargent, where Yassitepe performed a one-year internship during within his post-doc at Unicamp. “I am grateful to FAPESP- Bolsa Estágio de Pesquisa no Exterior project for giving me this opportunity,” says Yassitepe.
Aloísio Nelmo Klein was born on December 5, 1950 in Passo do Faxinal, a small village populated by German descendants in the state of Rio Grande do Sul (south of Brazil). During his childhood in this rural environment, he cultivated a special taste for solving technical problems of everyday life, quite like his father. Still a child, he started working on steel and constructing mechanisms for toys. At the age of 14, he moved to the nearby town of Cerro Largo to complete his secondary studies in a boarding school. In 1969, he moved to Viamão, on the outskirts of Porto Alegre, about 500 kilometers from his home, after successfully passing a selection process to study technical education at the competitive Technical School of Agronomy (ETA). This environment sparked a strong interest in Physics, Chemistry and Mathematics. He graduated from ETA at the end of 1971.
Klein graduated in Physics from the Federal University of Rio Grande do Sul (UFRGS) in 1976. He received his master`s degree in Mining, Metallurgical and Materials Engineering at this same university in 1979. In 1983, he defended his PhD thesis in Engineering, in the area of powder metallurgy and sintered materials from the Technical University of Karlsruhe (Germany), now the Karlsruhe Institute of Technology (KIT).
Klein has been a professor at the Federal University of Santa Catarina (UFSC) in Florianópolis since 1979. He was one of the leaders in introducing Materials Science and Engineering at this institution. He has been in charge of the Laboratory of Materials (LabMat) since 1984, a well-known multidisciplinary space, mainly due to its research and development work carried out with companies. Relying on the team and infrastructure consolidated around LabMat, Klein led the creation and was the first coordinator of the postgraduate program in Materials Science and Engineering (PGMAT) at UFSC, responsible for producing masters and doctors since 1994, and also the Materials Engineering course at UFSC, which began its activities in 1999.
Throughout his career, Klein has made relevant contributions to the development of equipment and processes for manufacturing materials from powders and the applications of plasma technologies, considering that some of these developments have been successfully introduced in the market through partnerships with companies.
Klein has been an active participant in SBPMat since it began. He was part of the committee responsible for creating the society in 2001, and was also the scientific director on two occasions (2004-2005 and 2010-2011) and member of the Deliberative Council and coordinator of the annual meetings of the society in 2006 and 2012, both held in Florianópolis.
Klein also participated in the creation, in 1993, and governance of the Ceramic Center of Brazil (CCB), dedicated to certifying the quality of ceramic products.
CNPq Productivity Fellow – Level 1 A – Professor Aloísio Klein is the author of more than 60 patent applications filed in offices in Brazil, Europe, the United States, China, South Korea, Japan, Taiwan, Singapore and Australia, and at least 8 of these patents have already been granted (the others are under examination). According to the SCOPUS database, Klein is also the author of more than 130 published articles, which have more than 700 citations.
Regarding the training of human resources, Professor Klein has already supervised 41 master’s and 27 doctoral students, as well as dozens of undergraduate and postdoctoral studies, and has mediated more than 100 UFSC student participation abroad for internships , exchanges and postgraduate courses.
Many of his works have been honored with awards from Finep, Brazilian Ceramic Association, Brazilian Metallurgy and Materials Association and UFSC, in addition to other entities.
Here is an interview with the researcher.
SBPMat Bulletin: – Tell us what led you to become a scientist and eventually work in the Materials area.
Aloísio Klein: – The technical area always fascinated me, especially as my father who had no advanced education, was so interested in solving technical problems and fixing things, including watches, musical instruments, guns, cars, tractors, agricultural tools and so forth. I was still a child when I started to be interested in this and lend a hand. I helped making toys like for instance wheelbarrows with steering, brakes, springs, and traction levers, things that did not exist 55 years ago. Before primary school, I helped to make helical springs for toys, rolling the steel wire, quenching and tempering in the fire, surrounded by charcoal. The temperature reading was done by the color of the heated object. At the age of 14, I entered the São Jose Seminary boarding school in Cerro Largo (RS), where I stayed for 5 and a half years. It was an excellent school, the teachers were well prepared. The principles and values I had acquired from my family and where I was born and raised were further reinforced in the Seminary – which I still hold. I learned other things at the boarding school, which were very important in the future: how to live in a group environment and learn how to share, despite having little; help those in need and so forth. Furthermore, Greek and Latin classes gave me the opportunity to learn how to express myself well orally and in writing. In fact, I have never regretted having studied there, because I learned humility and how to deal with the work environment. I believe that living in boarding school helps develop the ability to get along in groups and understand early on that this is really important. After leaving the Seminary I went to study at ETA (Technical School of Agronomy) in the municipality of Viamão (RS). This was a state school, where you could live (boarding school) and study for free, which is why I pushed myself to study there. ETA was a disputed public school (as were most public schools at the time!). There were about 20 candidates per vacancy in 1969, when I was accepted. The years I spent at ETA were excellent. However, the disciplines that interested me the most were not those related to Agronomy, they were Physics, Chemistry and Mathematics. I graduated from ETA in December 1971 and in March 1972 I started the Physics course at the Institute of Physics at the Federal University of Rio Grande do Sul (UFRGS). I graduated in December 1976 and started a master’s degree in the post-graduate program in Mining, Metallurgy and Materials Engineering at UFRGS in March 1977, which I conclude in January 1979. On February 5 of 1979 I was hired as a professor in the Department of Mechanical Engineering at the Federal University of Santa Catarina (UFSC). Also in November of 1979 I went to Karlsruhe, Germany, to enter the PhD program in Materials, in the Subarea of Powder Metallurgy and Sintered Materials. In August 1983, after completing my doctorate, I resumed my duties at UFSC. And in March 1984, I became the coordinator of the Materials Laboratory (now LabMat) A post I still hold and which I will pass on to my successor, already prepared for this, once I retire.
SBPMat Bulletin: – What do you believe are your main contributions to the Materials area?
Aloísio Klein: – Throughout my career at UFSC, I coordinated many research projects, most of them in partnership with companies. Most of the projects had more technological than scientific goals. This was not by chance but out of conviction. I have always believed (and still do) that science is one of the main driving forces for the development of a nation, in addition to education and quality schools. It is from scientific knowledge that new processes are developed, new engineering functions, new materials and other products, that is, innovation results from scientific knowledge. These projects have always been proposed considering a larger group of people as a team, around 8 to 12 professors (in addition to students and engineers) in order to integrate the knowledge-based specializations necessary for the high-quality development of projects. In addition to colleagues from the departments of Mechanical Engineering, Electrical Engineering and Chemical Engineering, professors from the Physics and Chemistry departments were involved, resulting in a multidisciplinary team. However, the project is successful if the multidisciplinary team interacts interdisciplinarily in order to have a synergistic effect. It’s useless merely dividing the money and the tasks. This aspect has never been very easy to manage. Achieving this has always been much more difficult than the technical-scientific part, because a team is made up of individuals, each with his/her particularities, ambitions, egos, and so on. I personally believe that learning to deal with this was very useful to arrive at the LabMat we have today at UFSC.
Due to developing projects with defined technological goals, many patents have been achieved over the last 30 years, currently included in my curriculum, totaling about 65 patent letters, including processes and products (new components, materials and equipment). In addition to the patents, I am also the author/co-author of 135 international articles in journals and 203 articles in Annals of Conferences. I have mentored about 64 IC students, 41 master’s students, 27 doctoral students and 20 post-doc fellows.
In addition, I led the creation of a postgraduate course in Materials Science and Engineering (PGMAT) which began its activities in 1994, currently a 6 score in Capes, and the undergraduate course in Materials Engineering, which began its activities in 1999, currently with a maximum score in Capes. In fact, success means work and in 2010, as a sign of recognition, I was awarded the prize for outstanding researcher at the Technological Center of UFSC.
I think my main contributions (generally with the participation of doctoral or master’s students) are related to the development of processes and new materials and equipment such as: a) Conceptual project of the extraction process of organic binders and sintering assisted by DC plasma components produced via injection molding, known as “Plasma Assisted Debinding and Sintering – PADS”. b) Conceptual design of the Hybrid Plasma Reactor. This reactor, besides the anode-cathode system to open the electric discharge, has a set of electrical resistances to maintain the control of the thermal cycle independent of the energy used in the plasma. Then, the energy of the ions and electrons in the plasma environment can be adjusted to assist the reactions of interest, while the additional heat needed to achieve the programmed thermal cycle is supplied by the resistive heating system. The coexistence of these two systems in the same environment, without the electric discharge in the electrical resistances, is very important. This (thermal cycle not dependent on plasma energy) allowed a significant advance in the use of plasma to assist various processes, such as thermochemical and metallurgical treatments, including the processing of materials from powders (powder metallurgy and ceramic processing). c) Conceptual design of plasma nitriding equipment that allows cleaning organic waste and its nitriding in the same thermal cycle, for example, used in parts containing oil residues, such as sintered parts after calibration and machined parts. d) The in situ generation of phases of interest in powder metallurgy, such as the generation of turbostractic graphite from the disintegration of sintered steel carbides, leading to the development of new types of dry self-lubricating sintered steels. e) Development of new types of non-cobalt hard metal, in which nickel alloys generated in situ during sintering are used as metallic binder phase. f) The constant effort to integrate multidisciplinary teams and work in partnership with the productive sector in my projects. The partnership with EMBRACO, for example, has been going on uninterruptedly for 28 years and will certainly continue after my retirement, given that the successor is fully engaged in this partnership.
It is equally important to mention the intense participation in analysis committees and other activities that are important for the development of science and technology, such as: 1) Member (1989 to 1995) of the technical group of the PADCTII new materials subprogram (MCT/FINEP/CNPq); 2) Two times member of the CA-MM – Advisory Committee on Mines, Metallurgy and Materials of CNPq (1997 to 1999) and (2007 to 2009); 3) Member (1997 to 2001) of the technical group in Sciences and Engineering of Materials (CEMAT) of the PADCT III new materials sub-program of the Ministry of Science and Technology; 4) Member of the evaluation and monitoring committee program of the PRONEX / MCT (1998 to 2003); 5) Member (2007 to 2010) of the study group of the CGEE (Center for Management and Strategic Studies) – Prospective study in Materials; 6) Member of the evaluation committee of the postgraduate courses in the Materials area. Trienal 2010 – CAPES; 7) A total of 32 invited lectures throughout my career as researcher (in companies, conferences and research institutions); 8) I was able to send more than 100 students abroad (undergraduate, master’s and doctorate) to carry out internships, exchanges, masters and doctorates; 9) Ad hoc consultant, mainly the development-funding agencies CNPq, CAPES, FINEP, FAPESC and DAAD (Germany); 10) I participated in the creation and was a full member of the deliberative council of CCB (Ceramic Center of Brazil) from 1993 to 2003; 11) I was vice president of the Ceramic Center of Brazil from 1996 to 2001; 12) I participated in the creation of CTC (Criciuma Ceramics Center, now called CTCma); 13) I led the creation (1994) and was the first coordinator of the postgraduate program in Materials Science and Engineering of UFSC ( PGMAT); 14) I led the creation (1999) and was the first coordinator of the undergraduate course in Materials Engineering at UFSC.
SBPMat Bulletin: – Please leave a message for the readers who are starting their scientific careers.
Aloísio Klein: – The career of researcher is possibly the best career in the world. When we have ideas, society approves the resources so that we can develop our ideas. Even when an idea did not work out, we advanced and reformulated the idea with the acquired knowledge. The environment we work in is a very good environment. There are a lot of smart people and a lot of young people, smart and qualified, full of enthusiasm. When we have a good idea, we soon have plenty of people willing to participate in its development. We’re never alone. When we go to a conference, we also find a very select group of people where you can exchange high level ideas, not only with senior people in the area, but also with very creative and intelligent young people. No competent young person is not funded to attend a conference.
The application submission for the “2017 Young Researcher Award” is open until March 31. The award, launched by SBPMat, is now in partnership with E-MRS (European Society of Materials Research).
Postdoctoral fellows, SBPMat members with paid annuity fees, who defended their doctorates as of 2010 can apply. Up to four postdocs will be selected. The winners will be announced on May 15.
The award winners will participate, with lodging expenses paid, in two invitation-only international events: “Forum for the Next Generation of Researchers 2017” (Strasbourg, France, 18-19 November 2017) and “6th World Materials Summit” (Strasbourg, France, 20-21 November 2017).
In the Forum for the Next Generation of Researchers, the SBPMat award winners will be part of a select international group of young researchers and will interact with each other and with world-renowned senior scientists. The program includes activities developed by pairs of young researchers from different countries, their poster presentations and talks from senior scientists.
The World Materials Summit is an event that in addition to the young researchers, brings together representatives of science, business and politics, invited by the event organization to discuss social and economic challenges that Materials Science and Technology can help solve. The theme of this edition will be “materials innovation for the world economy and for a sustainable society.”
More information about the award, in the announcement, is available HERE.
Information on how to pay SBPMat’s 2017 annuity and the advantages and reasons to join, HERE.
With regard to an agreement between SBPMat and E-MRS (European Materials Research Society), the following students, SBPMat members, were selected to receive registration fee exemption from the E-MRS 2017 Spring Meeting (Strasbourg, France, May 22 – 26, 2017), in a selective process in which their registration applications were received by January 31:
Fábio Baum (doctoral student in Materials Science, Federal University of Rio Grande do Sul, Brazil)
Leonardo Mathias Leidens (undergraduate student in Chemical Engineering, University of Caxias do Sul, Brazil)
Luciana Daniele Trino (doctoral student in Materials Science and Technology, Sao Paulo State University Júlio de Mesquita Filho, Brazil)
Navadeep Shrivastava (doctoral student in Physics, Federal University of Maranhão, Brazil).
SBPMat congratulates those selected and wishes them a great event.
From the left of the reader: Fábio Baum (UFRGS), Leonardo Mathias Leidens (UCS), Luciana Daniele Trino (UNESP), and Navadeep Shrivastava (UFMA).
We are starting an early payment campaign for the 2017 annuity, with a special discount until March 31. The reason for this personal message is to emphasize the importance of SBPMat having a large and stable number of members.
We have all seen SBPMat’s tremendous progress, in which over these last 15 years it has already carried out international scientific meetings, bringing together students and scientists from Brazil, catalyzing international cooperation, in addition to many other initiatives.
The strength of our Society depends on the contribution of its members, fundamentally with its research performance and participation in our Annual Meetings, but also its effective membership. In any scientific society, membership is its greatest asset. In addition to collecting resources, to help run the society, a large membership helps attain sponsorships.
Our website highlights additional reasons for becoming a member or renewing membership annuity, as well as information on how to go about it.