|
|||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||

Na manhã de 9 de junho, no distrito italiano de Montecatini Terme, o pesquisador da área de Materiais Reginaldo Muccillo, diretor administrativo da nossa SBPMat de 2012 a 2013, tomou posse como membro da World Academy of Ceramics (WAC). A WAC é uma entidade de caráter internacional com sede na Itália, dedicada a promover o progresso da área de cerâmicas e fomentar a compreensão do impacto social a das interações culturais da ciência, tecnologia, história e arte no campo das cerâmicas.
Reginaldo Muccillo foi um dos dezessete eleitos no 15º processo de eleição de acadêmicos da WAC, que reconhece o mérito de pessoas que fizeram contribuições significativas à área de cerâmicas. Único brasileiro desta eleição, Muccillo dividiu a cerimônia de posse com pesquisadores e outros profissionais da China, Espanha, Estados Unidos, Finlândia, Itália, Japão, Polônia, Portugal e Suécia. A formalidade ocorreu durante a sessão de abertura da International Conference on Modern Materials and Technologies (CIMTEC).
Pesquisador do Centro de Ciência e Tecnologia de Materiais do Instituto de Pesquisas Energéticas e Nucleares (IPEN), Reginaldo Muccillo possui graduação, mestrado e doutorado em Física pela Universidade de São Paulo (USP). Realizou estágios de pesquisa no exterior durante o doutorado, no National Research Council em Ottawa (Canadá), e no pós-doutorado, no Max Planck Institut fuer Festkoerperforschung em Stuttgart (Alemanha) e no Institut National Politechnique de Grenoble (França). Foi (co) coordenador de sete edições do Simpósio Brasileiro de Eletrocerâmica, do VII Encontro da Sociedade Brasileira de Pesquisa em Materiais (2008) e da 6th International Conference on Electroceramics (ICE 2013). É editor principal da revista Cerâmica, órgão oficial da Associação Brasileira de Cerâmica (ABCeram), há 15 anos. É bolsista de produtividade em pesquisa do CNPq – nível 1A.
Segue uma breve entrevista com o cientista.
Conte-nos um pouco sobre sua história: o que o levou a se tornar um cientista e a trabalhar na área de materiais cerâmicos?
Já na graduação, abandonei o curso de Engenharia na Escola Politécnica da USP para cursar somente Física. Bolsista de iniciação científica na área de Física Nuclear, convivi com pesquisadores de renome no Instituto de Física (IF) da USP, que efetivamente me influenciaram a seguir carreira científica. Após a graduação, fui para o IPEN para fazer mestrado em Física do Estado Sólido. Terminado o Mestrado, fui para o Canadá para o trabalho de doutorado sanduíche (que não existia na época). Na volta ao IPEN, após defender o doutorado no IFUSP, comecei a desenvolver pesquisa com materiais cerâmicos, mudando de Física do Estado Sólido para Ciência e Engenharia de Materiais.
Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais?
Trabalhando em um Instituto de pesquisas, pude dedicar todo meu tempo no trabalho de pesquisa, na busca de recursos em órgãos de fomento (FAPESP e CNPq) para infraestrutura de laboratório (sou um pesquisador experimental dedicado à montagem e coleta de dados em equipamentos, análise de dados, redação de artigos para submissão em periódicos indexados e arbitrados), treinamento e formação de pessoal, organização de eventos, edição de periódico científico, interação com o setor produtivo (meu campo de pesquisa permite, alem de desenvolver pesquisa fundamental na área de Ciência dos Materiais, visualizar aplicações em dispositivos de interesse em vários segmentos industriais).
Quais são, na sua opinião, os principais desafios de seus temas de pesquisa atuais para a Ciência e Engenharia de Materiais?
Explicação, modelagem e equacionamento teórico de vários fenômenos físicos e químicos que ocorrem em Ciência dos Materiais Cerâmicos.
Na sua avaliação, de que maneira você construiu o reconhecimento da comunidade internacional de pesquisa em cerâmica expresso na sua eleição como acadêmico da WAC?
Com o desenvolvimento de trabalhos de pesquisa, a formação de pessoal (iniciação científica, mestrado, doutorado e pós-docs), a montagem de laboratórios para uso da comunidade científica (multi-usuários), a edição de periódico (revista Cerâmica) na área de materiais cerâmicos, a pesquisa em materiais para sensores e para produção alternativa de energia e, mais recentemente, em flash sintering.
O Programa de Pós-graduação em Física e Química de Materiais (FQMat) divulga o Edital 001/2014 do processo seletivo – 2° semestre de 2014, para preenchimento de vagas de mestrado e doutorado.
As inscrições acontecerão no período de 18 a 27 de junho de 2014, 15h às 17h, Sala 3.05 do bloco C do Departamento de Ciências Naturais, Campus Dom Bosco – São João del Rei. As inscrições podem ser feitas via Sedex, desde que a correspondência seja postada até o dia 25 de junho de 2014.
Para mais informações sobre inscrição, documentos necessários, datas das provas e preenchimento da GRU, confira o edital no link:
http://www.ufsj.edu.br/fqmat/processo_seletivo.php
Outras informações pelo telefone (32) 3379-2535 , (32) 3379-2444 ou pelo e-mail fqmat@ufsj.edu.br.
|
|||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||

Ao longo de sua trajetória de cientista, Sergio Mascarenhas Oliveira, hoje com 85 anos de idade, fez importantes contribuições ao desenvolvimento da pesquisa científica, principalmente no Brasil e, em particular, na área de Materiais. Partindo da Física do Estado Sólido, pilar da Ciência de Materiais, transitou por várias áreas do conhecimento, como a Biofísica Molecular e a Física Médica, entre muitas outras.
Guiado pela ideia de exercer a função social do cientista, ligada ao desenvolvimento social, Mascarenhas promoveu avanços na ciência e tecnologia com significativo impacto em setores como agropecuária, saúde e educação.
Um exemplo que ilustra o trabalho do professor Mascarenhas é o recente desenvolvimento de um sistema minimamente invasivo para medir a pressão intracraniana. A motivação surgiu quando o professor recebeu, em 2005, o diagnóstico médico de hidrocefalia e, durante o tratamento, teve que se submeter a perfurações do crânio para medir essa pressão. A partir desse momento, junto a estudantes e empresas, e com apoio de diversas entidades, realizou uma série de estudos, os quais resultaram num sistema minimamente invasivo, mais barato e aplicável a um vasto universo de pacientes.
Mascarenhas nasceu no Rio de Janeiro. Na graduação, entre 1947 e 1951, estudou Física na Universidade Federal do Estado do Rio de Janeiro (UNIRIO) e Química na Universidade Federal do Rio de Janeiro (UFRJ). Após um período como pesquisador em universidades dos Estados Unidos, decidiu voltar ao Brasil. No país cumpriu papeis muito importantes na criação e coordenação de algumas instituições como o Instituto de Física e Química da USP de São Carlos, a Universidade Federal de São Carlos (UFSCar) e seu curso de Engenharia de Materiais (o primeiro da América Latina), a unidade de instrumentação da Embrapa, o Instituto de Estudos Avançados de São Carlos da USP, o qual coordena até hoje, e seu Programa Internacional de Estudos e Projetos para a América Latina.
Sérgio Mascarenhas é professor titular, atualmente aposentado, da Universidade de São Paulo (USP). Foi professor visitante nas Universidades de Princeton, Harvard e MIT, nos Estados Unidos; na Universidad Nacional Autónoma de México, no Institute of Physical and Chemical Research do Japão, na London University (Reino Unido), e, na Itália, no Abdus Salam International Centre for Theoretical Physics e na Università di Roma.
Orientou cerca de 50 teses de mestrado e doutorado e publicou cerca de 200 artigos e livros. Entre muitos prêmios e distinções, podem ser citados a Grã-Cruz da Ordem Nacional do Mérito Científico (Brasil, Presidência da República); os prêmios Guggenheim e Fulbright (Estados Unidos); Yamada Foundation (Japão), Fundação Conrado Wessel 2006 na modalidade de Ciência Geral, e distinções de professor emérito e doutor “honoris causa” de várias universidades do Brasil e do exterior. Em 2012, foi a vez de a SBPMat lhe outorgar uma distinção, a palestra memorial Joaquim Costa Ribeiro. Mascarenhas é membro da Academia Brasileira de Ciências, da American Physical Society, membro fundador da Academia Latino Americana de Ciência e da Academia de Ciências do Estado de São Paulo.
A seguir, a transcrição da entrevista que o professor Mascarenhas nos concedeu às 20:30 horas do dia 26 de março, após o término de uma reunião de trabalho. O cientista nos falou um pouco sobre sua trajetória, a função social do cientista e sua mensagem para os mais jovens.
As principais contribuições à ciência, tecnologia e inovação, principalmente na área de Materiais e no Brasil.
Como eu comecei a fazer ciência no Brasil num momento em que não havia, praticamente, Materiais, eu tive a sorte de poder introduzir esse tipo de pesquisa, tanto a aplicada quanto a básica. Então eu diria que, do ponto de vista institucional, uma contribuição importante foi a criação do Grupo de Física da Matéria Condensada no Instituto de Física da USP em São Carlos, na década de 1960. Graças a um intercâmbio muito forte entre a USP São Carlos, e as universidades de Princeton e Carnegie Mellon nos Estados Unidos, e também grupos da Inglaterra e da Alemanha, principalmente de Stuttgart, nós conseguimos estabelecer um programa de formação de pesquisadores bastante intenso, o qual dura até hoje.
Depois, tive ocasião de ser o primeiro reitor da UFSCar, e aí eu propus a criação do curso de Engenharia de Materiais. Essa foi a primeira carreira de Engenharia de Materiais da America Latina e teve um grande sucesso, tanto do ponto de vista acadêmico como empresarial. Essas foram duas contribuições institucionais que levaram à formação de uma verdadeira escola no Brasil de Ciência e Engenharia de Materiais.
Do ponto de vista da pesquisa, há contribuições que eu fiz com a colaboração de muitos professores jovens e seniores. Primeiramente, as pesquisas ligadas a defeitos em cristais, como cristais iônicos com centro de cor, através de radiação ou crescimento cristalino com impurezas. Esses cristais iônicos que apresentam centros de cor foram usados posteriormente para memórias ópticas. Isso resultou de uma colaboração bastante forte do nosso grupo de São Carlos com os laboratórios RCA de Princeton e a Bell Labs, nos Estados Unidos.
Outra área que tivemos a satisfação de ver desenvolvida é a de eletretos, materiais dielétricos que podem manter uma polarização elétrica por muito tempo, até 100 anos, como é o caso do teflon. Esses eletretos, então, foram estudados principalmente pelo grupo orientado pelo professor Bernard Gross, que eu tive a felicidade de trazer para São Carlos. Ele trabalhou com um grupo do MIT e da Bell Labs e desenvolveram o famoso microfone de eletretos que foi usado em todos os celulares, telefones e muitas outras aplicações. Essa foi uma aplicação que ganhou um status global de um produto que praticamente nasceu em São Carlos.
Depois, a minha extensão desse conceito de eletretos para os materiais biológicos levou ao conceito de bioeletretos, que são materiais biológicos também capazes de manter uma polarização elétrica por longo tempo. Esse conceito de bioeletretos eu acho que foi uma das contribuições que eu tive a ventura de poder fazer, e hoje em dia é globalmente conhecido. Tem um livro de eletretos publicado pela editora Springer [MASCARENHAS, S. 1979 . Bioelectrets: electrets in biomaterials and biopolymers. Electrets – Topics in Applied Physics., Springer-Verlag . vol. 33 , p. 341 – 346] em que, num dos capítulos, eu discuto essa noção dos bioeletretos. O conceito vale para proteínas, DNA, polissacarídeos. Eu acho que esse conceito tem uma importância grande por ter um significado na Biologia e na Medicina.
Finalmente passamos a trabalhar com conceitos de Materiais também na área de Biofísica Molecular e Física Médica. Isso decorreu do fato de eu ter sido convidado pelo prêmio Nobel Abdus Salam para dirigir em Trieste (Itália) uma série de cursos, durante doze anos, nessas duas áreas. Essas contribuições foram capazes de disseminar a ideia e a carreira de Física Médica em muitos países em desenvolvimento na África, Ásia e América Latina. Essa foi, então, uma das contribuições das quais levo grande satisfação.
Mas tudo isso depende de gente, principalmente de jovens. Eu sempre digo que professor só é bom se tem alunos melhores do que ele. Eu tive a felicidade de ter alunos melhores do que eu, que foram além e deram continuidade à escola de Física da Matéria Condensada, de Materiais, como é o caso do professor Roberto Faria, que hoje em dia é presidente da SBPMat e trabalha numa área de fronteira, a de polímeros condutores – uma revolução na área de eletrônica, energia, farmacologia etc.
As ocupações atuais e as novas fronteiras do conhecimento.
Ultimamente eu tenho me preocupado em olhar os fenômenos sob o ponto de vista dos fenômenos complexos, nos quais você tem um grande número de variáveis e fenômenos não lineares. São exemplos: o cérebro, a Internet, a origem da vida. Então, a engenharia de sistemas complexos para Materiais, ela da origem a uma série de efeitos importantíssimos que vão ser gradualmente explorados. Essa questão de sistemas complexos permeia a engenharia, biologia, educação, agronegócio, que uma das áreas importantes para a humanidade para a produção de alimentos, a questão da biomassa, que é um problema importantíssimo para a produção de energia, a compreensão do cérebro.
Então acho que a minha função agora é chamar a atenção dos jovens e dos centros de pesquisa de países em desenvolvimento sobre a importância que tem o estudo de sistemas complexos, que exige muita modelagem computacional, o entendimento do que é inteligência artificial, teoria dos jogos, sistemas caóticos, fractais… E a pesquisa em materiais complexos é de uma importância central.
Outra área que eu acho que vai progredir mais, e é uma revolução anunciada, é a dos biomiméticos. Você olha na natureza biológica que trabalhou durante milhões de anos para produzir material numa concha, osso, pêlo, órgão e aprende como houve a evolução das propriedades desse material. É como se a gente abrisse um grande tesouro biológico do conhecimento.
A função social do cientista
Eu acho que a função social do cientista ela é essencial por dois motivos. Primeiro, se você olhar a história da humanidade, todas as grandes evoluções do pensamento humano partiram de ciência básica que se transformou em tecnologia. É importante o cientista para gerar, não só a voz da sociedade, mas uma espécie de autoconsciência da sociedade que se consolida numa política científica, tecnológica, educacional. Eu acho que um dos melhores exemplos disso é olhar a convergência entre ciência e tecnologia. Quando se inventou o motor elétrico do Faraday, demorou uns 40 anos para ter plena utilização dele. Hoje em dia você não pode nem imaginar o que aconteceria com a sociedade se não houvesse motor elétrico. Quando foi inventada a energia nuclear, em 10 a 15 anos você já tinha suas aplicações. E no mesmo ano em que foi inventado o laser, já foi aplicado. Então a convergência entre ciência e tecnologia é enorme. Isso significa a importância que o cientista tem e a pesquisa tem para fazer o desenvolvimento econômico que leva ao desenvolvimento social que leva ao desenvolvimento cultural que leva ao que o Charles Percy Snow disse que é a terceira cultura. No livro dele “The two cultures”, ele mostrou que, na época da segunda grande guerra, havia uma distância muito grande entre humanismo e ciência e tecnologia, havia até falta de respeito entre esses dois atores do desenvolvimento humano. Mas essa distância tem que convergir numa terceira cultura em que você tenha uma visão muito mais holística, não só do homem, mas também do universo, como no exemplo da teoria da Gaia de James Lovelock.
Então, para o desenvolvimento social, a pesquisa é a única arma que o homem tem para trazer a humanidade a um estágio de respeito à natureza, ao próprio homem e a sua função no cosmos. Eu acho que se a gente não tiver universidade que faça pesquisa e extensão, leve suas pesquisas para fora, a gente não tem a formação desse ciclo virtuoso que transforma conhecimento em qualidade de vida, em novas possibilidades para o homem, para esse homem sapiens sapiens que saiu da caverna e foi para o espaço.
Mensagem para os leitores mais jovens, em início de carreira.
Eu acho que essa carreira de Ciência de Materiais, Engenharia de Materiais, Biomateriais, Materiais Complexos é um mundo enorme que está a disposição do futuro da humanidade, mas esse futuro da humanidade depende do futuro desse jovem de hoje que pode enfrentar esses desafios e ter o grande prazer de construir uma humanidade mais virtuosa através das pesquisas com Materiais. Se você pensar o que significam os materiais para a vida humana, até numa visão mais direta da felicidade e do bem-estar, nossa vida depende de materiais. A nutrição depende de materiais, a comunicação, a saúde, a fabricação de todos os equipamentos, máquinas, robôs, navios, satélites. Então os materiais são realmente uma grande fonte de inovação, de riqueza. O jovem que escolhe essa carreira está escolhendo trabalhar no futuro da ciência e da tecnologia.
O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:
Josue Ortiz-Medina, M. Luisa García-Betancourt, Xiaoting Jia, Rafael Martínez-Gordillo, Miguel A. Pelagio-Flores, David Swanson, Ana Laura Elías, Humberto R. Gutiérrez, Eduardo Gracia-Espino, Vincent Meunier, Jonathan Owens, Bobby G. Sumpter, Eduardo Cruz-Silva, Fernando J. Rodríguez-Macías, Florentino López-Urías, Emilio Muñoz-Sandoval, Mildred S. Dresselhaus, Humberto Terrones, Mauricio Terrones. Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials 2013, 23, 3755-3762. DOI: 10.1002/adfm.201202947
Texto de divulgação:
Mudando as propriedades e a morfologia de nanofitas de grafeno com nitrogênio
Várias camadas de grafeno com forma de fitas (estreitas e compridas) são chamadas de nanofitas grafíticas. Esses materiais têm sido objeto de estudos para controlar suas propriedades por diversos métodos, como por exemplo a dopagem, na qual se introduzem, na rede de carbono que forma o grafeno, átomos de elementos “estrangeiros”.
Em um trabalho liderado por cientistas da Pennsylvania State University com a participação de pesquisadores de instituições dos Estados Unidos, México, Espanha e Brasil, nanofitas grafíticas dopadas com nitrogênio foram fabricadas pelo método de deposição química de vapor (CVD) e mostraram características novas, ligadas à introdução do nitrogênio: maior comportamento semicondutor, promissor para aplicações em dispositivos eletrônicos, reatividade química e uma morfologia muito particular em suas bordas. A pesquisa foi publicada na prestigiada Advanced Functional Materials.
“Este artigo mostrou pela primeira vez que é possível fazer dopagem com nitrogênio na mesma síntese por CDV das nanofitas de grafite, e que é possível controlar o nível de dopagem durante a síntese”, destaca Fernando Rodríguez-Macías, professor visitante estrangeiro na Universidade Federal de Pernambuco (UFPE) e um dos autores do artigo científico. De nacionalidade mexicana, Rodríguez-Macías chegou à UFPE em 2012, durante seu ano sabático, para trabalhar como professor visitante estrangeiro no Departamento de Química Fundamental e no Programa de Pós-graduação em Ciência de Materiais da universidade, com apoio da Rede Nanobiotec-Brasil da CAPES. “Prolonguei a minha estada por mais um ano, para continuar até 2014 fazendo colaboração em estudos de produção de nanoestruturas de carbono, de bionanotecnologia e de toxicidade de nanomateriais”, diz o professor. “Também estou dando aulas de preparação e caracterização de materiais”, completa.
As nanofitas dopadas
Os autores do artigo mostraram que diferentes concentrações de nitrogênio geram mudanças controladas no comportamento do material. Particularmente, os cientistas provaram que, quanto mais nitrogênio introduzido na estrutura do grafeno, mais predominante o comportamento semicondutor das nanofitas. Como explicação a esse fenômeno, os pesquisadores sugeriram, com base em cálculos teóricos, que os átomos de nitrogênio das nanofitas dopadas agem como centros espalhadores de elétrons e acabam diminuindo o comportamento condutor do grafeno não dopado. “O controle do nível de dopagem permite mudar as propriedades elétricas das nanofitas, o que pode ser útil para aplicações em transistores e outros dispositivos eletrônicos”, diz Rodríguez-Macías.
Além disso, o artigo mostra que também a reatividade das nanofitas pode mudar com o nível de dopagem. O grafeno puro, explica o professor visitante da UFPE, é muito inerte e tem interações limitadas com muitas substancias químicas; já as nanofitas dopadas com nitrogênio são mais reativas, o que as torna mais úteis para aplicações em sensores e em catálise.
Quanto à morfologia, os autores do artigo observaram que as nanofitas dopadas com nitrogênio apresentam laços em suas bordas, unindo diferentes folhas de grafeno. “Esta morfologia não é apresentada por nanofitas de grafite não dopadas”, afirma Rodríguez-Macías.

As colaborações
Quase todo o trabalho de síntese de materiais do artigo da Advanced Functional Materials foi desenvolvido na Pennsylvania State University; já a caracterização foi feita em colaboração com outros pesquisadores e laboratórios, relata o professor visitante da UFPE.
A participação da UFPE no artigo ocorreu por meio do estudante de doutorado Miguel Angel Pelagio-Flores, do Programa de Pós-Graduação em Química, na análise e modelagem teórica das nanofitas dopadas, e através do próprio professor Fernández-Macías, que, além de ter participado da discussão de resultados e revisão do artigo desde sua sala na UFPE, foi orientador de doutorado do primeiro autor do artigo, Josué Ortiz-Medina, enquanto professor de uma instituição mexicana, o IPICYT. “Ele fez a maior parte do trabalho experimental do artigo, além de parte importante da caracterização e os estudos teóricos destes novos nanomateriais, quando ele esteve em intercambio em Penn State no laboratório do professor Terrones”, contextualiza o professor.
No total, 19 autores assinam o artigo; entre eles, a professora do MIT Mildred Dresselhaus, referência em ciência do carbono.
|
|||||||||||||||||||||||||||||||||||||||||
O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:
Wan Ki Bae, Young-Shin Park, Jaehoon Lim, Donggu Lee, Lazaro A. Padilha, Hunter McDaniel, Istvan Robel, Changhee Lee, Jeffrey M. Pietryga & Victor I. Klimov. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nature Communications 4, article number 2661, published 25 October 2013. doi:10.1038/ncomms3661.
Texto de divulgação:
Pontos quânticos desenvolvidos para LEDs mais eficientes
Um trabalho de pesquisa publicado no mês de outubro na Nature Communications, revista científica de conteúdo aberto do grupo Nature, resultou num material que aumenta dezenas de vezes a eficiência de LEDs de pontos quânticos ao diminuir a influência do efeito Auger, um dos principais limitadores da eficiência desses dispositivos que apresentam grande potencial para serem usados em iluminação, entre outras aplicações. O trabalho foi realizado no Grupo de Nanotecnologia e Espectroscopia Avançada do Laboratório Nacional de Los Alamos, localizado no sul dos Estados Unidos, com a participação de um doutor brasileiro, Lázaro Padilha, e com a colaboração de grupos da Coreia.
“O resultado veio depois de mais de um ano de pesquisa sobre como efetivamente minimizar o efeito Auger em pontos quânticos”, relata Padilha, atualmente professor do Instituto de Física da Unicamp, que chegou a Los Alamos em 2010 para fazer um estágio de pós-doutorado. O trabalho que gerou o paper na Nature Communications, além de outros artigos em periódicos de alto fator de impacto como Nano Letters e ACS Nano, começou no final de 2011 e, na sua primeira etapa, visou entender o processo físico para minimizar a influência do chamado “efeito Auger” ou “recombinação Auger” nos pontos quânticos.
Os pontos quânticos, cristais semicondutores de alguns nanometros de tamanho, apresentam propriedades que possibilitam a emissão de luz com brilho intenso e cores puras e podem ser fabricados usando técnicas simples e de baixo custo. Por esses motivos, essas nanopartículas são materiais interessantes para a fabricação de LEDs. Desde a primeira demonstração de LEDs de pontos quânticos, ocorrida em 1994 (Nature 370, 354 – 357, 04 August 1994; doi:10.1038/370354a0), esses dispositivos têm sido objeto de pesquisas visando otimizar sua capacidade de converter eletricidade em luz.
Nos LEDs, a emissão de luz se produz quando, ao se introduzir energia no dispositivo por meio de corrente elétrica, ocorrem recombinações nos átomos do material emissor. Especificamente, elétrons próximos ao núcleo do átomo saem de seu lugar deixando vagas, as quais são preenchidas por elétrons mais distantes, dotados de mais energia. A energia excedente pode sair em forma de fóton, ocorrendo a desejada emissão de luz, ou pode ser transmitida a um terceiro elétron, que será ejetado do átomo. Esta segunda possibilidade constitui o efeito Auger, que pode ser visto como um concorrente da emissão de luz no uso da energia.
Nanoengenharia dos pontos quânticos
Depois de compreender como minimizar a recombinação Auger nos pontos quânticos do ponto de vista físico e constatar que impacta significativamente na eficiência dos LEDs, o grupo de Los Alamos se propôs a desenvolver o material que teria o melhor desempenho frente a esse efeito. “Eu trabalhei nos estudos de espectroscopia para entender os processos físicos que levariam a um melhor desempenho dos materiais como base para LEDs”, diz Lázaro Padilha.
O desenvolvimento do material foi feito a partir de pontos quânticos compostos por um núcleo de seleneto de cádmio (CdSe) e uma casca de sulfeto de cádmio (CdS). Para conseguir a redução da influência do efeito Auger, os cientistas aplicaram duas estratégias de nanoengenharia: a variação da espessura da casca e a introdução de uma camada composta por uma liga de zinco, cádmio e enxofre (ZnCdS) entre o núcleo e a casca.
Após concluir, em Los Alamos, o desenvolvimento do material base, os colaboradores da Coreia do construíram LEDs com uma arquitetura na qual a camada emissora, formada pelos pontos quânticos, ficou inserida entre as camadas de transporte de cargas negativas e positivas, sendo uma inorgânica e a outra orgânica, respectivamente, como mostra a figura a seguir, extraída do artigo da Nature Communications:

“Uma vez encontrado o material que teria o melhor efeito, foram fabricados os LEDs e pudemos confirmar os resultados esperados”, conta Padilha. A confirmação ocorreu através de uma série de medidas espectroscópicas dos pontos quânticos dentro dos dispositivos.
De acordo com Padilha, com os novos materiais desenvolvidos, os cientistas conseguiram obter LEDs de pontos quânticos até 10 vezes mais eficientes, com uma taxa de conversão de energia elétrica em energia luminosa da ordem de 8%.
O Programa de Pós-graduação em Física e Química de Materiais (FQMat) da Universidade Federal de São João del Rei (MG) divulga o Edital 003/2013 do processo seletivo – 1° semestre de 2014, para preenchimento de vagas de mestrado e doutorado.
As inscrições acontecem no período de 15 a 30 de janeiro de 2014, das 09 às 11h e 14h às 17h, na Secretaria do Programa FQMat, Sala 2.19, Bloco A do Departamento de Ciências Naturais (DCNAT), Campus Dom Bosco – São João del Rei. As inscrições podem ser feitas via Sedex, desde que a correspondência seja postada até o dia 25 de janeiro de 2014.
Para mais informações sobre inscrição, documentos necessários, datas das provas e preenchimento da GRU, confira o edital no link http://www.ufsj.edu.br/fqmat/processo_seletivo.php
Outras informações pelo telefone (32) 3379-2535 ou pelo e-mail fqmat@ufsj.edu.br.