Interviews with plenary lecturers of the XIII SBPMat Meeting: Robert Chang (Northwestern University, USA).

Prof. Chang and other developers of Nanocos, a card game that encourages students to learn science concepts and their role at the nanoscale.

Robert Chang is a Professor of Materials Science and Engineering at the first materials science academic department in the world, created more than 50 years ago at Northwestern University, where he is also director of the Materials Research Institute.

He holds a Bachelor of Science in Physics from Massachusetts Institute of Technology (MIT) and a Ph.D in Plasma Physics from Princeton University. He spent 15 years performing basic research at Bell Labs (Murray Hill). During the past 28 years at Northwestern University, he has directed several National Science Foundation (NSF) centers and programs in materials research and education.

Prof. Chang was the president of the Materials Research Society (MRS) in 1989. He is the General Secretary and Founding President of the International Union of Materials Research Societies (IUMRS). He has received many distinctions for his work, such as the Woody Award from MRS in 1987, the Siu Lien Ling Wong Fellow from the Chinese University of Hong Kong in 1999, and the NSF Director’s Distinguished Teaching Scholar Award in 2005. He is fellow of the American Vacuum Society and MRS, and honorary member of Materials Research Societies of India, Japan and Korea.

He is (co)author of 400 peer reviewed journal articles, with near 13,000 citations, and h-index of 56.

Read our interview with the plenary speaker.

SBPMat newsletter: – Under your viewpoint, which are your main contributions in the field of Materials Science and Engineering?

Robert Chang: 1. Plasma processing of semiconducting materials;

2. Carbon based materials, such as diamond, fullerene, and carbon nanotubes, and their related devices;

3. 3rd generation solar cells;

4. Infrared plasmonics and sensors;

5. Thin film oxides for electronic and photonic devices.

Top publications below.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 82, 2278 (1999); DOI:http://dx.doi.org/10.1103/PhysRevLett.82.2278.

Michael D. Irwin, D. Bruce Buchholz, Alexander W. Hains, Robert P. H. Chang, and Tobin J. Marks.p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS, vol. 105 no. 8, 2783–2787 (2008); doi: 10.1073/pnas.0711990105.

Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig and R. P. H. Chang. A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72, 2912 (1998);http://dx.doi.org/10.1063/1.121493.

Quanchang Li, Vageesh Kumar, Yan Li, Haitao Zhang, Tobin J. Marks, and Robert P. H. Chang. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chem. Mater., 2005, 17 (5), pp 1001–1006. DOI: 10.1021/cm048144q.

SBPMat newsletter: – And what about your main contributions to science education, especially in Materials Science?  

Robert Chang: – Over the past 20 years, I have led the development of the Materials World Modules program to teach pre-college students about Materials and Nanotechnology: materialsworldmodules.orgnclt.usgsasprogram.orgimisee.net.

SBPMat newsletter: – Please give us a short teaser about your plenary talk at SBPMat meeting. What do you intend to broach?  

Robert Chang: – Mobilizing world-citizens to solve global problems together!

SBPMat newsletter: – Feel free to leave other comments to our readers from the Materials research community, if you want so.  

Robert Chang: – Materials and nanotechnology research and education are the driving force of all future technologies, including energy, environment, health, and security.

SBPMat newsletter. English edition. Year 1, issue 8.

 

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

 

English edition. Year 1, issue 8. 

Greetings, .

XIII SBPMat meeting (João Pessoa, September 28th to October 2nd)

Less than a month left until our meeting at João Pessoa!

– Registration: here.

–  Some options of lodging, rental of cars, transfers and tours: on the home page of the site of the event. Here.
Detailed technical program: here.


We interviewed the German physicist Karl Leo, specialist in organic semiconductors. Beyond being the author of more than 550 papers with more than 23,000 citations and 50 families of patents, the scientist has already participated of the creation of 8 spin-off companies. In his lecture at the XIII SBPMat Meeting, Karl Leo will speak on highly efficient organic devices, as OLEDs and solar cells. See our interview with Karl Leo.

We also interviewed the Portuguese physicist Antonio Luis Ferreira Martins Dias Carlos, of the University of Aveiro, who will perform a lecture in our meeting in João Pessoa on luminescence applied to nanomedicine. In the interview, the professor shared with us his most prominent works in the field of Materials. He also told us about some challenges in the area of luminescence for medical applications, both in medical imaging and intra-cellular temperature mapping, and cited examples of applications of luminescent materials that have already been used in the diagnosis and treatment of various diseases. See our interview with Luis Dias Carlos.

Featured paper with Brazilian participation

By making small adjustments in the technique of thin film deposition known as magnetron sputtering, a group of scientists obtained the control of the direction of magnetization in the manufacture of spin valves, devices formed by nanometric layers of magnetic and non-magnetic materials used, for example, in the reading of data of hard disks. This work of spintronics, conducted by researchers from Brazil and Chile, has been recently published in Applied Physics Letters.  Read the story.

History of Materials research in Brazil

We celebrate the Graduate Program in Materials of University of Caxias do Sul for its 10 years of existence, with a report and photos on the history of the program and its interaction with the local industry. See here.

Reading recommendations

– Contribution of nanotecnology to medical imaging for diagnostics of problems of small intestine (Nature Nanotechnology). Here.
– With a AC-TEM, scientists test and observe, live, electric properties of graphene and their relation with structure  (Nanoletters). Here.
Xerox does R&D in graphene, and company’s patent nº 2,000 is on graphene nanosheets. Here.
– Material for ceramic blocks for civil construction developed in the Brazilian State University of Maringá uses residues (silt) from local laundries. Here.
– Flexible, resistant and biodegradable, spider web developed by Brazilian researchers can find diverse applications. Here.

 

Opportunities

Postdoctoral positions at the Center for Research, Technology and Education in Vitreous Materials (CeRTEV), in São Carlos, Brazil. Here.

Upcoming events in the area

– 13th European Vacuum Conference + 7th European Topical Conference on Hard Coatings + 9th Iberian Vacuum Meeting. Here.

– 19th International Conference on Ion Beam Modification of Materials. Here.

– XIII SBPMat Meeting. Here.

– International Symposium on Crystallography – 100 years of History. Here.

– Congresso Brasileiro de Engenharia Biomédica (CBEB). Here.

– MM&FGM 2014 – 13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials. Here.

– X Brazilian Symposium on Glass and Related Materials (X-BraSGlass). Here.

To suggest news, opportunities, events or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.
Unsubscribe here.

 
Cannot see this message? Click here.

Featured paper: Accurate engineering in spin valves manufacturing.

The scientific paper by members of the Brazilian community on Materials research featured this month is:

T. E. P. Bueno, D. E. Parreiras, G. F. M. Gomes, S. Michea, R. L. Rodríguez-Suárez, M. S. Araújo Filho, W. A. A. Macedo, K. Krambrock and R. Paniago.Noncollinear ferromagnetic easy axes in Py/Ru/FeCo/IrMn spin valves induced by oblique deposition. Appl. Phys. Lett. 104, 242404 (2014). DOI: 10.1063/1.4883886.

Accurate engineering in spin valves manufacturing

The production and characterization of spin valves is the theme of  a collaborative work between Brazil and Chile, whose results were published recently in the prestigious journal Applied Physics Letters (APL).

Spin valves are devices consisting of three or more layers of nanometric thickness composing a sandwich of magnetic and non-magnetic materials. Sensors consisting of such structures fulfill a fundamental role in reading the information written on the hard disc drives, among other applications.

The operation of spin valves is based on an effect called “giant magnetoresistance”, which was the reason behind the Nobel Prize in Physics in 2007. The giant magnetoresistance of spin valve consists of a large change in the electrical resistance in response to the action of a magnetic field. This resistance depends on the relative orientation among the magnetization of the magnetic material layers.

The magnetization of a magnetic material is determined by the orientation of the spins of its electrons. Electrons have two intrinsic features: electric charge and magnetic moment, the latter known as spin. Explore the degree of freedom of the electron spin in addition to its charge led to the emergence of a new field of research called spintronics.

Then, on giant magnetoresistance of spin valves, when the layers of magnetic material have the same direction of magnetization, the device reduces its electrical resistance and becomes a better conductor of electricity. When the magnetic layers acquire opposite directions of magnetization, a significant increase of electrical resistance occurs.

For better understand this effect and, later, the results presented in the article of APL, it is important to remember that the magnetization is a vector physical quantity and that, therefore, besides having an intensity, it has a direction (parallel, perpendicular) and an orientation (indicated by the arrowhead representing the vector). Usually, metallic multilayers composed of magnetic materials separated by a non-magnetic layer, as spin valves, have the magnetization of ferromagnetic layers coupled, says Thiago Bueno, first author of the APL article and PhD student in Physics at the Brazilian Federal University of Minas Gerais (UFMG), supervised by professor Roberto Magalhães Padilla. This coupling can result in parallel magnetization (called “collinear”) with same or opposite orientations, and also in non-collinear magnetization.

Ferromagnetic layers “making a sandwich” with a non-magnetic layer of ruthenium. The red and green arrows represent the direction and the way of magnetization of layers composed by Py and FeCo, respectively. (a) Parallel magnetizations with equal orientation; (b) Parallel magnetizations with opposite orientation; (c) Perpendicular magnetizations.

However, to magnetize the magnetic layers of the spin valve does not occur homogeneously in all directions; they feature the so-called magnetic anisotropy. “The magnetic anisotropy is an important magnetic property, because it establishes an easy direction of magnetization,” says Thiago Bueno. “This property is determined by a number of factors, including the types of materials, the thickness of layers, and the details of the method of sample manufacturing”.

On the work that originated the APL article, the team of scientists has made some adjustments to the method of spin valves manufacturing, obtaining interesting results on the properties of these devices.

Controlling the direction of magnetization

“This work was only possible due to the great collaboration between the parties along the preparation of samples of excellent quality, accurate experimental measures, interpretation of the data, until the publication of the results,” says Thiago Bueno.

Initially, at the Brazilian Center for Development of Nuclear Technology (CDTN in Portuguese) the team has made thin films composed of multi-layers with thickness of a few tens of nanometers. The films were obtained through the technique known as magnetron sputtering, in which argon ions are accelerated against the targets that contain the materials to be deposited, ripping off its atoms. With the aid of magnetrons, these atoms are deposited on a substrate, forming the layers of films. “Through this technique it is possible to obtain films with well-determined chemical composition, thickness and structural morphology,” says Thiago Bueno.

Oblique deposition scheme with 5 sputtering sources (magnetrons) producing an angle of 72 between them. The (β) angle between the direction of deposition and normal direction of the film is estimated at 38° for all sources.

In this study, the scientists set up an oblique deposition scheme by putting the magnetrons making an angle of 72o between them and inclined towards the sample. Using the oblique deposition scheme, scientists made spin valves with ferromagnetic layers up to 10nm-thickness, composed of metallic alloys (Py and FeCo), and separated by a non-magnetic layer of ruthenium (Ru) of thickness between 1nm and 3.5nm. The devices were characterized in the Physics Department at UFMG using ferromagnetic resonance (FMR), an extremely sensitive technique that provides relevant information on the magnetization of materials.

After the interpretation of experimental results, which involved researchers from the Pontifical Catholic University of Chile, the scientists concluded that the oblique deposition induced non-parallel magnetization directions (non-collinear) on ferromagnetic layers of manufactured spin valves.  “The angle between the easy axes, approximately equal to the angle between the magnetrons, was determined by the manufacturing geometry”, reinforces the author, Bueno. “One of the main contributions of our work is the demonstration that it is possible to manufacture spin valves where the axes of easy magnetization of ferromagnetic layers (Py and FeCo) are non-collinear,” he sums up.

According to the doctoral student, at the beginning of the work the authors already knew the oblique deposition effects in ferromagnetic/anti-ferromagnetic bilayers. With this study, the team took a step further and has investigated these effects in a more complex structure, the spin valve.

“We believe that our work will compel other researchers into manufacturing these devices, seeking new magnetic configurations between layers of the spin valve “, says Bueno.

Interviews with plenary lecturers of the XIII SBPMat Meeting: Karl Leo (TU Dresden, Germany).

The German physicst Karl Leo studied physics at the Albert Ludwigs University of Freiburg (Gemany) and obtained the “Diplomphysiker” degree with a thesis on solar cells at the Fraunhofer Institute for Solar Energy Systems (Germany).  In 1988, he obtained the PhD degree from the University of Stuttgart for a doctoral thesis performed at the Max Planck Institute for Solid State Research in Stuttgart. From 1989 to 1991, he was a postdoc at AT&T Bell Laboratories (United States). In 1991 he joined the RWTH Aachen University (Germany) as an assistant professor and obtained the Habilitation degree. In 1993 he joined the Dresden University of Technology (Germany) as a professor of optoelectronics. Since 2001 until 2013, he has been also with the Fraunhofer Institute for Photonic Microsystems, being head of department and then director.

He won some of the most prestigious German awards in science, technology and innovation, such as the Leibniz award (2002) and the German Future Prize (2011).

He is the author of more than 550 refereed publications, with more than 23.000 citations, having an H index = 73 (Google Scholar).  He is (co-)inventor of approximately 50 patent families.

Since 1999 he has co-founded 8 spin-off companies, such as Heliatek and Novaled, which have employed more than 250 people and raised more than 60M€.

Prof. Karl Leo with an organic solar cell module on test on the roof of Kaust university, in Saudi Arabia.

Read our interview with the lecturer.

SBPMat newsletter: – Under your viewpoint, which are your main contributions in the field of Materials Science and Engineering? Please think about papers, patents, spin-off companies, products etc.

Karl Leo: – I spent most of the last decades improving organic semiconductors and developing new device concepts for organic semiconductor devices. One example is the development of controlled electrical doping, which allowed much higher electrical conductivities. As a result, we could e.g. realize white organic light emitting diodes which are more efficient than fluorescent tubes. As device principle, we e.g. developed novel vertical transistors which can drive very high currents so that they can be used to drive OLED displays.

SBPMat newsletter: – Please give us a short teaser about your plenary talk at the XIII SBPMat meeting. What do you intend to broach?

Karl Leo: – I will talk about highly efficient organic devices, touching both organic LED and organic solar cells. I will describe the challenges in materials research and the importance of new device concepts.

SBPMat newsletter: – Could you choose some of your main publications (about 3 or 4) on the topics of your plenary lecture to share them with our public?

Karl Leo: –

1. Doped Organic Transistors: Inversion and Depletion Regime. Lüssem, B., Tietze, M.L., Kleemann, H., Hoßbach, C., Bartha, J.W., Zakhidov, A. and Leo, K. , Nature Comm. 4, 2775 (2013).

2. Phase-locked coherent modes in a patterned metal-organic microcavity. Brückner, R. Zakhidov, A., Scholz, R., Sudzius, S., Hintschich, S.I., Fröb, H., Lyssenko, V.G. and Leo, K., Nature Photonics 6, 322–326 (2012).

3. White organic light-emitting diodes with fluorescent tube efficiency. Reineke, S.; Lindner, F.; Schwartz, G. et al., Nature 459, 234 (2009).

SBPMat newsletter: –  Feel free to leave other comments to our readers from the Materials research community.

Karl Leo: – The field of materials research is as exciting as ever, and in the field of organic semiconductors, we are still in the beginning, maybe where silicon was in 1970…

SBPMat newsletter. English edition. Year 1, issue 7.

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

 

English edition. Year 1, issue 7. 

Greetings, .

XIII SBPMat meeting (João Pessoa, September 28th to October 2nd)

– Have you made your registration yet? Take advantage of our discounts up to Aug/15.  Here.

– If you are a student and submitted an abstract that has been approved, you may send your extended abstract up to Aug/08 and apply to compete for the Bernhard Gross Award. Here.

Accommodation options? There are some here.
– 24 companies and institutions already chose to attend our meeting as exhibitors. If your organization also wishes to be a part of the event, contact us at rose@metallum.com.br.


We interviewed the French scientist Jean-Marie Dubois, specialist in quasicrystals (ordered, but aperiodic structures on solid materials) and pioneer in patenting applications for them. He told us a little about his main contributions to the field of Materials and gave a teaser on the theme of his plenary lecture in the XIII SBPMat Meeting: he will talk about quasicrystal structures, found in metallic alloys, polymers, oxides and artificial nanostructures, and their unprecedented properties. In the picture, Jean-Marie Dubois (on the left) and Dan Shechtman, who received a Nobel Prize in 2011 for the quasicrystals, using equal ties, both decorated with the Penrose tiling, an example of aperiodicity.  Read our interview with Jean-Marie Dubois here.

We also interviewed the Italian chemist Roberto Dovesi, one of the creators of CRYSTAL, a computational tool for ab initio quantum calculations used in the study of several solid materials properties. The CRYSTAL code is currently used in over 350 laboratories around the world.  In his plenary lecture in the XIII SBPMat Meeting, Dovesi will attempt to demonstrate that today quantum simulations may be very useful tools to complement experiments.  Read our interview with Roberto Dovesi here.

Featured paper with Brazilian participation

A group of scientists, coordinated by Brazilian researchers, used a Helium Ion Microscope (HIM) located in Silicon Valley, in the United States,  to engrave nanometric periodic patterns in graphene sheets, giving an innovative use to the instrument. The fast, simple and precise technique could be used by the electronics industry to produce graphene semiconductive devices, which could replace the silicon ones. The lead author of the paper published in Applied Physics Letters told us the story behind the study and announced that, soon, Brazil is going to have its first HIM.  Read the story.

Reading recommendations

Science stories based on papers published in journals with high impact factor.

– Ultralight material formed from polymeric, metallic and ceramic microstructures, produced by 3D printers (Science). Read it here.

Friction at the nanoscale: while carbon nanotubes are superlubricants, boron nitride nanotubes display a high level of friction (Nature Materials). Read it here.

– New method for producing perovskite solar cells with good costs and efficiency (Nature Materials). Read it here.

– Scientists propose a model for fullerenols structure and are one step closer to biomedical applications (Chemical Science). Read it here.
Materials news from the Brazilian National Institutes of Science and Technology (INCTs).

3D chips may be quick and cheap. Read it here.
On the market, or almost there.

Oral hygiene products incorporated with silver nanostructures: technology developed in Brazil prevents 99% of bacteria and fungi. More.

For licensing: bionanocomposite for bone grafting tested in vitro and in vivo, developed in Brazil. More.

For licensing: Cesium phosphate filter with functionalized nanotubes, very efficient for heavy metals. More.
Book review

– New book on eco-friendly polymer nanocomposites (types, processes and properties). Read it here.

 

Upcoming events in the area

– 2º Workshop Adesão Microbiana e Superfícies. Here.

– 13th European Vacuum Conference + 7th European Topical Conference on Hard Coatings + 9th Iberian Vacuum Meeting. Here.

– 19th International Conference on Ion Beam Modification of Materials. Here.

– XIII SBPMat Meeting. Here.

– International Symposium on Crystallography – 100 years of History. Here.

– Congresso Brasileiro de Engenharia Biomédica (CBEB). Here.

– MM&FGM 2014 – 13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials. Here.

– X Brazilian Symposium on Glass and Related Materials (X-BraSGlass). Here.

To suggest news, opportunities, events or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.
Unsubscribe here.

 

Made in Brazil: incorporating silver nanostructures into oral hygiene products eliminates 99% of bacteria and fungi.

A research on the incorporation of silver with antibacterial properties on surfaces, conducted by the  Center for the Development of Functional Materials (CDMF in Portuguese), one of the Research, Innovation and Dissemination Centers of the São Paulo Research Foundation (FAPESP) is being applied to toothbrushes.

OralGift, a company with 12 years of experience in the oral hygiene business, in association with CDMF and NANOX Tecnologia, released a new line of products coated with the NanoxClean technology. Produced with silver nanostructures incorporated into the raw materials, the surface of the product is protected against microorganisms and bacteria.

The researchers responsible for this work explain that damp environments, mainly bathrooms, display a large amount of bacteria and fungi. When toothbrushes are left exposed, there is a high possibility of contamination.

The technology incorporating silver nanostructures eliminates 99% of the bacteria and fungi accumulated on  toothbrush and the cases used to keep them, as well as tongue cleaners.

The CDMF Director, Professor Eldon Longo, clarifies the importance of the association between the research developed at the university and the industrial-scale innovation made in companies:  “Nanox is a first world company in innovation, with high technology. It develops products based on nanotechnology, mainly to healthcare. This innovation, released on the market, is another example of creativity in transforming knowledge into wealth for the country”.

 About CDMF

The Center for the Development of Functional Materials (CDMF) is one of the Research, Innovation and Dissemination Centers (CEPID in Portuguese) supported by FAPESP (São Paulo Research Foundation), and the National Institute of Science and Technology of Materials in Nanotechnology,  and counts with the collaboration of São Paulo State University (Unesp), Federal University of São Carlos (UFSCar), University of São Paulo, (USP) and the Nuclear and Energy Research Institute (Ipen).

Facebook profile: https://www.facebook.com/INCTMNCMDMC

NANOX

NANOX Tecnologia is located in São Carlos city (Brazil), and was created from a project developed by three young UFSCar students, which they improved during their graduate studies in the Chemistry Institute of Unesp at the Araraquara campus.

The company was among the first ones engaged in the field of nanotechnology in Brazil, and is currently considered the largest in its business in the country, being the first national company to export nanotechnology.

(From Fernanda Vilela – CDMF)

Interviews with plenary lecturers of the XIII SBPMat Meeting: Jean-Marie Dubois (Institut Jean-Lamour, França).

The author, Jean-Marie Dubois (left) and Nobel Prize winner Dan Shechtman (right) celebrating Shechtman’s 70th birthday two years before he was awarded his Nobel Prize. Observe that both carry the same tie, which is decorated by a Penrose tiling, a prototypical example of aperiodicity in the art of drawing and painting.

The French scientist Jean-Marie Dubois, PhD in Physics from National Polytechnic Institute of Lorraine (France) is a Distinguished Director of Research at the French National Center for Scientific Research, CNRS (France), where he chairs a committee dedicated to materials chemistry, nanomaterials and processing.  He is the former director of Institut Jean Lamour in Nancy (France), a major research institute in field of materials.

His curriculum shows an international scientific trajectory. Dubois holds Honorary Doctorates (Dr Hon. Causa) from Iowa State University (USA) and Federal University of Paraïba (Brazil), is a former “overseas fellow” of Churchill College at University of Cambridge (U.K.) and a permanent visiting professor at Dalian University of Technology (China). He was recently elected as Honorary Member of Jožef Stefan Institute in Ljubljana (Slovenia). He is a member of Lorraine Academy of Sciences (France).

He is the author of more than 250 scientific articles in refereed journals, 14 international patents, and 7 books. His papers were cited more than 5400 times (H index = 39).

Read our interview with the lecturer.

SBPMat newsletter: – Under your viewpoint, which are your main contributions to the field of Materials Science and Engineering? And your scientific/technological contributions with more social impact (patents, products)?

A part of 20x20x30 cm, used by a French car producer, made of a polymer reinforced by a quasicrystalline powder. It that can be produced by additive machining with no restriction regarding complexity of its shape.

Jean-Marie Dubois: – My first contribution that was aimed at a social impact was the discovery of Al-based metallic glasses, which could be good candidates for light-weight alloys useful for the aeronautic industry. I patented them in 1982, listing a number of favorable examples, and as is the rule for a patent, also counter examples. One such composition was in fact a stable quasicrystal, which was unraveled in Japan few years later. Based on this discovery, I was the first to patent few application niches of quasicrystals that are Al-based intermetallics showing no periodic order as do conventional crystals. The discovery of quasicrystals dates back to 1982, but was published in literature only in 1984, whereas my first patent on these materials was filed in 1988. From that on, I dedicated quite some efforts to discover, patent, and produce new research, about different areas of the physics of quasicrystals including thermal conductivity, adhesion and friction, corrosion resistance, etc. My leadership in this area of materials science is recognized by the international community through the “International Jean-Marie Dubois Award” that is offered every three year “to recognize important, sustained research on any aspect of quasicrystals within the 10-year period preceding the award”. Altogether, I own 14 international patents, with more than 35 extensions. I was responsaible for few tens of collaboration contracts with the industry, including a good dozen of contracts financed by the European Commissions with on average half a dozen of industrial partners and the same number of academic partners. The last one was a so-called Network of Excellence that started the field of Complex Metallic Alloys in Europe, with 20 partner institutions from 12 European countries and some 400 scientists on board.

SBPMat newsletter: –  Please choose some of your main publications (about 3 or 4) to share them with our public.

Jean-Marie Dubois:

1) Useful Quasicrystals; J.M. DUBOIS, World Scientific, Singapour (2005), 470 pages.

2) Complex Metallic Alloys, Fundamentals and Applications; Eds. J.M. DUBOIS and E. BELIN-FERRÉ, Wiley (Weinheim, 2010), 409 p.

3) Topological instabilities in metallic lattices and glass formation; J.M. DUBOIS, J. Less Common Metals 145 (1988), 309-326.

4) The applied physics of quasicrystals; J.M. DUBOIS, Scripta Physica, T49 (1993) 17-23.

5) Properties- and applications of complex metallic alloys, J.M. DUBOIS, Chem. Soc. Rev., 41 (2012) 6760-6777.

SBPMat newsletter: – Please give us a short teaser about your plenary talk at SBPMat meeting. What do you intend to broach?

Jean-Marie Dubois: – My talk will be a laudation to the discoverer of quasicrystals who was awarded a Nobel Prize in Chemistry in 2011 for his discovery that forced the scientific community to revise its understanding of ordered condensed matter. Members of the MRS Brazil are used to know what is a crystal, a periodically ordered solid. I wish to introduce them to another type of order in solid, that is not periodic, and leads to unprecedented properties. Alloys that exhibit such a type of order are specific and I call them push-pull alloys. Then, I wish to show that this type of order is not restricted to metallic alloys, but may also be encountered in soft matter like polymers, oxides, artificial nanostructures, and even artistic drawings from ancient Islamic tilings. The talk will therefore be a review for the non-expert in quasicrystals and complex intermetallics

SBPMat newsletter. English edition. Year 1, issue 6.

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

 

English edition. Year 1, issue 6. 
Greetings, .

 

XIII SBPMat meeting (João Pessoa, September 28th to October 2nd)

–  In this edition, our annual meeting sets a record in the amount of submissions, with over 2,100 received abstracts.

– The authors will be notified about their acceptance/necessary changes/rejection up to July 15.

– From July 15 to August 08 the authors of accepted abstracts may submit extended abstracts to compete for the Bernhard Gross Award.

Early registration deadline: August 15.

More information.

– 23 companies and institutions already chose to attend our meeting as exhibitors. If your organization also wishes to be a part of the event, contact us at rose@metallum.com.br.

Featured paper with Brazilian participation

Materials engineers joined to chemists and food engineers in order to develop antimicrobial films to wrap food. Based on pectin (a natural polymer), papaya puree and a nanoemulsion made with a component found in cinnamon, the films are edible. The team also studied how the “ingredients” and the (nano) size of the emulsion particles changed the mechanical and antimicrobial properties of the films. The study, led by research groups from Embrapa (the Brazilian Agricultural Research Corporation) and the Federal University of Viçosa, entirely conducted in Brazil, was published by the journal Food Hydrocolloids. More.

SBPMat’s community people

On the occasion of his induction ceremony as a member of the advisory board of the World Academy of Ceramics, we interviewed Professor Victor Carlos Pandolfelli (DEMa – UFSCar). He told us how he built his professional career upon three pillars, teaching, research and industrial partnerships, guided by a principle of “use-oriented basic research“. Pandolfelli talked about the creation of new, future materials in laboratories using computers with high processing speed and 3D printers. To conclude, he gave suggestions for readers in the beginning of their careers, who are facing a world of intense competition, and said: do not confuse Facebook with the real world. Read our interview.

We also interviewed Reginaldo Muccillo, researcher at the Energy and Nuclear Researches Institute (IPEN) who was recently sworn in as a member of the World Academy of Ceramics. He told us a little about his history and contributions to the field, as well as the challenges to the science of ceramic materials. Read our interview.

SBPMat news

SBPMat attended the European Materials Research Society (E-MRS) Spring Meeting, held in France in the end of May. Our president, Professor Roberto Faria, was one of the event chairs, and members of the SBPMat office organized a symposium on organic electronics, which counted with a substantial Brazilian participation. Read more.

Reading recommendations

Science journalism stories based on papers published in journals with high impact factor.

– Applying an electric field, it is possible to change the structure and electronic properties of the trilayer graphene (Nature Materials). Read it.

– Breakthroughs in our way to comprehend the superconductivity of some materials through magnetic interactions (Nature Communications). Read it.

– TGCN: recently born member of the graphene family has the potential to be used in transistors (Angewandte Chemie). Read it.

– Scientists produce plasmonic nanoparticles aggregates capable of killing cancer cells (Advanced Functional Materials). Read it.
Materials news from the Brazilian National Institutes of Science and Technology (INCTs).

– Webpage of the Institute of Physics (IOP) highlights recent Brazilian investments in the field of Materials and cutting-edge researches developed in the country. Read it.
On the market, or almost there.

– 1km superconductive cable, cooled down with liquid nitrogen, is installed in Germany to be tested for two years. See.

Graphene: over 11 thousand patents over the world, with China on the lead, and graphene manufacturers in the United Kingdom. See.

 

Upcoming events in the area

– 2º Workshop Adesão Microbiana e Superfícies. Here.

– 13th European Vacuum Conference + 7th European Topical Conference on Hard Coatings + 9th Iberian Vacuum Meeting. Here.

– 19th International Conference on Ion Beam Modification of Materials. Here.

– XIII SBPMat Meeting. Here.

– International Symposium on Crystallography – 100 years of History. Here.

– Congresso Brasileiro de Engenharia Biomédica (CBEB). Here.

– MM&FGM 2014 – 13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials. Here.

– X Brazilian Symposium on Glass and Related Materials (X-BraSGlass). Here.

To suggest news, opportunities, events or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.
Unsubscribe here. 

 
Cannot see this message? Click here.

SBPMat´s community people: interview with Reginaldo Muccillo.

The new WAC members in their inaugural ceremony. Prof. Muccillo is the first from right to left. 

On the morning of June 09th, in the Italian district of Montecatini Terme, the Materials researcher Reginaldo Muccillo, managing director of our SBPMat from 2012 to 2013, was sworn in as member of the World Academy of Ceramics (WAC). WAC is an international entity, with its main office located in Italy, dedicated to promoting progress in the field of ceramics, as well as to spread awareness regarding the social impact and cultural interactions offered by science, technology, history and arts in the field of ceramics.

Reginaldo Muccillo was one of the seventeen selected members in the 15th election process conducted by the WAC academicians, which recognizes the merit of those who substantially contributed to the field of ceramics. Being the only Brazilian member elected this time, Muccillo shared the induction ceremony with researchers and other professionals from China, Spain, the United States, Finland, Italy, Japan, Poland, Portugal and Sweden. The ceremony was held during the opening session of the International Conference on Modern Materials and Technologies (CIMTEC).

Researcher from the Materials Science and Technology Center of the Nuclear and Energy Research Institute (IPEN), Reginaldo Muccillo earned his undergraduate, Master’s and Doctoral degrees in Physics, at the University of São Paulo (USP). He did research stages abroad, first at the National Research Council in Ottawa (Canada) during his Doctorate, then, during his postdoctoral studies, at the Max Planck Institut fuer Festkoerperforschung, in Stuttgart (Germany) and the Institut National Politechnique de Grenoble (France). He was the (co) coordinator of seven issues of the Brazilian Electroceramics Symposium, the VII SBPMat Meeting (2008), and the 6th International Conference on Electroceramics (ICE 2013). He has been the main editor of the journal Cerâmica, an official publication of the Brazilian Association of Ceramics (ABCeram) for 15 years. He holds a 1A-level fellowship for research productivity in the Brazilian Council for Scientific and Technological Development (CNPq).

What follows is a brief interview with the scientist:

Tell us a bit about your history: what led you to become a scientist and work in the field of ceramic materials?

Already in my undergraduate studies, I left the Engineering course in USP’s Polytechnic School to attend Physics. Holding a research scholarship in the field of Nuclear Physics, I met renowned researchers in the USP’s Physics Institute, who effectively influenced me to pursue a scientific career. Once I graduated, I proceed to IPEN, for my Master in Solid-State Physics. Then, when I concluded my Master’s studies, I went to Canada for a research stage beeing part of my Doctorate course. After returning the IPEN, having defended my doctorate at the USP, I started to conduct researches with ceramic materials, moving from Solid-State Physics to Materials Science and Engineering.

In your opinion, what were your main contributions to the field of Materials?

Working in a research institute, I could focus all my time to conduct the research work itself, to raise resources in supporting entities (São Paulo Research Foundation – FAPESP, and CNPq) for improving the infrastructure of the laboratory (I am an experimental researcher dedicated to assembling and collecting data from equipment, analyzing such data and wrinting articles to be submitted to indexed and peer-reviewed journals), to train and instruct staff, to organize events, to edit scientific journals and to interact with the productive sector. In addition to the development of fundamental research in the field of Materials, my expertise allows me to seek applications in devices concerning many industrial sectors.

In your opinion, what are the main challenges to your current research topics in Materials Science and Engineering? 

Explaining, modeling and providing theoretical equations to several physical and chemical phenomena that occur in the Ceramic Materials Science.

In your opinion, how did you receive the recognition of the international Ceramics research community, as expressed by your election as a WAC scholar? 

Developing research work, training staff at undergraduate, master’s, doctoral and postdoctoral levels, assembling laboratories for the scientific community (multi-users), editing journals (the Cerâmica) in the field of ceramic materials, and researching materials for producing sensors and alternative energy sources, as well as, most recently, flash sintering.

Featured paper: papaya and cinnamon – ingredients in antimicrobial films for food packaging.

The scientific paper by members of the Brazilian community on Materials research featured this month is:

Caio G. Otoni, Márcia R. de Moura, Fauze A. Aouada, Geany P. Camilloto, Renato S. Cruz, Marcos V. Lorevice, Nilda de F.F. Soares, Luiz H.C. Mattoso. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids. Volume 41, December 2014, Pages 188–194. DOI: 10.1016/j.foodhyd.2014.04.013.

Papaya and cinnamon: ingredients in antimicrobial films for food packaging.

The ingredients and one of the films. Photo: Flavio Ubiali. – Núcleo de Comunicação Organizacional, Embrapa Instrumentação.

Edible packagings are films that may be eaten without harming one’s health. They may be used to wrap food in order to protect it, to improve its appearance or to provide some texture or flavor. Such films already are on the markets, replacing animal tissue in cold meats or seaweeds in sushi, just to name a few uses.

Besides being interesting under an environmental perspective, as they may use wasted residues from fruit and vegetables in their composition, they are even more attractive when provided with antimicrobial properties, because it allows the decrease in the amount of preservatives in the food they wrap.

In Brazil, a team comprising materials engineers, chemists and food engineers has produced edible films with antimicrobial properties, based on renewable sources: pectin, papaya and cinnamon essential oil.

The project was developed in three main stages. The first one was performed at the National Nanotechnology Laboratory for the Agribusiness in the instrumentation unit of Embrapa (the Brazilian Agricultural Research Corporation) and consisted in obtaining and characterizing nanoemulsions of cinnamaldehyde, the main component in the cinnamon essential oil.  Using mechanical stirring in a controlled way, with several speeds, the researchers obtained emulsions with cinnamaldehyde particles of different sizes, from 20 to 500 nm of diameter.

For the second stage, also conducted at Embrapa Instrumentation, the researchers produced films based on pectin (a natural polymer found in plant tissues and known for its gelling capacities), added with papaya puree and the obtained emulsions. Finally, the team characterized the films. Their mechanical and antimicrobial properties were analyzed at the Packaging Laboratory of the Federal University of Viçosa, UFV, in Minas Gerais State, while their properties as a water barrier were assessed at Embrapa Instrumentation. Professors from the State University of Feira de Santana in Bahia State and São Paulo State University, UNESP, performing at that moment their postdoctoral researches at Embrapa and UFV’s laboratories contributed to the project as well.

The results of their studies were recently published by the journal Food Hydrocolloids.

The films

Incorporating cinnamaldehyde nanoemulsions to the films inhibited the development of four pathogenic bacteria tested by the team of researchers (Escherichia coli, Salmonella enterica, Listeria monocytogenes and Staphylococcus aureus).

“The most interesting result is that decreasing the size of the nanoemulsions particles notably potentiated the inhibitory activity of the films”, highlights Caio Otoni, main author of the paper, Master’s student in Materials Science and Engineering at the Federal University of São Carlos, UFSCar. “That may impact the use of polymeric packaging with antimicrobial capacites for wrapping food, considering that the same food security guaranteed by the active packaging may be obtained using lower amounts of preservatives, if encapsulated in smaller particles, which is an advantage for manufacturers (lower production costs) and consumers (ingestion of less preservatives)”, concludes Caio, who developed the project with other seven authors, while attending the Food Engineering undergraduate course at UFV.

In addition to providing antibacterial properties to the films, the nanoemulsions made them less permeable to humidity and less plastic (more rigid and less extensible). On the other hand, the papaya pulp caused an inverse effect, concerning those attributes.

The authors Luiz Henrique Capparelli Mattoso, Marcos Vinicius Lorevice e Caio Gomide Otoni (from left to right) at Embrapa Instrumentation. Photo: Flávio Anselmo Faria Ubiali – Núcleo de Comunicação Organizacional, Embrapa Instrumentação.