SBPMat newsletter. English edition. Year 1, issue 9 – special: XIII SBPMat Meeting.

 

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

 

English edition. Year 1, issue 9. 

Greetings, .

Final arrangements for our meeting in João Pessoa!

– Read the message of the chairs of the event, which this year accepted 2,141 papers and has nearly 2,000 registrations from 28 countries so far. In the message, professors Ieda Garcia and Severino de Lima show the highlights of the program of this year’s meeting! Here.

– After lunch and before the afternoon plenary lectures, you can attend technical lectures of the meeting´s sponsors in João Pessoa: Shimadzu/Tescan will discourse about SEM with ion beam and TOF SIMS detector, and FEI will address DualBeam TEM. Learn more.

– Why is João Pessoa called “the sun door“? Learn more about the city, one of the oldest in Brazil, and its natural and cultural features. And get ready to dive into green waters at 28 °C! Read about João Pessoa.

– What to pack? Track the weather, whose temperatures should be between 20 °C and 30 °C. But pay attention, the meeting organization warns that, at the Convention Center, the air conditioner will make the room fresh … Link to weather in João Pessoa.

– Registration: here.

Program at a glance: here.

Detailed schedule. Search for times and locations of symposia presentations: here.

–  Some options of accommodation, car rental, transfers from the airports of the region, transportation from hotels to convention center, and tours: see on the home page of the site of the event.

– And what about the conference party? This year, it will be held on Wednesday evening at Espaço Caixa Econômica Federal in Cabo Branco. Tickets may be purchased in the information desk as of Monday 1 p.m..

 

Interviews with our plenary speakers

We interviewed Robert Chang, professor of the first department of Materials Science in the world at Northwestern University. Besides having a remarkable career as a researcher (his H index is 56), “Bob” has dedicated the past 20 years guiding the development of the Materials World Modules program, which develops educational, interactive and playful material (for example, card games) on Materials and Nanotechnology for pre-college students and their teachers. In his plenary lecture at the XIII SBPMat Meeting, Professor Chang will try to mobilize citizens of the world to solve global problems together. See our interview with the scientist.

We also spoke with Professor Colin Humphreys, a professor at the University of Cambridge.  Among other honors, the scientist was knighted by the Queen of England for his services to science. Besides being the author of over 600 publications, the professor developed materials for the industry that currently fly in aircraft engines and created low cost LEDs based on gallium nitride, material on which he specialized. In João Pessoa, he will show, among other issues, how gallium nitride could reduce electricity consumption by 25% in the world. See our interview with Colin Humphreys.


We interviewed the German physicist Karl Leo, specialist in organic semiconductors. Beyond being the author of more than 550 papers with more than 23,000 citations and 50 families of patents, the scientist has already participated of the creation of 8 spin-off companies. In his lecture at the XIII SBPMat Meeting, Karl Leo will speak on highly efficient organic devices, as OLEDs and solar cells. See our interview with Karl Leo.

We also spoke with the Portuguese physicist Antonio Luis Ferreira Martins Dias Carlos, of the University of Aveiro, who will perform a lecture in our meeting in João Pessoa on luminescence applied to nanomedicine. In the interview, the professor shared with us his most prominent works in the field of Materials. He also told us about some challenges in the area of luminescence for medical applications, both in medical imaging and intra-cellular temperature mapping, and cited examples of applications of luminescent materials that have already been used in the diagnosis and treatment of various diseases. See our interview with Luis Dias Carlos.


We interviewed the French scientist Jean-Marie Dubois (Institut Jean-Lamour), specialist in quasicrystals (ordered, but aperiodic structures on solid materials) and pioneer in patenting applications for them. He told us a little about his main contributions to the field of Materials and gave a teaser on the theme of his plenary lecture in the XIII SBPMat Meeting: he will talk about quasicrystal structures, found in metallic alloys, polymers, oxides and artificial nanostructures, and their unprecedented properties. In the picture, Jean-Marie Dubois (on the left) and Dan Shechtman, who received a Nobel Prize in 2011 for the quasicrystals, using equal ties, both decorated with the Penrose tiling, an example of aperiodicity.  Read our interview with Jean-Marie Dubois here.

We also interviewed the Italian chemist Roberto Dovesi (Universita’ degli Studi di Torino), one of the creators of CRYSTAL, a computational tool for ab initio quantum calculations used in the study of several solid materials properties. The CRYSTAL code is currently used in over 350 laboratories around the world.  In his plenary lecture in the XIII SBPMat Meeting, Dovesi will attempt to demonstrate that today quantum simulations may be very useful tools to complement experiments. See our interview with Roberto Dovesi.


We have interviewed Professor Alberto Salleo, from Stanford University, who is going to give a plenary lecture on organic electronic devices in the XIII SBPMat Meeting. Young, yet holding a career that stands out internationally, Salleo told us about the work conducted by his group, which has been developing a deeper understanding on the role provided by the defects in charge transport in organic semiconductors. He also shared with us his main papers, published in Nature Materials. Finally, Salleo discussed the next challenges and applications on organic electronics, and anticipated what he is going to address in the plenary lecture, which promises to be very informative while mild enough for a wider audience. Read our interview with Alberto Salleo.

To suggest news, opportunities, events or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.
Unsubscribe here.

 

Interviews with plenary lecturers of the XIII SBPMat Meeting: Karl Leo (TU Dresden, Germany).

The German physicst Karl Leo studied physics at the Albert Ludwigs University of Freiburg (Gemany) and obtained the “Diplomphysiker” degree with a thesis on solar cells at the Fraunhofer Institute for Solar Energy Systems (Germany).  In 1988, he obtained the PhD degree from the University of Stuttgart for a doctoral thesis performed at the Max Planck Institute for Solid State Research in Stuttgart. From 1989 to 1991, he was a postdoc at AT&T Bell Laboratories (United States). In 1991 he joined the RWTH Aachen University (Germany) as an assistant professor and obtained the Habilitation degree. In 1993 he joined the Dresden University of Technology (Germany) as a professor of optoelectronics. Since 2001 until 2013, he has been also with the Fraunhofer Institute for Photonic Microsystems, being head of department and then director.

He won some of the most prestigious German awards in science, technology and innovation, such as the Leibniz award (2002) and the German Future Prize (2011).

He is the author of more than 550 refereed publications, with more than 23.000 citations, having an H index = 73 (Google Scholar).  He is (co-)inventor of approximately 50 patent families.

Since 1999 he has co-founded 8 spin-off companies, such as Heliatek and Novaled, which have employed more than 250 people and raised more than 60M€.

Prof. Karl Leo with an organic solar cell module on test on the roof of Kaust university, in Saudi Arabia.

Read our interview with the lecturer.

SBPMat newsletter: – Under your viewpoint, which are your main contributions in the field of Materials Science and Engineering? Please think about papers, patents, spin-off companies, products etc.

Karl Leo: – I spent most of the last decades improving organic semiconductors and developing new device concepts for organic semiconductor devices. One example is the development of controlled electrical doping, which allowed much higher electrical conductivities. As a result, we could e.g. realize white organic light emitting diodes which are more efficient than fluorescent tubes. As device principle, we e.g. developed novel vertical transistors which can drive very high currents so that they can be used to drive OLED displays.

SBPMat newsletter: – Please give us a short teaser about your plenary talk at the XIII SBPMat meeting. What do you intend to broach?

Karl Leo: – I will talk about highly efficient organic devices, touching both organic LED and organic solar cells. I will describe the challenges in materials research and the importance of new device concepts.

SBPMat newsletter: – Could you choose some of your main publications (about 3 or 4) on the topics of your plenary lecture to share them with our public?

Karl Leo: –

1. Doped Organic Transistors: Inversion and Depletion Regime. Lüssem, B., Tietze, M.L., Kleemann, H., Hoßbach, C., Bartha, J.W., Zakhidov, A. and Leo, K. , Nature Comm. 4, 2775 (2013).

2. Phase-locked coherent modes in a patterned metal-organic microcavity. Brückner, R. Zakhidov, A., Scholz, R., Sudzius, S., Hintschich, S.I., Fröb, H., Lyssenko, V.G. and Leo, K., Nature Photonics 6, 322–326 (2012).

3. White organic light-emitting diodes with fluorescent tube efficiency. Reineke, S.; Lindner, F.; Schwartz, G. et al., Nature 459, 234 (2009).

SBPMat newsletter: –  Feel free to leave other comments to our readers from the Materials research community.

Karl Leo: – The field of materials research is as exciting as ever, and in the field of organic semiconductors, we are still in the beginning, maybe where silicon was in 1970…

Science without Borders Postdoctoral Fellowship for NREL-USA in Perovskite or Organic semiconductors.

The National Renewable Energy Laboratory (NREL), located at the foothills of the Rocky Mountains in Golden, Colorado is the U.S. primary laboratory for research and development of renewable energy and energy efficiency technologies.

The Science without Borders is a large scale nationwide scholarship program primarily funded by the Brazilian federal government. The program seeks to strengthen and expand the initiatives of science and technology, innovation and competitiveness through international mobility of undergraduate and graduate students and researchers.

We would like to offer the opportunity for outstanding Postdoctoral Researchers to come to NREL through the Brazil-US Consortium for Innovation in Energy Materials (CINEMA) initiative under the Brazilian Science Without Borders program to develop research activities within NREL’s Chemical Sciences and Nanoscience Division in the area of Perovskites and Organic semiconductors.

1) Our current research activities on perovskite-based PVs focuses on (a) solution processing of halide perovskites, (b) fabrication of planar and mesostructured perovskite cells, and (c) fundamental understanding of charge transport and recombination. Our objective is to understand material effects on the basic physical and chemical processes that are important to device operations. The insight learned from the basic studies will be used as guide to control material properties and to develop more effective device architectures. Examples of our recent publications on perovskites include [1] J. Phys. Chem. Lett., 5, 490–494 (2014); [2] Chem. Commun., 50, 1605–1607 (2014); [3] J. Phys. Chem. Lett., 4, 2880–2884 (2013).

2) Fundamental research topics of particular interest for organic semiconductors include the structural characterization of organic materials in the solid state by X-ray or Neutron scattering methods, transient photoconductivity for the study of photoinduced charge generation and decay dynamics in novel donor:acceptor materials and device-based methods for charge mobility and recombination studies. As to more applied device level research, we are also interested in developing novel electrical contact architectures for upscaling OPV devices. Some of our relevant publications in organic semiconductors and devices include [1] ChemPhysChem (2014), accepted. DOI: 10.1002/cphc.201301022; [2] Adv. Funct. Mater., 22 (2012) 4115; [3] Macromolecules 46 (2013) 1350; [4] Organic Electronics 12 (2011) 108.

Postdoctoral candidates from Brazil willing to develop research activities in areas relevant to the projects above are strongly encouraged to apply. Candidates will be expected to communicate their results through journal publications and conference presentations. In general, to be considered, candidates should have a demonstrated track record of success in addressing fundamental science questions and devising solutions to challenging problems, a Ph.D degree in related field and a strong record of publications/presentations will be a plus.

Send inquires to alexandre.nardes@nrel.gov and to apply, please, send CV along with a list of publications, and the names of at least three professional references to the same e-mail address (subject: “PostDoc Brazil”). Note deadlines for applications at http://www.cienciasemfronteiras.gov.br