Gente da nossa comunidade: entrevista com o pesquisador Roberto Mendonça Faria.


O entrevistado desta edição do Boletim da Sociedade Brasileira de Pesquisa em Materiais (SBPMat) é o professor Roberto Mendonça Faria, que acaba de entregar a presidência da SBPMat depois de 4 anos de mandato (mas promete permanecer ativo na sociedade).

Roberto Mendonça Faria nasceu em Adamantina, uma pequena cidade localizada no oeste do estado de São Paulo, em maio de 1952. No início dos estudos secundários, já orientado para as Exatas e estimulado por um bom professor de Física, ele começou a olhar a ciência como possível profissão. Em 1976, Faria concluía o bacharelado em Física na Universidade de São Paulo (USP).

No mesmo ano, ainda apaixonado por essa área na qual a humanidade estava dando grandes passos no caminho do conhecimento, Faria iniciou sua carreira acadêmica. Começou a lecionar em cursos de graduação da USP e entrou no curso de mestrado em Física dessa universidade. Ali, orientado pelo professor Bernhard Gross, pioneiro da pesquisa em Materiais no Brasil, aprendeu os pilares da atividade científica e desenvolveu um fascínio por desvendar mistérios dos materiais (no caso a condutividade induzida por radiação no polímero conhecido como Teflon). Logo após a obtenção do diploma de mestre, em 1980, começou o curso de doutorado em Física da USP, mais uma vez contando com o professor Gross como orientador. Em 1984, defendeu sua tese sobre absorção dielétrica e condutividade induzida por radiação no polímero PVDF.

Em 1985 começou a dar aulas em cursos de pós-graduação da USP. Entre 1987 e 1989, permaneceu na França em estágio de pós-doutorado na Université Montpellier 2. Em 1990, obteve o título de livre-docente pela USP, em concurso público, após defender uma tese sobre transições de fase em copolímeros ferroelétricos. Em 1999, tornou-se professor titular do Instituto de Física de São Carlos (IFSC) da USP, onde ocupou diversos cargos de gestão ao longo dos anos, como a chefia do departamento de Física e Ciência dos Materiais (1994-1996), a coordenação do programa de pós-graduação em Física (1997-1998) e a direção geral do IFSC (2002 – 2006).

Roberto Faria também foi coordenador de dois projetos de grande porte em nível nacional. O primeiro foi o Instituto Multidisciplinar de Materiais Poliméricos do Milênio, um dos 17 projetos selecionados dentro do Programa Institutos do Milênio do Ministério da Ciência e Tecnologia (MCT). Esse instituto reuniu cerca de 140 pesquisadores de 17 instituições das cinco regiões do país e vigorou entre 2002 e 2008. O segundo projeto deu continuidade a um dos focos de pesquisa do primeiro, o estudo dos polímeros eletrônicos e suas aplicações. Iniciado em 2009, o Instituto Nacional de Eletrônica Orgânica foi aprovado e estabelecido no contexto do programa Institutos Nacionais de Ciência e Tecnologia (INCTs) do MCT.

Indo além das fronteiras da sua área de atuação científica, Faria foi coordenador, entre 2010 e 2014, do polo de São Carlos do Instituto de Estudos Avançados (IEA) da USP, órgão destinado à pesquisa e discussão abrangente e interdisciplinar de questões fundamentais da ciência e da cultura. Além disso, no contexto de seu interesse em contribuir com o desenvolvimento econômico do país por meio da pesquisa, coordenou a realização do livro “Ciência, Tecnologia e Inovação para um Brasil competitivo”, publicado em 2012.

Nos últimos anos, Faria tem tido ativa participação em entidades científicas internacionais da área de Materiais. Em 2014, foi um dos coordenadores gerais do evento “Spring Meeting of the European Material Research Society – 2014“, realizado na cidade francesa de Lille. Em 2015, foi eleito segundo vice-presidente da International Union of Materials Research Societies(IUMRS).

Faria é membro da Academia de Ciência do Estado de São Paulo e da Academia Brasileira de Ciências, e pertence ao conselho editorial da revista “Materials Science – Poland”. Em 40 anos de pesquisa científica em materiais poliméricos, particularmente aqueles com atividade eletrônica e suas aplicações em dispositivos, o professor Faria produziu cerca de 180 artigos publicados em periódicos indexados, contando com cerca de 2.000 citações, e orientou 47 dissertações de mestrado e teses de doutorado.

Segue uma entrevista com o pesquisador.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar na área de Materiais.

Roberto Mendonça Faria: – Antes do de cursar o Científico, atual Ensino Médio, imaginava seguir a área das Exatas (como na época eram chamadas as Engenharias, a Física, a Química, a Matemática, etc.), porém não tinha nenhuma pretensão de fazer uma carreira científica, muito menos de ser um cientista. Contudo, já no primeiro ano do Científico comecei a mudar de ideia, estimulado por um excelente professor de Física, Roberto Stark. Formei-me em Física e logo tive a sorte de ter sido guiado por dois grandes mestres: o professor Bernhard Gross e o professor Guilherme Fontes Leal Ferreira. Como todo recém-formado em física da minha época, eu era apaixonado pelos extraordinários avanços experimentais e teóricos da física do século XX. Porém, meu primeiro trabalho de investigação foi sobre um tema aparentemente modesto: a interação da radiação ionizante com filmes finos de polímeros isolantes. Sob a orientação do professor Gross aprendi definitivamente como abordar um problema científico e também a manejar o rigor metodológico necessário para desvendar os efeitos e fenômenos que surgiam dos experimentos realizados. Esses primeiros anos de pesquisa foram de crucial importância para minha carreira. Nunca mais perdi o fascínio em desvendar as propriedades e os enigmas da matéria condensada, e fico feliz porque a Ciência e a Engenharia dos Materiais é de muita importância para o desenvolvimento do Brasil.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais?

Roberto Mendonça Faria: – Há diferentes maneiras de se medir as contribuições ao avanço do conhecimento científico e tecnológico. A visão mais objetiva e mais seguida internacionalmente é a bibliométrica conduzida pelo Journal of Citation Reports (JCR) da Thomson Reuters. Essa métrica tem muitos méritos, mas é exageradamente numerológica. Outro fato que pesa nas avaliações científicas vem do pragmatismo do mundo atual. Hoje exige-se que os trabalhos científicos estejam voltados a aplicações específicas. Nesse contexto, as pesquisas que envolvem estudos mais fundamentais tendem a perder a visibilidade que merecem. Ou seja, trabalhos científicos de grande valor muitas vezes são pouco citados. Uma análise da minha produção a partir da JCR pode levar à conclusão de que minhas contribuições mais relevantes estão ligadas a aplicações, mas eu particularmente acho que as minhas maiores contribuições estão mais relacionadas a trabalhos fundamentais nas áreas de transição de fase de polímeros ferroelétricos e de mecanismos de transporte elétricos em polímeros eletrônicos.

Uma das áreas interessantes que tenho trabalhado nos últimos anos é a de células solares orgânicas. Junto com meu grupo de pesquisa, creio que demos uma contribuição significativa à compreensão de fenômenos envolvendo o transporte de portadores elétricos no interior da célula. Publicamos dois trabalhos de 2013 para cá nos quais desenvolvemos uma equação analítica que governa a curva de corrente elétrica em função da voltagem de uma célula solar quando sob iluminação. Essa equação analítica vale muito bem em casos especiais, e explicou muitos dos efeitos optoeletrônicos dos dispositivos que construímos e medimos em nossos laboratórios. Um dos trabalhos foi publicado na revista Applied Physics Letters, em 2013, e o outro na Solar Energy Materials and Solar Cells, em 2015.

Por outro lado, sempre me dediquei a montar laboratórios de pesquisa e a formar recursos humanos. Venho também contribuindo com vários programas de pós-graduação, direta e indiretamente, e tenho me dedicado há mais de vinte anos ao fortalecimento da área de Eletrônica Orgânica no país, sobretudo na formação de uma rede de pesquisa nessa área: o Instituto Nacional de Ciência e Tecnologia de Eletrônica Orgânica. Procuro sempre que possível incentivar projetos de parcerias com a iniciativa privada e com institutos de pesquisa que visam projetos aplicados. Na área de políticas públicas creio que minha participação maior foi a de coordenar o documento da CAPES com a SBPC, denominado “Ciência, Tecnologia e Inovação para um Brasil Competitivo” que contribuiu à criação da Empresa Brasileira de Pesquisa e Inovação Industrial (EMBRAPII).

Boletim da SBPMat: – Você acaba de concluir seu mandato como presidente da SBPMat, função que exerceu durante 4 anos. Compartilhe com nossos leitores uma análise dos resultados conseguidos pelas diretorias que você presidiu.

Roberto Mendonça Faria: – A SBPMat é uma sociedade relativamente nova, mas tem uma missão importante a realizar em prol do desenvolvimento do país. O Brasil dispõe de uma riqueza extraordinária que a ele é oferecida pela natureza. Porém, o país pouco se aproveita dessa riqueza porque coloca pouco conhecimento sobre seus recursos naturais. Houve uma revolução na agricultura depois que o país resolveu colocar conhecimento sobre essa dádiva que a natureza lhe ofereceu. Hoje o agronegócio é um dos pilares, talvez o mais forte, da nossa economia. Temos que fazer o mesmo com as matérias-primas que abundam em nosso território. A publicação “Science Impact – A special report on materials science in Brazil”, em parceria com o Institute of Physics (IOP) , foi um dos projetos que deu certo e que me gratificou muito. Esse tipo de iniciativa ajuda a criar consciência de que o Brasil tem vocação natural para ser líder em vários segmentos relacionados a Materiais, e gerar muito mais riqueza do que gera atualmente.

Outra valiosa contribuição que as duas gestões anteriores da SBPMat deram à Ciência e Engenharia de Materiais no Brasil foi a consolidação e internacionalização definitiva do encontro anual, que sempre é realizado no final de setembro.

Não posso deixar de destacar que a criação do Boletim Eletrônico bilíngue foi uma realização que deu certo, principalmente pela competência com que vem sendo produzido.

Boletim da SBPMat: – Você acaba de assumir, por dois anos, a segunda vice-presidência da IUMRS. Comente seus planos, expectativas…

Roberto Mendonça Faria: – Estou iniciando essa atividade. Meus planos são, em primeiro lugar, inserir cada vez mais a Ciência dos Materiais brasileira no cenário internacional. Ao mesmo tempo, pretendo usar o apoio da IUMRS para estimular a pesquisa de materiais em outros países da América Latina. O Brasil e a América Latina têm muitos problemas que são oriundos de suas economias ainda deficientes. Tenho convicção de que pesquisas em áreas de materiais são instrumentos valiosos para melhorar as condições de vida dessas populações. Hoje, como membro do Conselho da SBPMat, quero, com o auxílio da IUMRS, levar essa discussão não só no Brasil, mas em vários países da América Latina.

Boletim da SBPMat: – Deixe uma mensagem para os leitores que estão iniciando suas carreiras científicas.

Roberto Mendonça Faria: Deixei para registrar aqui que uma das realizações (ainda em andamento) que traz orgulho à nossa gestão foi a criação do programa University Chapters . Vou pedir ao Conselho que me permita trabalhar em conjunto com o professor Rodrigo F. Bianchi dentro desse programa. Não tenho dúvidas de que quanto mais pesquisadores formarmos, mais o Brasil ganhará com isso.

Acredito que o trabalho junto aos jovens que estão iniciando a atividade científica é um dos mais valiosos para um pesquisador sênior. Temos o dever de mostrar aos jovens o quanto é importante para o país o trabalho de “fabricar conhecimento”, sobretudo nas áreas científicas e tecnológicas. Não há ainda um só exemplo de país que tenha erradicado a pobreza sem que tenha desenvolvido uma educação forte e uma ciência e tecnologia competitiva. Portanto, fica aos jovens a mensagem de acreditarem no seu trabalho e de procurar sempre realizá-lo da forma mais competente possível.

Artigo em destaque: Contribuição analítica à energia sustentável.


O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Influence of charge carriers mobility and lifetime on the performance of bulk heterojunction organic solar cells. D.J. Coutinho, G.C. Faria, D.T. Balogh, R.M. Faria. Solar Energy Materials and Solar Cells, Volume 143, Pages 503-509 (December 2015). DOI:10.1016/j.solmat.2015.07.047

Contribuição analítica à energia sustentável

Um trabalho totalmente desenvolvido no Instituto de Física de São Carlos, da Universidade de São Paulo (IFSC-USP) fez contribuições significativas à análise do desempenho de células solares orgânicas, dispositivos capazes de transformar em eletricidade a luz do sol, que é uma fonte de energia renovável, limpa, segura e praticamente inesgotável. Resultados do estudo foram recentemente publicados no periódico Solar Energy Materials & Solar Cells, cujo fator de impacto é de 5,337.

Composição da célula solar de heterojunção de volume utilizada nos experimentos reportados no artigo. Na camada ativa, a configuração dos materiais aceitador (azul) e doador (vermelho) de elétrons.

Com estrutura análoga à de um sanduíche, a célula solar orgânica é composta por camadas de espessura nanométrica feitas de diversos materiais que cumprem funções específicas no dispositivo.

A chamada “camada ativa”, aquela que protagoniza as principais etapas da transformação da luz (fluxo de fótons) em corrente elétrica (fluxo de partículas com carga elétrica), é feita de materiais orgânicos (suas moléculas possuem átomos de carbono) semicondutores. Na rede de átomos dos semicondutores tradicionais, os elétrons situados na chamada “banda de valência” pulam de seus estados quando absorvem fótons, deixando vagas chamadas “buracos” (holes) e ocupando novos lugares na chamada “banda de condução”. Nos semicondutores orgânicos, o mecanismo de geração dos pares elétron-buraco é semelhante, com a diferença de que, em vez da transição direta de uma banda para outra, ocorre a formação do éxciton molecular (um sistema contendo uma carga negativa e uma positiva), que se dissocia com facilidade produzindo as cargas livres (elétrons e buracos).

Para que aconteça a etapa seguinte na conversão de luz em eletricidade, a camada ativa das células solares orgânicas deve possuir muitas regiões de interface entre dois tipos de materiais: o doador e o aceitador de elétrons (geralmente um polímero eletrônico e um derivado do fulereno, respectivamente). Se o éxciton, em sua vida de alguns picossegundos, consegue chegar até alguma região de interface, as forças que mantém elétron e buraco unidos são quebradas para que aconteça a doação do elétron pelo polímero ao fulereno. Nesse momento, não havendo armadilhas no caminho que impeçam seu movimento, elétrons e buracos fluem em direções opostas, atraídos e coletados por elementos eletrodos, gerando corrente elétrica que poderá ser utilizada em um circuito externo.

Nessa sucessão de etapas, perdas de eficiência na conversão de energia solar em elétrica podem acontecer devido a diversos fatores. Um exemplo é a recombinação de elétrons e buracos depois da dissociação do éxciton, a qual impede que esses transportadores de cargas fluam livremente. Outro exemplo é o dos defeitos ou impurezas em materiais da camada ativa, que agem como armadilhas dos transportadores de cargas, diminuindo sua mobilidade.

No artigo publicado na Solar Energy Materials and Solar Cells, são reportados os resultados de uma série de experimentos realizados com o objetivo de estudar em detalhe a mobilidade e tempo de vida de portadores de cargas (elétrons e buracos) em função da temperatura, numa célula solar orgânica de heterojunção de volume, fabricada no IFSC. Nesse tipo de dispositivo, o material doador de elétrons e o aceitador convivem numa configuração particular (um filme nanométrico de estrutura bifásica) que aumenta a área de interface entre os dois materiais com relação a outras possíveis configurações.

Os autores também apresentam no artigo os resultados de medidas de corrente elétrica em função da tensão externa aplicada (J-V) sob iluminação – um dos experimentos mais relevantes na caracterização de células solares. De fato, esse experimento é necessário para calcular a eficiência de uma célula solar.

Célula solar orgânica durante caracterização elétrica sob iluminação artificial equivalente a um sol. No protótipo da figura acima, em uma placa de 5 X 5 cm, cinco dispositivos são ligados em série produzindo aproximadamente 2V no total. A eficiência individual de cada dispositivo deste estudo é em torno de 4%.

Para ajustar e analisar os resultados experimentais, os autores desenvolveram um modelo baseado num conjunto de equações. O modelo veio preencher uma lacuna na literatura científica, já que, até sua publicação, essas análises eram feitas a partir de aproximações, sendo imprecisas, ou por meio de métodos numéricos, que exigem árduo e demorado trabalho.

“Não existe ainda hoje uma descrição formal para a curva J-V”, comenta Roberto Mendonça Faria, professor titular do IFSC-USP e autor correspondente do paper. “Nosso artigo teve o mérito de elaborar uma expressão analítica para J-V que reproduz com sucesso as características de uma célula solar orgânica para o caso em que as mobilidades dos portadores positivos e negativos são iguais”, destaca ele, acrescentando que, com essa expressão, é possível fazer uma análise mais precisa do desempenho das células, mesmo para casos onde as mobilidades de elétrons e buracos não sejam exatamente iguais.

À esquerda, Roberto Mendonça Faria (último autor do artigo) e, à direita , Douglas José Coutinho (primeiro autor).

O artigo também apresenta as análises que a equipe do IFSC conseguiu fazer a partir dos resultados experimentais e do modelo, principalmente a respeito de alguns fatores que levam a perdas de eficiência na conversão de luz em eletricidade.

Dessa maneira, os autores do artigo fizeram uma contribuição ao desafio de produzir energia de modo sustentável. “A produção de energia é vital para que a sociedade humana continue seu progresso econômico e social, mas não pode continuar com seus efeitos secundários, e terríveis, de poluir o planeta e contribuir ao efeito do aquecimento global”, afirma Faria.

Os resultados reportados no artigo fazem parte das pesquisas de mestrado e doutorado de Douglas José Coutinho, realizadas com orientação do professor Faria e com financiamento das agências brasileiras de apoio à pesquisa FAPESP e CNPq (inclusive por meio do INCT de Eletrônica Orgânica, INEO).