History of the Synchrotron Light Brazilian National Laboratory – part 2. The construction in Brazil of the source of synchrotron light and its first beamlines.

[See the first part of the story here].

During the military dictatorship, the dream of having a source of synchrotron light in Brazil was embraced by the national research foundation, CNPq, and by teams of scientists that were able to transform it into a project. At the end of such period, the Brazilian Synchrotron Radiation National Laboratory (LNRS) was conceptually created. Also, Campinas, a city in the state of São Paulo that headquarts the university Unicamp, was chosen as the place where the laboratory would be located.

In 1985, having José Sarney as the first civil President of Brazil after 21 years, and Renato Archer as the minister of the newly-created Ministry of Science and Technology, a group of four people connected to LNRS carried out a three-month mission in the United States, at Stanford Linear Accelerator Center (SLAC), where there is a source of synchrotron light. There, the Brazilian team worked under the supervision of the scientist Helmut Wiedemann, specialist in synchrotron light. “Our purpose was to learn the traces of the theory and technology involved in the construction of our synchrotron light”, says Antonio Ricardo Droher Rodrigues, best known as Ricardo Rodrigues, who was part of such mission.

However, the government gave one step back in the project after some demonstrations of resistance of groups of the scientific community: criticism to the creation of the Brazilian synchrotron and an offer to move the laboratory to Rio de Janeiro. Renato Archer decided then to carry out a new evaluation and, on January 30th, 1986, he created an advising commission, coordinated by Roberto Lobo, who delivered a favorable opinion for the effective implementation of the laboratory in the city of Campinas.

In the second semester of 1986, the first board of directors of the laboratory was appointed, with Cylon Gonçalves da Silva (Professor of the Unicamp Institute of Physics) in the position of director of the laboratory, Aldo Craievich (researcher of the Brazilian Center for Research in Physics, CBPF) as vice-director and head of the scientific department of the laboratory, and Ricardo Rodrigues (Professor of the Institute of Physics and Chemistry at USP São Carlos) as the project leader (technical coordinator). In fact, this was the board of directors of a laboratory that didn´t exist yet and these men had, as their main mission, the implementation of the laboratory.

From the room to the house, from the house to the hangar, from the hangar to the campus

The team worked in a lent room in the building of the Unicamp´s Dean Office until the end of the year. In the first semester of 1987, it moved to a rented house, with four rooms, located in the district of Chácara Primavera in Campinas. At that time, the laboratory already had its definitive name, Synchrotron Light National Laboratory (LNLS in Portuguese) and the staff was formed by the members of the board of directors, another professor of the Unicamp Institute of Physics, Daniel Wisnivesky, and about six other collaborators.

“Initially, the team members earned as independent employees”, tells Ricardo Rodrigues. “Such labor situation was “regulated”, initially, by 35 openings of CNPq and then, to maintain the required growth, through an agreement signed between CNPq and a foundation of Unicamp to develop the project and construction of the linear accelerator (LINAC), injector of the future Brazilian synchrotron”, he adds. The legal or bureaucratic hindrances to hire people only had a better solution as from 1998 with the sanction of Law no. 9.637, which created the social organizations (private legal entities, non-profits, dedicated to education, scientific research, technological development, protection and preservation of the environment, culture, and health). “The institution of the social organizations was a result of a Herculean work of Cylon”, says Ricardo Rodrigues.

In July 1987, the staff, with approximately 40 people, moved to the district of Fazenda Santa Cândida in Campinas, occupying an hangar of 1,800 m2 that had been purchased by CNPq and refurbished during that first semester.  At the end of that year, the group had 50 people. “The first members were in its majority, newly-graduated physicists that learned by doing all the required knowledge”, tells Ricardo Rodrigues.

In 1990, the government of the State of São Paulo purchased and assigned to LNLS a property of approximately 500 x 800m2 (the campus) in the neighborhood of Guará, in the district of Barão Geraldo, for its definitive installation. In 1992, the LNLS team left the hangar at Santa Cândida and occupied the new buildings of the campus, the definitive headquarter of LNLS.

A partir da esquerda, Cylon Gonçalves da Silva, Ricardo Rodrigues e Aldo Craievich, por volta de 1990, no prédio provisório do LNLS.

Let’s get down to work!

Between 1987 and 1997, the team of LNLS, which could count on 70 people, worked in the construction of the source of synchrotron light. Such project could foresee a linear accelerator or LINAC and a circular accelerator known as storage ring, in addition to a series of beamlines (the laboratories around the ring where the users use the radiation for their studies through several scientific instruments). “Over all those years, almost on a daily basis, we saw technical problems being solved in our team”, says Ricardo Rodrigues, who directed the construction of the source while Aldo Craievich led the construction of the first seven beamlines and developed an extensive program of courses, schools, and workshops aiming at the training of new users of synchrotron light.

The first component of the source that got ready, at the end of 1989, was a LINAC able to accelerate the electrons up to a power of 50 to 60 million of electrons-volt (MeV). Such linear accelerator will later be part of the definitive LINAC, of 18 m of length and 120 MeV.

Also in 1989, the team prepared the project of the circular accelerator, which in fact was not a circle but a polygon of 93 meters of length. According to this project, the ring would be able to accelerate electrons up to a power of 1.15 billion of electrons-volt (GeV). Between 1990 and 1991, still in the hangar, the prototypes of components of such circular accelerator were built.

The construction of the beamlines was progressing in parallel. In order to fund it, requests were sent to science agencies, especially the one from São Paulo (FAPESP) and the national one (CNPq).

From 1992 on, already in the definitive headquarter, in the campus of Guará, the civil works were progressing. The beamlines were installed and the components of the circular accelerator were produced – some of them in series, such as the more than 100 electromagnets of the ring.

In 1995, the assembly of the ring started, as well as its connection to the LINAC of 120 MeV, which was installed in an underground tunnel.

In the same year, the first beamline constructed in LNLS (toroidal grating monochromator, TGM), was taken to the synchrotron light laboratory CAMD, in the United States, where it was operated during two years by members of LNLS. Then, it returned to Campinas to be part in LNLS. The X-ray monochromator, another development of LNSL, also left the country to be tested in the LURE synchrotron laboratory, in France.

In June, 1996, the source of synchrotron light was completed, assembled, and tested, operating at 1.15 GeV. In October of such year, the synchrotron light arrived for the first time to an beamline, the TGM.

Finally, in July, 1997, LNLS started its activities of national laboratory, counting on a source of synchrotron light operating at a power greater than the designed one (1.37 GeV), seven beamlines ready for use, a staff able to maintain the laboratory and a structure ready to asssess by peer review the research projects submitted by the reasearchers who wanted to use this laboratory. Only in 1997, 100 projects were carried out in the LNLS beamlines. 

A homemade laboratory

In summary, such laboratory, which has worked without stopping for 17 years making feasible scientific and technological research projects in Materials and other areas, was almost fully designed and constructed in Brazil, more precisely in the city of Campinas by a team of scientists and their collaborators. These people were. over a decade, successfully overcoming several technological, financial, macro-economical, legal, bureaucratic, human, psychological and other types of challenges.

Such team went further to the design and assembly of the big scientific machine. Its members manufactured most part of the pieces and components of the big laboratory, except for the shelf parts as pumps and valves.

At least a part of such work could have been made in collaboration with industrial companies, but that did not occur. According to Ricardo Rodrigues, the national industry from that time was not equipped to meet the demands of such project and was not interested in small contracts which required great engineering work. On the other hand, there were import restrictions that hindered the participation of foreign companies. “The economy was quite closed in relation to foreign companies”, he says.

Last but not least, the project leaders were interested in training an internal team that would master all technology deployed in the accelerators, so that LNLS would have a long life through continuous improvements – what have been happening indeed. The LNLS of 2014 has components that the LNLS of 1997 did not have: notably the intermediate accelerator (booster), an inverter, two wigglers, and eight new beamlines.

The training of the LNLS team consisted mainly in “learning by doing”, complemented by visits of one or two weeks in institutions abroad similar to LNLS. Besides, since the beginning, LNLS counted on an international committee of specialists who participated in annual meetings in Campinas, where the Brazilian team presented their projects and results so that they could be evaluated.

Acoording to Yves Petroff, who directed centers of synchrotron light in Europe, followed up the implementation of LNLS, and was its scientific director from November 2009 to March 2013, the “extremely low” budget available summed to the fact that almost everything was constructed in the laboratory, expanded the construction of the machine of LNLS, which took more time than usual to be built. “Finally this has been a chance because the technical staff has acquired a complete knowledge of accelerator and today, if there is a failure, it can be fixed quickly ; the reliability of the machine (97%) is among the best in the world.”, states Petroff. According to the French physicist, such experience allowed LNLS to suggest the construction of the SIRIUS accelerator, which is being led by Ricardo Rodrigues. The machine will have a power of 3 GeV and an emission of 0.28 nm.rad. “This will be a fantastic opportunity for the materials science community in Brazil and Latin America”, says Petroff.

To learn more:

– Cylon Gonçalves da Silva. The National Laboratory for Synchrotron Light. The Brazil experience. Available at: http://www.slac.stanford.edu/pubs/beamline/26/1/26-1-dasilva.pdf

– Aldo F. Craievich, Ricardo Rodrigues. The Brazilian synchrotron light source. Hyperfine Interactions 113 (1998) 465-475. (Springer)

——————————————————————————————————

BOX 1. Mini-interview with Cylon Gonçalves da Silva, first director of LNLS (1986-1998).

SBPMat newsletter: Was it difficult to the team to carry out a project of such size, persisting over a decade?

Cylon Gonçalves da Silva: – From my point of view, as a general responsible for the project, the greatest difficulty was financial-budgetary. It is good to remember that LNLS was constructed in one of the worst periods of the Brazilian economical history. For years with the inflation out of control, in the beginning of the month I didn’t know if there would be resources for remuneration at the end of the month. And it was a piece of information that I had to keep with myself, not to affect the team’s morale. Regarding sources for funding and investment, I remember a year (1992) when we had the fortune of 800 thousand dollars to move the project forward. There was a fight each month which we won with a lot of effort and with the help of friends of the project in the Board of Directors and in Brasilia. Some day, it will be required to record such facts and their names. We had a small number of congressmen in the Congress that supported the project, “LNLS bench”. It is interesting that it comprised all shades of the political spectrum, what facilitated (a little) our life at the time of discussing the budget.

The inability of the three directors in synchronizing their depressions contributed to the continuity of the project. If we had a synchronous group, the project would have failed. As the three had never been depressed at the same time, the other two cured the third one from depression and the project continued. Without disregarding the inability of reaching an agreement about who would commit suicide first: the team and then the general director (as he wanted to), or if the general director would commit suicide first and then the team would do so later (as the team wanted to).

With Ricardo in the Technical Direction, the technical difficulties seemed not to exist. And with Aldo taking care of the scientific part, I did not need to worry. They will probably have another view of the difficulties they faced.

SBPMat newsletter: – What were the most thrilling ties of such history you can remember?

Cylon Gonçalves da Silva: – When we saw working the first LINAC of 50 MeV (in December, 1989), that one I called the “Great Post-Graduation Project”,  we had the first evidence that we were on the right track and had met the right team. The difficulties of importing anything were huge at that time and there were components, such as klystrons, which we could not manufacture or acquire in Brazil. We started the manufacturing of the accelerating structures, when an opportunity of acquiring them from China came up, then we shortened the way. For the imports, until 1990, the aid from CERN was decisive. But it is another story.

The international panels of revision of the project showed the incredible professional growth of the young team in a few years. Especially in the second panel, when the youngsters of the technical team started to talk to great specialists of accelerators as mates, not as students.

To me, the construction of LNLS was an excuse to train quality professionals after all. The success we had was more than demonstrated by the number of members of our team who (unfortunately) emigrated and now occupies outstanding positions in great laboratories abroad. It is the reason why I consider Sirius a very important project too, for the opportunity of training top-class technicians and engineers; not only to work in the Laboratory but to contribute in the industry and with the creation of companies to the elevation of the technological level in Brazil, and not to loose what was reached with the first steps taken by LNLS.

Despite all difficult times we lived, which were not a few, I had never doubted a thing: that if we persisted, the project would reach a good end. The great skepticism that surrounded our job for the majority of the scientific community was a good encouragement to us to proceed. Without wanting and knowing, even the opposition helped us to make LNLS concrete. The first injections and storage of electrons in the ring and the view of the first synchrotron light were the thrilling coronation of such certainty. They marked the admission of Brazil in the group of countries able to design and construct particle accelerators of great size.

The beamline operating in CAMD (Louisiana, USA), an (temporary) export of the first complex scientific instrument of the project, built in Brazil, showed to our team and the international community that it was not only the construction of the ring that progressed satisfactorily, but also the project and construction of the instruments required to use the light. Thanks to such operation, part of the technical team started to become familiar with the difficulties involved in real life of an instrument connected to a source of synchrotron light, even before we had our own.

The transformation in Social Organization (1998), after a long battle, with the creation of a new institutional model for science in Brazil was another exciting moment to me. Maybe, the most important of the contributions that I may have given to the project. Here, it is needed to acknowledge the former Federal Congresswoman Irma Passoni (PT-SP) to have taken me to meet Dr. Aloysio Campos da Paz (deceased in 2014) of Hospital Sarah, in Brasília. It was from the long talk with him that I conceived the institutional model that took me to formulate the proposal of the Management Contract, a long time before Minister Bresser Pereira raised the flag of the Reform of the State (abandoned much earlier, it is certain). It is another history that would deserve to be told one day.

From the personal point of view, I got touched with the concession of the title of the Emeritus Researcher of LNLS when I left the Laboratory, which entitled me to maintain a room and a relationship with the Laboratory that I had helped to create. I always imagined living again someday with that extraordinary environment of scientific and technological research, following the work and the enthusiasm of young researchers, even if as mere spectator on the bleachers. I feel sorry about having gave back such title, years later in very unpleasant circumstances. Not having been invited to the visit that the Minister Raupp made to LNLS for the celebration of the 25-year anniversary of the Laboratory, nor to the launching of the cornerstone of Sirius, it can undoubtedly be explained by the fact that when CNPq granted me with the title of Emeritus Researcher, the communication addressed to me at LNLS was returned with the note “Unknown Addressee, return to sender”.  Sic transit gloria mundi.

—————————————————————————————————————————————————————————————————-

BOX 2. Mini-interview with Ricardo Rodrigues, technical coordinator of the implementation of LNLS and leader of SIRIUS project since 2009.

SBPMat newsletter: – Which were the main challenges faced during the construction of LNLS in your opinion?

Ricardo Rodrigues: – As a technical coordinator, it was to accept my own errors of optimistic evaluation of the terms to overcome technical difficulties. To counteract such frustrations, we could always transfer the guilt to the lack of organization of our country, where projects are approved, but without commitment of the Governments. It was and continues to be the great difficulty of any project of such kind. In such aspect, we were lucky to have an intelligent General Direction able to do the exhausting negotiations required to maintain a reasonable rhythm in the releases of resources. The lack of commitment of the governments with the projects officially approved induces to the lack of focus on their execution, since the delay in the release of financial resources allows the projects to be continuously revised.

SBPMat newsletter: Was it difficult to the team to carry out a project of such size, persisting over a decade?

Ricardo Rodrigues: – No. The people that got involved in the Project were looking for great technological challenges. There was always an appropriate technical infrastructure working, so that at times of little money it was possible to test new ideas or improve technical solutions with few resources. Almost everything could be made “at home”. For young enthusiasts of science and technology it is very important since it brings promptness to the process. Another aspect is the participation of everyone in the technical decisions. Everyone felt they were greatly responsible for the results and they were very proud for their successes.

Featured paper: Traveling on a random way to emit ultraviolet laser light.

Paper: Multi-photon excited coherent random laser emission in ZnO powders. Dominguez, CT; Gomes, MA; Macedo, ZS; de Araujo, CB; Gomes, ASL. Nanoscale, 2015, 7, 317-323. DOI: 10.1039/C4NR05336B.

A team of Brazilian scientists developed a random-type laser (random laser) that opens new possibilities of applications for this type of device, especially in medicine. The novelty was reported in an article recently published on the scientific journal Nanoscale.

In a laser, the light is generated by the emission of photons in cascade effect: electrons properly stimulated emit photons, which stimulate new electrons that emit other photons, which stimulate other electrons and so on. In order to have a laser working, it is required to have more excited electrons than non-excited ones – situation which is called “population inversion”.

In the conventional laser, the population inversion only occurs when the light is confined in a “gain medium”, which is confined within an arrangement of parallel mirrors, known as optical cavity. In such gain medium, the light goes and comes, stimulating electrons and generating the cascade effect explained above. But in the random laser, the confinement of the light occurs due to the strong scattering performed by nanometric particles that are embedded in the gain medium material. An optical cavity is not needed in this case. Before leaving the random laser, the light travels a long random path producing stimulated emission. If at the end of the path, the light comes back to its original scattering center, it is a random laser of coherent feedback.

In the work reported in Nanoscale, the authors used zinc oxide (ZnO) powder as gain medium. Its particles also worked as scatterers. The material was synthesized by a green and low-cost method, called proteic sol-gel, following an innovative route based on the use of coconut water in the polymerization stage of the metallic precursor. The process generated a compound of quality equivalent to the one produced by traditional manners.

“Our team developed for the first time a random laser with coherent feedback emitting ultraviolet light, from a powder composed by sub-micrometric particles of ZnO, using optical excitation in the infrared,”, summarizes Christian Tolentino Dominguez, first author of the article published in Nanoscale.

According to him, the work opens possibilities for several applications of the random laser light; for example, in the activation of fluorophores or drugs for therapeutic use, as lighting source to obtain high quality biomedical images, and also as lighting source in optical coherence tomography (OCT) devices, pico projectors, and cinema projectors.

The team also obtained experimental evidence to state that the emission of UV of the random laser of ZnO powder was induced by the simultaneous absorption of 3 photons in the near infrared region. “Due to its broad band gap (~3.37 eV), the ZnO is virtually transparent at visible light, but its conduction band may be accessed by electrons excited by light with wavelenght located in the the near infrared region, by a non-linear optical process that involves the absorption of several photons in a simultaneous manner”, explains Tolentino.

(a) and (b) Images of electronic scanning microscope showing the particles of ZnO in different magnifications, (c) X-ray diffraction of the particles, (d) Scheme showing the experimental configuration, (e) Emission spectra at different excitation energies and curves showing the characterization of the random laser: band narrowing and non-linear behavior due to the excitation energy.

The work was developed, mainly, in the Photonics and Biophotonics Laboratory at the Federal University of Pernambuco (UFPE), headed by Professors Anderson Gomes e Cid B. de Araújo. It was carried out during a post-doctoral internship of Christian Tolentino, who currently works in the Biomedical Engineering Laboratory, also at UFPE. The synthesis of the particles was performed by the group of Advanced Ceramic Materials at the Federal University of Sergipe (UFS), headed by the Professor Zélia Soares Macedo.

The research was funded by the Brazilian national research foundation (CNPq) and by the Pernambuco state research foundation (FACEPE). It was held in the context of the National Institute of Science and Technology in Photonics, which has performed active research in the area of random laser, having several papers.

Abstract submission is open for the 27 symposia and 2 workshops of the XIV SBPMat Meeting.

The submission of abstracts regarding the XIV Meeting of the Brazilian Materials Research Society (SBPMat) is open until May 30th. The event will be held from September 27th to October 1st in Rio de Janeiro at the convention center SulAmérica.

Works of researchers and students from Brazil and abroad in the areas of the symposia can be submitted. In this edition of the annual meeting of SBPMat, the number of symposia exceeded all the previous ones: 27 symposia and 2 workshops.

The symposia were selected by the organizing committee among the proposals received in a call launched in November 2014. According to the chairmen of the event, Marco Cremona and Fernando Lázaro Freire Junior, there were more than 50 proposals of symposia for this edition. Thus, it was impossible to put up all of them due to the limitations of time and physical space at the convention center. To select the symposia, the committee considered frontier research topics having an active community in the country.

In addition to a diverse range of themes (nanomaterials, electronics and photonics, biomaterials, modeling, materials for energy, among others), the list of symposia includes a symposium organized by the SBPMat University Chapters, coordinated by students, and two workshops organized in cooperation with industries. The list of symposia coordinators is also diverse, including researchers of universities and other research institutions from South, Southeast, and Northeast Brazilian regions, and from abroad (Argentina, Denmark, England, Germany,  Italy, Ireland, Japan, Portugal, Spain, Switzerland and USA).

About SBPMat meetings

The annual SBPMat meeting is a traditional international forum dedicated to the recent progresses and perspectives in Materials science and technology. In addition to the presentation of technical works that occur in the symposia, the scientific program of the event counts on plenary lectures given by renowned researchers from worldwide. In the edition of 2014, held in the city of João Pessoa, around 2,000 works were presented in 19 symposia.

List of symposia and workshops: http://sbpmat.org.br/14encontro/symposia/?lang=en#title

SBPMat’ s community people: interview with Helio Chacham.

During his childhood and adolescence in Belo Horizonte, in the 1960s and 1970s, Helio Chacham had many incentives to become interested in science. After that, in higher education phase, Chacham first started Electrical Engineering but ended up choosing Physics. And that was the field he chose for his undergraduate, masters and doctoral degrees at the Federal University of Minas Gerais (UFMG).

Shortly after completing his doctorate program, he joined the UFMG as Associate Professor, and afterwards he left for the United States to engage in a nearly two-year postdoctoral stage at the University of California in Berkeley. Back in Minas Gerais, between 1995 and 1997, he coordinated the graduate program in Physics at UFMG. From 1999 to 2000, he returned to the United States to engage in a second postdoctoral stage at the University of Texas in Austin. In 2004, he became a Full Professor at UFMG.

Over 30 years of scientific activity, professor Chacham has studied various materials with theoretical research based on the intensive use of computations, although in many opportunities he has worked in collaboration with experimental research groups. Early in his career, Chacham made important contributions to the study of properties of materials under ultra-high pressure. Since the mid-1990s, the researcher has dedicated himself, together with his group and collaborators, to predicting, verifying and explaining phenomena occurring in nanomaterials and two-dimensional materials, also making significant contributions on the same subject.

Currently aged 55, Helio Chacham is a level 1A productivity fellow (the highest level) at the Brazilian National Research Foundation – CNPq. He is the author of around 100 papers published in international peer review journals, which have over 1,800 citations. Chacham is the sub-coordinator of the National Institute of Science and Technology (INCT) of Carbon Nanomaterials. In December 2014, he was elected member of the Brazilian Science Academy (ABC).

Below is an interview with the scientist.

SBPMat newsletter: – How did you become interested in science? What led you to become a scientist and to work in Condensed Matter Physics?

Helio Chacham – My childhood was during the 60s and 70s, a time when there was great interest in science and technology – in part due to the space race and the man going to the moon. As a child and teenager, I always had access to science books (I remember “The Universe” by Isaac Asimov) and also science fiction books (also several by Asimov). At this time I also collected science experiment kits that were sold at newsstands – they were great kits with materials and instructions for experiments, also including small texts on scientists associated with the experiments. The schools I attended as from the 5th grade (both linked to the Federal University of Minas Gerais, UFMG) had good laboratories and good science teachers, which also encouraged me in that direction.

Upon my entry at the University (UFMG), I started as an Electrical Engineering student, but after the first year, I found that my biggest interest was in the fields of Physics and Computer Science. So I switched to the Physics course and meanwhile, for some time, I performed research in Computer Science. Then I was accepted in master´s courses in both – Physics and Computer Science – and ended up choosing the former. Since then, I have devoted myself to research in Condensed Matter Physics, perhaps because it is somehow related to my previous interests (Engineering and Computer Science).

SBPMat newsletter: – In your own assessment, what are your main contributions to the field of Materials?

Helio Chacham – In the 90s I devoted myself primarily to theoretical investigation of properties of materials under ultra-high pressure. These properties are relevant, on the one hand, under the academic point of view, because they allow investigating conditions similar to those of planetary interiors. In addition, these properties determine the limits of hardness of materials, such as the diamond. My largest contributions in this field were the determination of the pressure above which hydrogen becomes a metal – which occurs within Jupiter – and the theoretical determination of one of the diamond hardness measurements, the optimum shear strength.

Since the mid-90s, I started a research line on nanomaterials. This has been one of the most active areas of research in materials since the discovery of fullerenes and carbon nanotubes. My first contributions in the area, in collaboration with students, were predicting morphologies of boron nitride fullerenes and predicting the transformation of electronic properties of carbon nanotube – from insulating into metallic – when subjected to compression. The latter phenomenon was only experimentally demonstrated several years later, in a collaborative work with experimental researchers in my own department – the UFMG Physics Department. These theoretical/experimental collaborations have had a fruitful continuing so far, which has allowed us to predict, verify and explain various new phenomena in carbon nanotubes, graphene and two-dimensional materials, phenomena such as: the negative dynamics compressibility in graphene; wrinkle crystallization in boron nitride; and talc exfoliation up to the single layer boundary, similar to that of the graphene, and determination of properties of this new two-dimensional material.

During all of these projects I was always concerned in training masters´ and doctors, whose theses dealt with electronic and structural properties of nanotubes, fullerenes, DNA, nanoparticles, nanowires, graphene and other two-dimensional materials. These former students are now professors and researchers at UFMG and other universities, and have carried out several projects, mainly in the nanomaterials field.

SBPMat newsletter: – Last year you were elected member of the Brazilian Science Academy (ABC). What that means to you? How do you see your role within the ABC?

Helio Chacham – I deeply appreciate the support of my colleagues of the Academy in the election. I will take office in May, and then, will be able to seek ways to contribute with ABC, whether by participating in committees or in specific projects of the Academy, or by collaborating with Science Academies in other countries, one of which I have already participated (Brazil/India) before joining as a member. As I have been providing service to the community, whether, for example, as a member of the advisory committee of the CNPq or by coordinating projects in nanomaterials, I believe that my election will allow me to continue to contribute with the research community in many ways.

SBPMat newsletter: – Leave a message for our readers who are starting their careers as scientists.

Helio Chacham: – Based on my professional experience so far, I may be able to give some advice – which can be useful or not depending on the personality of each person, of course:

a) Work on what you really enjoy – the researcher’s career is one of the few that allow you to do so.

b) Search research areas with many issues to be solved, or new materials being produced, and which are consistent with item (a) above. For that matter, it is important to always keep up with scientific literature.

c) Master the methods you use as deeply as possible. That will allow you to attack difficult and important issues.

d) Always be willing to study and learn new methods. That will give you the flexibility and the ability to search for new issues and research areas, as well as to collaborate with researchers using other methodologies. Science changes continuously and constantly.

Two more university chapters created in the state of São Paulo.

The map of the university chapters (UCs) program of SBPMat presents since late January of the current year two more points in the state of São Paulo.

The University Chapter NanoMaterials (UCNanoM), headquartered at the São Paulo State University (UNESP) – Presidente Prudente campus, starts with five tutors and 45 members, undergraduate and graduate students of the Physics, Chemistry, and Biology departments who develop projects intended to the preparation and characterization of nanomaterials, as well as of electronic and optoelectronic devices.

UCNanoM team (above) and logo (below).

“In Brazil, the research in Materials has reached relevant progresses. Hence, it is important to invest in networking”, says the UCNanoM president, Tiago Carneiro Gomes. “The University Chapter program is an opportunity to do this and it contributes to an effective academic training”, adds the PhD student in Materials Science and Technology at UNESP.

UCNanoM intends to hold workshops open to the public. Through such events, UC aims to promote networking and the critical and global view of recent scientific and technological progresses, as well as to increase high school students’ interest in acting in science.

UNESP Ilha Solteira UC team.

The second UC recently created is headquartered at Ilha Solteira campus of UNESP. It counts on two tutors and 27 participants – Material Science graduate students and Physics undergraduate students. According to its president, Lincon Zadorosny, the main motivation of the UC creation was the opportunity of interacting at national and international levels with several research groups and their students. Regarding expectations, Lincon says that his UC may help to exchange experiences with other groups, keep the group update about national and international research, and generate exchange opportunities.

Learn about the University Chapters Program of SBPMat and the eight units it has in the states of Minas Gerais, Pará, Piauí, Rio Grande do Sul, and São Paulo so far: http://sbpmat.org.br/en/university-chapters/

SBPMat newsletter. English edition. Year 2, issue 1.

 

Brazilian Materials Research Society (SBPMat) newsletter

News update from Brazil for the Materials community

 

English edition. Year 2, issue 1. 

SBPMat News: XIV SBPMat Meeting - Rio de Janeiro, 9/27 to 10/01/2015 

Symposia: our event features this year 28 symposia and 2 workshops! See the list on the event website.

Abstract submission: until May. Soon, on the event site, instructions for authors.

Sponsors and exhibitors: 12 companies have already booked their place in the XIV SBPMat Meeting . Contact for exhibitors and other sponsors: rose@metallum.com.br.

Go to the event website.

SBPMat news: University Chapters

SBPMat has now its first northern Brazil university chapter. It is located in the city of Belém (Pará state), in the Federal University of Pará (UFPA). The SBPMat’s University Chapters Program started last year and already has 6 units in universities of Minas Gerais, Pará, Piauí, Rio Grande do Sul and São Paulo. Learn more.

Featured Paper 

Through a detailed study of Raman spectra of CMO compound, performed in the Brazilian federal universities of Maranhão and Ceará with collaboration of Spanish groups, scientists investigated the relation between the vibrations of the lattice and the magnetic order, and progressed in understanding the generation of magnetically induced ferroelectricity. The results have been recently published in Applied Physics Letters.  Know more.

SBPMat´s Community People 

Born and educated in Argentina, Aldo Craievich came to Brazil in 1973. Since, he has developed his career in various Brazilian institutions in the area of Condensed Matter Physics, and was one of the protagonists of the creation and implementation of the Synchrotron Light National Laboratory. During an interview to the SBPMat newsletter, the professor told us about his career: his main contributions to the study of various materials and his work to teach and disseminate synchrotron light, among other topics. He also left a message for readers in early career. See our interview with the scientist. 

History of Materials Research in Brazil 

We did a little research on the history of the Brazilian Synchrotron Light National Laboratory, whose resources have been benefiting 1,500 scientists, mainly from Brazil and Argentina, per year. In this issue of our newsletter, we talk about the very start of its genesis: from the dream of a big research machine in Brazil to the first steps toward the construction of the lab. See our story.

Reading tips
  • Innovative technique overcomes resistance of crystalline metals to nanoconformation (Science). Here.
  • Porous films of graphene, good for use in supercapacitors, obtained by laser from polymer (text and video – Nature Communication). Here.
  • Super hydrophobic and self-cleaning surface created by laser-patterning micro and nanostructures in metals (video and text – JAP). Here.
  • Implants with materials that degrade in the body after fulfilling their function in bone fractures (Fraunhofer Institute). Here.
  • Nanomaterials safety: combination of nanotubes with lead or pesticides shows toxicity to fish (Brazilian National Institute of Science and Technology “Inomat”). Here.
  • Energy efficiency: at the nanoscale, the surface chemical composition influences friction behaviour (Brazilian National Institute of Surface Engineering). Here.
Events
  • 1st Brazilian X-ray Absorption Spectroscopy School (EBARX). São Carlos, SP (Brazil). February, 9 to 13, 2015. Site.
  • 4th School of SAXS Data Analysis. Campinas, SP (Brazil). May, 11 to 15, 2015. Site.
  • São Paulo School of Advanced Sciences (ESPCA) on Recent Developments in Synchrotron Radiation. Campinas, SP (Brazil). July, 13 to 24, 2015. Site.
  • Advanced School on Glasses and Glass-Ceramics (G&GC São Carlos). São Carlos (Brazil). August, 1 to 9, 2015. Site.
  • Primeira Conferência de Materiais Celulares (MATCEL 2015). Aveiro (Portugal). September, 7 to 8, 2015. Site.
  • XIV SBPMat Meeting. Rio de Janeiro (Brazil). September, 27 to October, 1st, 2015. Site.
  • 13th International Conference on Plasma Based Ion Implantation & Deposition (PBII&D 2015). Buenos Aires (Argentina). October, 5 to 9, 2015. Site.
To suggest news, opportunities, events or reading recommendations items for inclusion in our newsletter, write to comunicacao@sbpmat.org.br.

Unsubscribe here.

 
Cannot see this message? Click here.

History the Brazilian Synchrotron Light National Laboratory. Part 1: The dream of a big research machine in Brazil and the first steps toward the construction of the laboratory.

This photo of LNLS shows the main accelerator and the beamlines. Credits: Julio Fujikawa / Divulgação LNLS.

Since 1997, at the Brazilian Synchrotron Light National Laboratory (LNLS), in the city of Campinas, in São Paulo state, electrons accelerated at a speed very close to the light speed and compressed in a beam of the thickness of a strand of hair travel a 93-meter-long polygon, called “storage ring”, generating a type of radiation of unique brightness with important applications in the study of organic and inorganic matter, the synchrotron light.

In several points around the ring, scientists, mainly from academia but also from industry simultaneously work in several small laboratories, known as “experimental stations” or “beamlines’, which scientific instruments use the beams generated by the synchrotron light source after having been filtered by monochromators. Thanks to such filters, each experiment receives the type of radiation of the electromagnetic spectrum it needs, from infrared up to X-rays.

Still today, the synchrotron light source of LNLS is the single one in Latin America. Since the opening of the laboratory, the use of the experimental stations is free and open to the international scientific community. The candidates submit their research projects to a committee composed by members of the scientific community, which sends them to peer review. The accepted proposals get a room in the busy agenda of LNLS, during the day or at night. In the last few years, the laboratory has benefited around 1,500 researchers a year, original from Brazil (the majority), from Argentina (approximately 17%) and, in smaller proportions, from other countries.

The LNLS research resources are used in works of the most varied knowledge areas, such as Chemistry, Physics, Biology, Environmental Sciences, Geo-sciences and, especially, Material Science and Engineering. “For an expressive number of researches of such area in Brazil, the LNLS beamlines are some of the main measurement instruments in their research programs”, says Harry Westfahl Jr., scientific director of LNLS from March, 2013.

According to Aldo Felix Craievich, a scientist that had an important participation throughout the creation process of LNLS and was its first scientific director, one of the purposes of the laboratory, since the beginning, was to offer to the researchers on Material Science and Engineering a unique and good quality experimental infrastructure. “The operation of LNLS during 17 years already allowed many Material scientists and engineers to perform research in the beamlines in very favorable conditions. And most of these studies would be impossible to perform in classic laboratories”, completes he.  In fact, the high intensity and other unique characteristics of synchrotron light allow to study the materials in a more detailed manner that the radiation that may be produced by sources found in the laboratories of the universities. “Today, a large fraction of materials are in fact nanomaterials and, in such context, the best X-ray tubes can´t compete with synchrotron radiation”, affirms Yves Petroff, French physicist that directed centers of synchrotron light in Europe and was the scientific director of LNLS from November, 2009 to March, 2013.

Having experimental techniques such as X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), X-ray absorption (EXAFS, XANES), photoelectron spectroscopy (PES), VUV spectroscopy and microtomography, the beamlines at LNLS allow a broad and deep study of the structure and properties of the materials. “The researchers bring to LNLS the materials created in their laboratories, such as, for example, more resistant plastics, more efficient catalysts, or metals with unusual electronic and magnetic properties, to understand at microscopic level the manifestation of such innovative properties, or even to guide new synthesis paths”, exemplifies Harry Westfahl Jr.

According to Aldo Craievich, the contribution of LNLS to the development of Material Science is proven by the quantity and quantity of articles published in high-impact journals based on experimental studies performed in the laboratory. As an example, Craievich comments that, in the three-year period 2006-2008, out of a total of 547 papers generated from works developed at LNLS, which can be seen in the LNLS annual reports, 211 were published in journals of the area of Material Science, number that increases when adding the publications on Chemistry and Physics that deal with basic aspects of the properties of solid materials.

However, the contribution of LNLS to the scientific and technological development of Brazil has started before the laboratory got open to the scientific community. The process of creation and implementation of LNLS as a National Laboratory was a rich experience to its players, and an interesting history to know, especially because the greatest part of synchrotron light sources and of the light lines was designed and manufactured in the country.

LNLS Origin: the beginning

The wish to have in Brazil a great particle accelerator is as old as the community of physicists in the country. One of the first attempts of installing a machine of such type occurred early in the 1950’s and was characterized because it was a proposal of construction, instead of purchase. The military and scientist Admiral Álvaro Alberto de Motta e Silva, who had led the recent creation of the Brazilian National Council for Scientific and Technological Development (CNPq) and was at that time the president of the institution, saw in the University of Chicago a particle accelerator of synchrocyclotron type, and returned to Brazil with the proposal of manufacturing a small equipment of such type in Rio de Janeiro, at Brazilian Center for Research in Physics (CBPF), to train technicians and scientists of the country that subsequently would be able to manufacture a bigger machine. The project started in 1952. In 1960, the small synchrocyclotron worked for the first time, but, by several reasons, it has never been fully operational.

With the end of the hardest period of Brazilian Dictatorship, in which many scientists left the country, the issue of the big scientific machine was resumed and, in 1981, the president of CNPq, Lynaldo C. Albuquerque, called the scientific community to prepare proposals of big research machines to implement in Brazil. As a response, the first discussions on the construction of a synchrotron light source occurred in CBPF. At the end of the year, the proposal was presented by Roberto Lobo, director of CBPF, to the president of CNPq. In 1982, both scientists visited the French national laboratory of synchrotron light LURE, at Université Paris-Sud, where Aldo Craievich was taking a post-doctoral internship and acquiring valuable experience in applications of such radiation.

“Since the beginning, the small group of people that participated in such discussions noticed that, to move forward such great, high-complexity, and high-cost project, it was required to reach a consensus in the Brazilian scientific community, and attract a reasonable number of potential interested users”, comments Craievich. In the scientist’s memories, the first public presentation of the preliminary ideas occurred in the Brazilian National Meeting of Condensed Matter Physics held in the city of Cambuquira, in April, 1982. “In the occasion, it was observed a certain resistance of the scientific community upon being informed  of the high cost of the project, due to the fear that this could affect the funding of other projects in progress”, tells Craievich.

Even though, Lobo, Craievich, and some more researchers of CBPF prepared a first formal document aiming at the implementation of a new synchrotron light source in Brazil (“Preliminary proposal of the feasibility study for the implementation of a national laboratory of synchrotron radiation“), which was approved in 1983 by CNPq. CNPq created, then, the Synchrotronic Radiation Project (PRS), coordinated by Roberto Lobo, and engaged in allocating money to form human resources to develop the project and train future users. Also in 1983, in October, CNPq established the PRS executive committee, which was coordinated by Aldo Craievich (CBPF) and counted on more seven participants linked to CBPF, UFRJ, UNICAMP, and USP. Among them was Ricardo Rodrigues, who, some years latter, would be appointed technical director of the construction of the laboratory. To promote a greater disclosure and discussion of the project and the formation of future users, it was held, in August, 1983, at CBPF, the Meeting on Techniques and Applications of Synchrotron Radiation, with the participation of 220 scientists. Also with the purpose of forming new human resources, in early 1984, PRS launched a call offering CNPq’s scholarships for researchers and undergraduate, master´s and PhD students, on themes related to the construction of the source and beamlines and their applications.

Two more newness marked the year of 1984 in the history of LNLS. PRS passed to count on a technical-scientific committee (CTC), chaired by Roberto Lobo (USP), and formed by a dozen of scientists linked to CBPF, IPT, PUCRio, UNICAMP, and USP, including Cylon Gonçalves da Silva, who would become the first director of the laboratory in 1986, and would lead its effective implementation. Additionally, in December, 1984, CNPq took one more step toward the construction of the synchrotron light source upon creating the figure of the National Laboratory of Synchrotron Radiation (LNRS), with Roberto Lobo as pro tempore director, and still without a place assigned to its headquarters.

Right after the creation of LNRS, CNPq called the scientific community to propose places for the construction of the laboratory. From the four proposals – Rio de Janeiro, Niteroi, Campinas, and São Carlos – CNPq president, in one of the last resolutions of his tenure, a little before the end of military government, in February, 1985, chose Campinas as the future headquarters of LNRS.

In the next edition of SBPMat newsletter, don’t miss the article on the second part of this history – the phase of the construction of the laboratory.

Featured paper: Phonons coupled to magnetic order in the origin of ferroelectricity.

Paper:  Spin-phonon and magnetostriction phenomena in CaMn7O12 helimagnet probed by Raman spectroscopy. Nonato, A.; Araujo, B.S.; Ayala, AP; Maciel, AP; Yanez-Vilar, S.; Sanchez-Andujar, M.; Senaris-Rodriguez, MA; Paschoal, CWA. Applied Physics Letters 105, 222902 (2014); DOI: 10.1063/1.4902234.

Through a study based, mainly, on the technique of Raman spectroscopy, resarchers from Brazil, in collaboration with scientists from Spain, progressed in the understanding of the mechanisms involved in the generation of magnetically induced ferroelectricity (electric polarization that occurs in some materials with spiral magnetic order, even when they are not under the action of electric fields) in the CMO compound.

CMO, which formula is CaMn7O12, is a ceramic oxide of perovskite structure that presents, simultaneously, at low temperatures, ferroelectricity and anti-ferromagnetism.

In addition to contribute to the advance of fundamental science, the work, which results were recently published in Applied Physics Letters (APL) journal, opens possibilities to the creation of new materials which polarization may be controlled through magnetic fields. Such materials could be applied, for example, in new spintronic devices for data storage, faster and that consume less energy.

The study was performed during Ariel Nonato Almeida de Abreu Silva’s PhD research work, advised by Carlos William de Araujo Paschoal, Professor at the Physics department of the Brazilian Federal University of Maranhão (UFMA), where he leads a research group in dielectric and vibrational properties. “The idea arose out of the search for multiferroic and magnetoelectric materials that allow for a control of the electric polarization upon replacements”, says professor Araujo Paschoal, who signs the article together with other seven researchers. According to him, CMO was chosen because it presents a rich diagram of phases (magnetic, structural, and charge order), and because it is unique in the mechanisms that generate ferroelectricity from its magnetic properties.

Among CMO’s particularities, there is a magnetic transition, which occurs at 90K (around -180°C), where the compound passes from paramagnetic phase to anti-ferromagnetic phase, inducing a giant ferroelectricity.

In the study that generated APL’s paper, Ariel and his advisor analyzed in details the Raman spectra of CMO samples at several temperatures (from 300 K to 10K) to investigate the collective vibrations of the atoms of the crystalline lattice (phonons) and their relation with magnetic order. Among other results, they were able to prove that, at 90 K, the phonons showed an unusual behavior due to the coupling to magnetic order.

“The main contribution of this work is to help in the understanding of how the phonons couple to the magnetic order in CaMn7O12(CMO). It is, with no doubt, a great step that allows us to progress in the understanding of the origin of the induced electric polarization in CMO, which is also a subject of great discussion in literature”, affirms Paschoal.

Raman spectrum of CMO at 10 K. The inset shows the ferroaxial coupling of the magnetic helix with the global rotation of the structure described by the axial vector A.

The experimental work of this study started with the synthesis of the samples, which was done at Universidad de A Coruña (Spain), where Ariel was performing a doctoral fellowship period under the supervision of Professor Maria Antonia Señaris Rodriguez. After that, at Universidad de Santiago de Compostela, a series of magnetic measures was performed. Finally, the Raman spectroscopy measures were carried out in the Laboratory of Light Scattering at the Federal University of Ceará, in cooperation with professor Alejandro Pedro Ayala, and in the Physics department of UFMA itself, in the Laboratory of Vibrational Spectroscopy and Impedance (LEVI).

The work was funded by Brazilian federal agencies (CNPq and CAPES) and state agencies (FUNCAP e FAPEMA, from Ceará and Maranhão states, respectively), and by entities from Europe.