Sócio fundador da SBPMat é um dos vencedores de prêmio nacional do Instituto Nanocell.

Fernando Galembeck
Fernando Galembeck

Fernando Galembeck, professor aposentado colaborador da UNICAMP, é um dos cientistas distinguidos com o III Prêmio Cientistas e Empreendedores do Ano Instituto Nanocell. Galembeck foi selecionado na categoria “Professor”, na área “Nanotecnologia”.

O professor Galembeck, que tem um amplo histórico de atuação em pesquisa, desenvolvimento e inovação em materiais, é sócio fundador da SBPMat e foi destacado neste ano pela sociedade com a Palestra Memorial Joaquim da Costa Ribeiro.

XVII Encontro da SBPMat/B-MRS Meeting: Relato das sessões técnicas.

Por uma ciência de alto impacto, diversa e inclusiva (Workshop Young Researchers´ School)

Domingo 16 de setembro, por volta das 13 horas. Natal, Rio Grande do Norte. O céu estava azul e o mar, verde. Provavelmente resistindo à tentação de uma tarde de domingo na praia, cerca de 150 pessoas optaram por ingressar ao Centro de Convenções do tradicional Hotel Praiamar, localizado a poucos metros da Praia de Ponta Negra – a mais famosa da turística capital potiguar. O motivo dessa estranha decisão? Participar do workshop Young Researchers School, atividade de quatro horas de duração oferecida sem custo adicional para os inscritos no XVII Encontro da SBPMat/ B-MRS Meeting.

Praia de Ponta Negra com o Morro do Careca ao fundo, a poucos metros do local do evento. 16/09/18.
Praia de Ponta Negra com o Morro do Careca ao fundo, a poucos metros do local do evento. 16/09/18.

O workshop começou com um tutorial do Professor Valtencir Zucolotto (IFSC – USP, Brasil), um membro da comunidade brasileira de pesquisa em Materiais conhecido não apenas pelas pesquisas de seu Grupo de Nanomedicina e Nanotoxicologia, mas também pelas palestras, cursos online e workshops sobre escrita e editoração científica que ele cria e apresenta no Brasil e no exterior. Com bom humor e interação com a plateia, Zucolotto falou sobre como fazer pesquisa de alto impacto, desde a ideia inicial até a publicação do artigo, passando pela metodologia de pesquisa e pela escrita do paper. Além de mostrar dados, o professor compartilhou experiências vividas “dos dois lados do balcão” (Zucolotto é um pesquisador produtivo e citado, como atesta seu índice H de 42, e também é editor de revista e livros). O palestrante também deu “conselhos de quem já passou por isso” aos membros mais jovens da plateia. “É necessário aprender a conviver com a rejeição, que faz parte do trabalho do cientista”, disse Zucolotto, referindo-se à rejeição de artigos no processo de publicação. “Não se preocupe, seu artigo será rejeitado… e finalmente aceito em uma revista de alto impacto”, brincou.

[Veja material dos cursos do professor Zucolotto no site http://zucoescrita.com ]

Depois de um copioso coffee break patrocinado pela Elsevier, o workshop continuou com a apresentação da Diretora de Publicação da área de Ciência de Materiais da Elsevier, Christiane Barranguet, sobre diversidade e inclusão no ambiente das revistas e eventos científicos. Além de mostrar dados sobre participação feminina na ciência, a diretora contou os esforços da empresa para atingir diversidade e representatividade de gênero e geográfica nos corpos editoriais das revistas e nos grupos de plenaristas das conferências. Bons resultados assomam timidamente, mostrou ela. Porém, mulheres e latino-americanos ainda estão sub-representados nesses grupos. No final da palestra, Barranguet fez um convite à comunidade de Materiais para indicar nomes de cientistas, principalmente dos grupos sub-representados, que possam atuar nos corpos editoriais das revistas da Elsevier.

[Veja arquivo da apresentação de Christiane Barranguet em nosso Slideshare, aqui https://www.slideshare.net/SBPMat/how-can-academic-publishing-increase-diversity-and-inclusion  ]

A última parte do workshop retomou a questão do impacto das publicações exatamente onde o Professor Zucolotto tinha parado. Marlene Silva, também da equipe de Materiais da Elsevier, falou sobre maneiras de divulgar um artigo publicado para aumentar sua visibilidade, potencial de ser citado e impacto acadêmico e social. De acordo com a palestrante, o trabalho de difusão deve ser realizado sem perda de tempo, no embalo da alegria provocada pela notícia da aceitação do paper. Uma das ferramentas mais úteis para essa divulgação é, segundo Silva, o link de compartilhamento – URL disponibilizada aos autores dos artigos pela maioria das revistas da Elsevier, que outorga acesso direto e gratuito ao paper por 50 dias para qualquer pessoa que receba o link. Silva recomendou compartilhar esse link por todos os meios possíveis, desde as redes sociais (todas elas valem) acompanhado por textos e imagens atrativas, até a assinatura do e-mail do autor. A palestrante também falou sobre estratégias para tornar o artigo mais relevante em mecanismos de busca, conhecidas como SEO, como, por exemplo, tomar o cuidado de repetir as palavras-chave mais relevantes ao longo do paper.

[Veja arquivo da apresentação de Marlene Silva em nosso Slideshare, aqui https://www.slideshare.net/SBPMat/how-to-promote-your-article-116520984  ]
Workshop Young Researchers´ School. À direita, a partir da esquerda, Christiane Barraguet, Marlene Silva e Valtencir Zucolotto.
Workshop Young Researchers´ School. À direita, a partir da esquerda, Christiane Barraguet, Marlene Silva e Valtencir Zucolotto.

Resistente, forte e resiliente: assim é a comunidade brasileira de pesquisa em Materiais (Cerimônia de Abertura)

Uma agradável surpresa aguardava os cerca de 800 participantes que se acomodaram na sala principal do Centro de Convenções por volta das 19h30 para assistir à Cerimônia de Abertura. Logo após as palavras iniciais pronunciadas pelo mestre de cerimônia, doze músicos da Orquestra Potiguar de Clarinetas, ligada à Escola de Música da UFRN, saíram de seus esconderijos com seus instrumentos, ocuparam as proximidades do palco e encheram a sala de música brasileira – principalmente nordestina – numa amostra da riqueza e diversidade cultural deste país que contou com os ritmos de choro, baião, frevo e carimbó.

Encerrada a apresentação musical, montou-se a Mesa de Abertura, composta pelo Professor Antonio Eduardo Martinelli (Chairman do XVII Encontro da SBPMat), o Professor Osvaldo Novais de Oliveira Jr (Presidente da SBPMat), o Professor Rodrigo Ferrão de Paiva Martins (Segundo Vice-Presidente da União Internacional de Sociedades de Pesquisa em Materiais, IUMRS) e o Professor José Daniel Diniz Melo (Vice-Reitor da UFRN).

Na sequência, os presentes no palco e na plateia, em pé, entoaram o Hino Nacional Brasileiro, acompanhando a interpretação da Orquestra Sinfônica e Coral Madrigal da UFRN que estava sendo projetada nas telas distribuídas na sala.

Além das boas-vindas e agradecimentos, nas palavras dos membros da mesa houve diversas alusões à importância social e econômica da pesquisa em Materiais. “O conhecimento desta área é essencial para resolver a maior parte dos problemas da sociedade”, disse Diniz Melo, que também é docente da graduação e pós-graduação em Materiais da UFRN. O português Rodrigo Martins, que além de ser um cientista de Materiais destacado internacionalmente, é assíduo frequentador dos Encontros da SBPMat, destacou o papel dos materiais no desenvolvimento de um país. “Das ciências da vida até a indústria aeroespacial, os materiais são centrais a todos os desenvolvimentos e trazem melhor qualidade de vida à população”, disse Martins. “Este evento é uma celebração daquilo que a Ciência de Materiais tem feito para a sociedade”, destacou, por sua vez, o Professor Oliveira Junior.

Num discurso de abertura inspirador, o Professor Martinelli abordou um assunto que tem preocupado a comunidade científica brasileira. “Não apenas dificuldades econômicas, mas, principalmente, o entendimento do que é ou não prioridade para nosso país têm queimado parte do nosso passado e desafiado as melhores oportunidades de melhorar a Ciência e a Tecnologia no Brasil, colocando em risco um futuro melhor para a geração atual e as futuras”, disse o chair do evento, que é professor da graduação e pós-graduação em Materiais da UFRN e coordenador da Área de Materiais na CAPES. O chair destacou a força da comunidade de Materiais que, mesmo nesse contexto, permaneceu ativa e permitiu que o evento acontecesse, com um número elevado de participantes. “Somos gente de Materiais: resistente, forte e resiliente”, disse Martinelli. “Não desistimos nem desistiremos”.

Público na abertura do evento. Mesa de abertura; a partir da esquerda: Antonio Martinelli, Rodrigo Martins, José Diniz Melo e Osvaldo Novais de Oliveira Jr.
Público na abertura do evento. Mesa de abertura; a partir da esquerda: Antonio Martinelli, Rodrigo Martins, José Diniz Melo e Osvaldo Novais de Oliveira Jr.


 

Homenagens a destacados membros da comunidade (Palestra memorial “Joaquim da Costa Ribeiro”)

Depois das palavras dos membros da mesa, veio o momento das homenagens da SBPMat a cientistas brasileiros de longa e destacada trajetória. A primeira distinção, a qual não tinha sido anunciada na programação, foi para o Professor Aloísio Nelmo Klein (UFSC), quem recebeu uma placa comemorativa e um presente por seus “35 anos dedicados à Ciência Aplicada”. De fato, a carreira científica de Klein se destaca principalmente na quantidade de patentes (mais de 60 pedidos depositados em escritórios do Brasil, Europa, Estados Unidos, China, Coreia do Sul, Japão, Taiwan, Singapura e Austrália) e nos numerosos projetos realizados em parceria com empresas. O homenageado, que é membro fundador da SBPMat e já se desempenhou como diretor científico, conselheiro e chairman de dois encontros anuais da sociedade, recebeu agradecimentos do presidente da SBPMat pela sua dedicação de longo prazo à sociedade.

[Veja entrevista de fevereiro de 2017 com o Professor Aloísio Nelmo Klein https://www.sbpmat.org.br/pt/gente-da-comunidade-entrevista-com-o-pesquisador-aloisio-nelmo-klein/ ]

O segundo homenageado da noite foi o Professor Fernando Galembeck, aposentado da UNICAMP desde 2011, mas ainda ativo, sendo inclusive Professor Colaborador dessa universidade. Ao longo de quatro décadas de carreira científica, Galembeck fez importantes contribuições à pesquisa aplicada e básica em temas diversos como modificação de superfícies, nanopartículas, nanocompósitos, eletrostática, materiais derivados de biomassa, entre outros. Ele é autor de mais de 250 artigos, 35 patentes e 20 livros ou capítulos de livros e conta com mais de 3.700 citações. Foi sócio fundador da SBPMat.

[Veja entrevista com Fernando Galembeck, reeditada em agosto de 2018 https://www.sbpmat.org.br/pt/cientista-em-destaque-entrevista-com-fernando-galembeck-que-proferira-a-palestra-memorial-no-xvii-encontro-da-sbpmat-reedicao-atualizada-de-entrevista-de-maio-de-2015/ ].

Galembeck foi escolhido para receber neste ano a principal honraria da SBPMat para pesquisadores de trajetória destacada na área de Materiais, a Palestra Memorial Joaquim da Costa Ribeiro. Essa distinção também homenageia, por meio de seu nome, um pioneiro da pesquisa experimental em Materiais no Brasil.

[Veja matéria sobre Joaquim da Costa Ribeiro https://www.sbpmat.org.br/pt/historia-da-pesquisa-em-materiais-joaquim-da-costa-ribeiro-e-o-efeito-termodieletrico/ ]

Na primeira parte da sua palestra, Galembeck abordou a relação entre matérias-primas, energia e alimentos, tendo em vista que a fome ainda é um problema da humanidade, e que a geração de energia pode concorrer com a produção de alimentos ao usar as mesmas matérias-primas. Essa situação piora, disse Galembeck, quando entra em jogo a especulação financeira. Entretanto, alentou o professor, graças aos avanços tecnológicos, é possível produzir bens ao combinar energia barata de fontes inesgotáveis como o sol e o vento, com matérias-primas abundantes como o lítio, magnésio e dióxido de carbono, ou até mesmo resíduos. “Lixo é oportunidade não aproveitada”, definiu o palestrante. Com relação ao uso da biomassa em países em desenvolvimento, ele mostrou que, além de gerar energia, reduzindo a dependência do país dos combustíveis fósseis, ela pode ser matéria-prima de produtos de alto valor agregado, gerando melhor renda para a população. Na segunda parte da palestra, Galembeck apresentou um panorama de algumas de suas contribuições científicas. O cientista também expressou seu otimismo quanto à crise que o Brasil atravessa, abordada um pouco antes pelo Professor Martinelli. “Sou experiente o suficiente para saber que no final tudo estará melhor do que o esperado”, afirmou.

[Veja arquivo da apresentação de Fernando Galembeck em nosso Slideshare, aqui https://www.slideshare.net/SBPMat/materials-for-a-better-future  ]

Depois da palestra, os presentes saíram do Centro de Convenções e, a poucos metros dali, puderam curtir o coquetel de boas-vindas do evento, realizado numa área externa do Hotel Praiamar, na brisa do mar e sob um céu estrelado e com lua crescente.

Esquerda: homenagem a Aloísio Klein. Direita: Palestra Memorial de Fernando Galembeck.
Esquerda: homenagem a Aloísio Klein. Direita: Palestra Memorial de Fernando Galembeck.

 


 

Teoria e experimentos, indústria e academia e multidisciplinaridade (Sessões orais e de pôster dos simpósios)

A comunidade brasileira de pesquisa em Materiais, majoritária no evento, se manteve ativa neste ano difícil, disse o chair do encontro na abertura. Para confirma-lo, bastava sentar um pouco nas salas de apresentações orais ou percorrer a tenda branca dos pôsteres (de preferência, com smartphone em mão, para acessar e salvar o resumo e dados dos pôsteres de interesse).

Mais de um milhar de profissionais e estudantes da pesquisa em Materiais apresentaram seus trabalhos e os debateram com seus pares no XVII B-MRS Meeting. Apesar da alta porcentagem de inscritos com trabalhos aprovados que acabou não comparecendo ao evento (cerca de 30%), muito provavelmente por não ter conseguido financiamento, os simpósios transcorreram com participação significativa nas sessões orais e de pôster. Alguns organizadores de simpósio foram além desses formatos tradicionais de apresentação e incluíram foros de discussão em seus programas. Quebraram a linearidade das cadeiras e incentivaram a discussão coletiva, em semicírculos, sobre tópicos que consideraram de especial importância. Outro destaque dos simpósios deste ano, de acordo com os organizadores, foi a qualidade das palestras convidadas – apresentações de 30 minutos proferidas por especialistas em temas do escopo do simpósio, que são convidados pelos organizadores.

O leque temático coberto pelos simpósios foi, mais uma vez, amplo e abrangente. Foram muitos os materiais abordados (nanomateriais, polímeros condutores, metais avançados, compósitos, óxidos metálicos, eletrocerâmicas, biomateriais, superfícies, revestimentos). Foram muitas as aplicações apresentadas (para os segmentos de energia, aeroespacial, saúde, eletrônica, bioeletrônica, fotônica, aumototivo, decorativo). Foram diversas as interações ocorridas: entre pessoas diferentes, entre o teórico e o experimental, entre indústria e academia, entre ciência e tecnologia, entre áreas do conhecimento (Química, Física, Biologia, Engenharia, Medicina).

Nos simpósios desta edição do evento, houve velhos conhecidos (como o Simpósio Brasileiro de Eletrocerâmica, em sua décima primeira edição), simpósios com alguns anos de vida (como o de Engenharia de Superfícies) e simpósios totalmente novos na praça, como o de nanofibras e aplicações.

Os simpósios do XVII B-MRS Meeting foram organizados por 76 pesquisadores ligados a instituições de ensino e pesquisa ou empresas de diversos pontos do Brasil, bem como da Alemanha, Argentina, Canadá, Chile, Espanha, Estados Unidos e Portugal.

[Veja os destaques dos simpósios, enviados por alguns dos organizadores https://www.sbpmat.org.br/pt/xvii-b-mrs-meeting-highlights-of-the-symposia/ ]
Imagens dos simpósios. A partir da esquerda: apresentação oral, foro tecnológico e sessão de pôsteres.
Imagens dos simpósios. A partir da esquerda: apresentação oral, foro tecnológico e sessão de pôsteres.

 


Palestras sobre instrumentação científica

Localizada entre a entrada do Centro de Convenções e a Secretaria do evento, caminho à sala das plenárias, a área dos expositores teve muito movimento, e não apenas nos horários do coffee break, que foi servido no local. Vinte empresas e a UFRN estavam ali com seus estandes atendidos por especialistas, seus materiais de divulgação, brindes e, em alguns casos, equipamentos para demonstração. Além disso, na quarta-feira, algumas das empresas de instrumentação científica ofereceram dez palestras técnicas sobre avanços e as novas aplicações de diversas técnicas de caracterização, e sobre inovações em equipamentos laboratoriais.

E a participação dos expositores foi além do técnico. Solidus, empresa júnior de Engenharia de Materiais e Mecânica que participou do evento no estande da UFRN, disponibilizou uma moldura de fotos para os visitantes que quisessem tirar uma foto de lembrança do XVII B-MRS Meeting e compartilhá-la nas redes sociais.

Área dos expositores
Área dos expositores

 


 

Propostas de estudantes para a indústria aeroespacial (Desafio Aerospace Materials and Manufacturing for the Next Century)

Um dos destaques do evento foi o desafio tecnológico da indústria aeroespacial para estudantes de graduação e pós-graduação participantes do encontro. Com o objetivo de motivar estudantes a fazer pesquisa multidisciplinar com aplicações aeroespaciais, e de aproximar o meio acadêmico e a indústria, a atividade foi idealizada e organizada por um grupo de pesquisadores de universidades brasileiras e de duas empresas líderes do segmento aeroespacial, a estadunidense Boeing e a brasileira Embraer.

A atividade iniciou na segunda-feira, dia 17 de setembro, quando 55 estudantes, interessados em participar do desafio que tinha sido previamente anunciado pelos canais da SBPMat, fizeram suas inscrições no estande da Boeing, Patrocinadora Diamante do evento, localizado na área de expositores do centro de convenções. No final do dia, um sorteio definiu quais seriam os participantes do desafio.

No dia seguinte, durante o horário do almoço, especialistas apresentaram seis desafios técnicos relacionados a problemas ou oportunidades da indústria aeroespacial para 36 estudantes que almoçavam, na plateia, o conteúdo das lunch boxes patrocinadas pela Boeing. Após as apresentações, os estudantes formaram as respectivas equipes de trabalho.

Apenas 24 horas depois, os seis grupos tiveram que apresentar, em idioma inglês, suas soluções, enquanto eram avaliados nos quesitos de originalidade, conteúdo técnico, alinhamento com o desafio proposto, potencial de implementação da solução e qualidade da apresentação. O júri foi composto por nove pesquisadores da área de Materiais do Brasil e do exterior, ligados à Boeing, à Embraer e a instituições de ensino e pesquisa. Novamente, as lunch boxes acalmaram a fome dos participantes.

No dia seguinte, durante a Cerimônia de Premiação do evento, Catherine Parrish, Coordenadora Sênior de Pesquisa em Materiais e Processos na Boeing, e Fabio Santos da Silva, Engenheiro Sênior de Materiais, Desenvolvimento de Produtos na Embraer, anunciaram o trabalho vencedor e entregaram diplomas e brindes aos membros da equipe vencedora, composta por cinco estudantes de mestrado e doutorado em Materiais, Química e Física de instituições das regiões Sul, Nordeste e Centro-Oeste do Brasil.  “Estamos muito felizes com os resultados do desafio. Os participantes apresentaram ideias realmente inovadoras; foi fantástico”, disse Parrish.

Respondendo ao desafio “Estruturas e sistemas aeroespaciais inspirados pela natureza – folha de lótus”, a equipe ganhadora apresentou as propriedades da folha de lótus, principalmente sua superhidrofobia e sua consequente capacidade autolimpante. Os estudantes sugeriram aplicações no segmento aeroespacial (principalmente, na fuselagem de aeronaves) de materiais com superfícies inspiradas na folha de lótus, e propuseram caminhos para obtenção dessas superfícies. “O que eu aprendi com esse desafio foi que manter a calma é muito importante para continuar desenvolvendo um trabalho e ajudar o próximo no que for possível. Cada um dá sua contribuição e juntos vamos somando as habilidades individuais”, conta Angélica Belchior Vital, doutoranda em Engenharia Química da UFRN e membro da equipe premiada. “Foi bem divertido e saímos empolgados com as ideias e discussões geradas”, comenta.

Três momentos do atividade, incluindo a apresentação dos desafios e das soluções.
Três momentos do atividade, incluindo a apresentação dos desafios (centro) e das soluções (direita).

 


 

Sustentabilidade e impacto acadêmico e social nas visões de cientistas mundialmente renomados (Palestras plenárias)

Duas plenárias por dia. Oito cientistas de destacada trajetória que, ao longo do evento, dividiram com os participantes do evento sua expertise em temas de grande impacto acadêmico, social e econômico. Pilares dos encontros da SBPMat, as palestras plenárias desta edição do evento reuniram algumas centenas de participantes e mostraram o papel crucial da pesquisa em Materiais em assuntos como sustentabilidade e saúde.

Junbai Li
Junbai Li

Na primeira plenária do evento, o Professor Junbai Li, do Instituto de Química da Academia Chinesa de Ciências, revelou como ajuda a natureza a montar nano e micro estruturas a partir de moléculas biológicas. Mais precisamente, Li, que é editor-chefe da revista Colloids & Surfaces A (Elsevier) e editor da seção de auto-montagem na Current Opinion em Colloid & Interface Science (Elsevier), utiliza um tipo de aminoácido (os peptídeos) como “tijolo” básico para formar suas estruturas por meio de processos de automontagem. Ele consegue controlar a arquitetura das estruturas e gerar formatos semelhantes a tubos, plaquetas, vesículas ou flores. O proeminente cientista chinês mostrou que essas estruturas, biocompatíveis, podem ser usadas para estancar sangramentos, curar doenças da pele e carregar fármacos. Materiais baseados em peptídeos farão parte da vida cotidiana em alguns anos, garantiu o cientista.

[Veja arquivo da plenária de Junbai Li em nosso Slideshare, aqui   https://www.slideshare.net/SBPMat/molecular-assembly-of-peptide-based-materials-towards-biomedical-application ]
Christian Polak
Christian Polak

A plenária da tarde foi proferida por um cientista que trabalha há 25 anos na área de P&D da Vacuumschmelze, fabricante de materiais magnéticos avançados e produtos relacionados, nascida na Alemanha e presente em dezenas de países. Christian Polak falou sobre alguns dos materiais desenvolvidos na empresa (ligas magnéticas amorfas e nanocristalinas), seus processos de fabricação e suas aplicações em produtos que fazem parte do portfólio da empresa; por exemplo, transformadores, conversores e sensores de corrente elétrica. Na palestra, foi possível conferir que a aplicação de muito conhecimento científico especializado resulta em produtos amplamente comercializados e em inovações que acompanham as demandas do mercado consumidor, como, por exemplo, componentes para melhorar o desempenho de smartphones.

[Veja arquivo da plenária de Christian Polak em nosso Slideshare, aqui   https://www.slideshare.net/SBPMat/soft-magnetic-nanocrystalline-materials-for-inductors-and-shielding-applications-optimized-for-higher-frequencies]
Heinz von Seggern
Heinz von Seggern

Na terça-feira de manhã, a plenária foi oferecida por Heinz von Seggern, ex-pesquisador dos famosos Laboratórios Bell e da Siemens, e Professor Aposentado, mas ainda muito ativo, da Faculdade de Ciência de Materiais da Universidade Técnica de Darmstadt (Alemanha).  Seggern falou sobre polímeros ferroelétricos – materiais que apresentam, espontânea e permanentemente, cargas elétricas polarizadas – característica que pode ser aproveitada em diversas aplicações, como os conhecidos microfones de eletretos. Em perspectiva histórica, Seggern mostrou avanços na compreensão, fabricação, caracterização e aplicação de alguns desses materiais. Nessa história, foram citados pelo Professor Seggern pesquisadores brasileiros que são participativos sócios da SBPMat, como os professores Sérgio Mascarenhas, José Giacometti e Roberto Faria, bem como o alemão Bernhard Gross, que chegou ao Brasil na década de 1930 e acabou se tornando pioneiro da pesquisa em Materiais no país.

Bernhard Keimer
Bernhard Keimer

E depois de três plenárias sobre pesquisa principalmente aplicada, o Professor Bernhard Keimer (índice h=86), numa palestra que ele mesmo classificou como de pura pesquisa fundamental, mostrou os esforços experimentais que realiza junto a seu grupo do Instituto Max Planck de Pesquisa em Estado Sólido (Alemanha) para compreender e controlar comportamentos coletivos de elétrons, mais precisamente as chamadas “correlações eletrônicas”, que seriam responsáveis por gerar fenômenos tão impactantes como a supercondutividade. Para realizar seus estudos, Keimer, que é diretor desse instituto, cria “heteroestruturas”, as quais combinam finíssimas camadas de diversos materiais (principalmente óxidos metálicos). Trata-se de materiais quânticos – aqueles cujas propriedades macroscópicas dependem das propriedades ou comportamento de seus elétrons. Keimer e seus colaboradores analisam esses materiais usando técnicas de espectroscopia avançadas, e assim conseguem não apenas entender, como também começar a controlar, as correlações entre entidades tão minúsculas e difíceis de estudar como spins e cargas.

Carlos Graeff
Carlos Graeff

A relação entre energia, materiais e sustentabilidade voltou às sessões plenárias na manhã da quarta-feira, na palestra do brasileiro Carlos Frederico Oliveira Graeff, Professor e Pró-Reitor de Pesquisa da UNESP (Brasil). A fala começou com um panorama do uso das diferentes fontes de energia. Se atualmente 2/3 da eletricidade que a humanidade consome provêm de combustíveis fósseis, responsáveis pelo efeito estufa, essa relação mudará progressivamente até 2040, devido ao significativo aumento da energia solar e eólica na matriz energética. De fato, essas são fontes de energia capazes de fornecer energia em quantidades muito superiores à demanda humana atual (mais de 3.000 vezes no caso da luz solar). Depois de explicar os fundamentos do efeito fotovoltaico, responsável pela conversão de luz solar em eletricidade, Graeff falou sobre dois tipos de células solares que podem concorrer com as de silício –estas últimas, já amplamente comercializadas. O cientista mostrou as vantagens e desvantagens das células solares baseadas em corantes e em perovskitas, e citou as contribuições que ele tem feito, junto a seu grupo de pesquisa e colaboradores, para o desenvolvimento desses dispositivos. O sucesso das células solares depende de se combinar adequadamente uma série de materiais que devem trabalhar em conjunto, disse Graeff, lançando o desafio para a comunidade de pesquisa presente na sala.

[Veja arquivo da plenária de Carlos Graeff em nosso Slideshare, aqui   https://www.slideshare.net/SBPMat/materials-for-the-optimization-of-solar-energy-harvesting ]
You-Lo Hsieh
You-Lo Hsieh

A sustentabilidade permeou também a plenária de You-Lo Hsieh, Distinguished Professor da UC Davis (EUA). A cientista situou o momento atual na segunda revolução industrial, iniciada por volta de 1850 e impulsionada pelo uso do petróleo para gerar energia e materiais plásticos, e pelos avanços da Ciência e Engenharia de Materiais. Se, por um lado, essa revolução trouxe produtos que tornam a vida humana mais confortável, ela também aumentou milhares de vezes as emissões de dióxido de carbono e a gerou bolsões de lixo nos oceanos, para citar apenas algumas das consequências. Hsieh desenvolve novos materiais, como nanofibras e aerogéis biopoliméricos, que poderiam compor uma economia de outro tipo, baseada em processos químicos de baixo impacto ambiental e no uso da biomassa (o conjunto de organismos vivos, desde bactérias até resíduos animais ou vegetais). Com a parceria de empresas, ela espera transformar esses materiais em produtos novos que gerem mercados novos. A professora relacionou os desafios da implementação de uma economia desse tipo, desde conectar o desenvolvimento de tecnologia com as demandas do mercado até conseguir a aceitação dos consumidores.

Pietro Matricardi
Pietro Matricardi

As aplicações biomédicas voltaram à cena na penúltima plenária do evento. Pietro Matricardi, Professor da Universidade de Roma “La Spienza”, falou sobre seus trabalhos com hidrogéis (géis com alto conteúdo de água) baseados em polissacarídeos (polímeros naturais constituídos por longas cadeias de açúcares simples, os monossacarídeos). O hidrogel combinado com o polissacarídeo, disse Matricardi, pode formar um material inteligente, capaz de aderir a tecidos vivos, cobrir sua superfície sem deixar interstícios e interagir positivamente com eles. O gel pode ainda ser carregado com algum fármaco ou composto, que será liberado aos poucos no tecido vivo. Em colaboração com um dentista, Matricardi testou os efeitos de seu hidrogel, carregado com um anti-inflamatório e com hidroxiapatita (usada para regeneração óssea) em pacientes com periodontite severa, com resultados muito positivos. Em sua versão nano, o hidrogel, quando adequadamente fabricado, pode transportar um ou mais fármacos dentro do organismo e entrega-los na medida certa e no local certo. Tal é o caso de uma droga para tratamento do câncer de próstata que é conveniente administrar junto com um anti-inflamatório. Nanohidrogéis, carregados ou não com fármacos, também podem funcionar para tratar infecções bacterianas da pele, como demonstraram bons resultados de estudos realizados com ratos por Matricardi.

[Veja arquivo da plenária de Pietro Matricardi em nosso Slideshare, aqui https://www.slideshare.net/SBPMat/polysaccharide-hydrogels-a-versatile-tool-for-biomedical-and-pharmaceutical-applications ]
Joan Morante
Joan Morante

A última plenária do evento começou com uma imagem tão conhecida quanto preocupante: emissões de dióxido de carbono em aumento e aquecimento global. “A economia circular de dióxido de carbono é desafio principal para a humanidade”, disse o palestrante, Joan Ramón Morante Lleonart (índice h=82), diretor do Instituto de Pesquisa em Energia da Catalunha (IREC), professor da Universidade de Barcelona e editor-chefe do Journal of Physics D. Esse conceito alude a retirar do ambiente o excesso de dióxido de carbono gerado pelas atividades humanas, captura-lo e transformar a molécula em compostos úteis, tais como metanol, metano ou ácido fórmico, capazes de gerar produtos e combustíveis. Para quebrar a molécula de CO2 em escala industrial, é necessário dispor de muita energia, a qual é desejável obter a partir de fontes renováveis. Ao longo desse processo de “reciclagem” do dióxido de carbono, os materiais cumprem, mais uma vez, papeis cruciais. Entretanto, os materiais existentes não dão conta, em muitos casos, de cumprir com eficiência, em condições reais, as funções necessárias para que essa reciclagem se torne realidade. O professor Morante pontuou uma série de desafios para a Ciência e Tecnologia de Materiais, relativos ao desenvolvimento ou aprimoramento de nanomateriais para captação e purificação de dióxido de carbono, materiais para cátodos e ânodos usados em processos fotoelétricos, materiais resistentes à corrosão para reatores e, principalmente, nanomateriais catalíticos para a redução do dióxido de carbono. A plenária encerrou a programação técnica do evento com uma imagem muito animadora: a de uma casa típica da economia circular do carbono. Essa casa não precisa de combustíveis fósseis para atender às necessidades de seus moradores; ela consome sol, vento, ar e água, produz toda a eletricidade e combustíveis que necessita, e devolve ao ambiente apenas ar puro.

[Veja arquivo da plenária de Joan Ramón Morante Lleonart em nosso Slideshare, aqui https://www.slideshare.net/SBPMat/catalyst-materials-for-solar-refineries-synthetic-fuels-and-procedures-for-a-circular-economy-of-the-co2 ]

 

 

 

Gente da nossa comunidade: entrevista com o pesquisador Fernando Galembeck.

Em Fernando Galembeck, professor colaborador na Unicamp e diretor do Laboratório Nacional de Nanotecnologia (LNNano) de 2011 a 2015, o interesse por pesquisa começou a se manifestar na adolescência, quando, trabalhando no laboratório farmacêutico do pai, percebeu a importância econômica que os novos produtos, resultantes de esforços de pesquisa científica, tinham na empresa. Hoje com 72 anos, Fernando Galembeck, olhando para sua própria trajetória científica, pode contar várias histórias nas quais o conhecimento gerado por ele junto a seus colaboradores, além de ser comunicado por meio de artigos científicos, teses e livros, plasmou-se em patentes licenciadas e produtos criados ou aprimorados.

Galembeck gradou-se em Química em 1964 pela Universidade de São Paulo (USP). Após a graduação, permaneceu na USP trabalhando como professor (1965-1980) e, simultaneamente, fazendo o doutorado em Química (1965-1970) com um trabalho de pesquisa sobre dissociação de uma ligação metal-metal. Depois do doutorado, realizou estágios de pós-doutorado nos Estados Unidos, nas universidades do Colorado na cidade de Denver (1972-3) e da Califórnia na cidade de Davis (1974), trabalhando na área de Físico-Química de sistemas biológicos. Em 1976, de volta à USP, teve a oportunidade de criar um laboratório de coloides e superfícies no Instituto de Química. A partir desse momento, Galembeck foi se envolvendo cada vez mais com o desenvolvimento de novos materiais, especialmente os poliméricos, e seus processos de fabricação.  

Em 1980, ingressou como docente na Universidade Estadual de Campinas (UNICAMP), onde se tornou professor titular em 1988, cargo no qual permaneceu até sua aposentadoria em 2011. Na UNICAMP ocupou cargos de gestão, notadamente o de vice-reitor da universidade, além de diretor do Instituto de Química e coordenador do seu programa de pós-graduação. Em julho de 2011 assumiu a direção do recém-criado LNNano, no Centro Nacional de Pesquisas em Energia e Materiais (CNPEM).

Ao longo de sua carreira, exerceu funções dirigentes na Academia Brasileira de Ciências (ABC), Ministério da Ciência, Tecnologia e Inovação (MCT), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Sociedade Brasileira de Química (SBQ), Sociedade Brasileira para o Progresso da Ciência e Sociedade Brasileira de Microscopia e Microanálise (SBMM), entre outras entidades.

Bolsista de produtividade de nível 1A no CNPq, Galembeck é autor de cerca de 250 artigos científicos publicados em periódicos internacionais com revisão por pares, os quais contam com mais de 2.300 citações, além de 29 patentes depositadas e mais de 20 livros e capítulos de livros. Orientou quase 80 trabalhos de mestrado e doutorado

Recebeu numerosos prêmios e distinções, entre eles o Prêmio Anísio Teixeira, da CAPES, em 2011; o Telesio-Galilei Gold Metal 2011, da Telesio-Galilei Academy of Science (TGAS); o Prêmio Almirante Álvaro Alberto de Ciência e Tecnologia 2006, do CNPq e Fundação Conrado Wessel; o Troféu José Pelúcio Ferreira, da Finep, em 2006; a Grã-Cruz da Ordem Nacional do Mérito Científico, em 2000, e a Comenda Nacional do Mérito Científico, em 1995, ambos da Presidência da República. Também recebeu uma série de reconhecimentos de empresas e associações científicas e empresariais, como a CPFL, Petrobrás, Union Carbide do Brasil, Associação Brasileira dos Fabricantes de Tintas, Associação Brasileira da Indústria Química, Sindicato da Indústria de Produtos Químicos para fins Industriais do Estado do Rio de Janeiro, Associação Brasileira de Polímeros, Sociedade Brasileira de Química (que criou o Prêmio Fernando Galembeck de Inovação Tecnológica), Sindicato dos Engenheiros no Estado de São Paulo e da Electrostatic Society of America.

Segue uma entrevista com o cientista.

Boletim da SBPMat: – Conte-nos o que o levou a se tornar um cientista e a trabalhar em temas da área de Materiais.

Fernando Galembeck: – Meu interesse por atividade de pesquisa começou na minha adolescência quando eu percebi a importância do conhecimento novo, da descoberta. Eu percebi isso porque trabalhava, depois das aulas, no laboratório farmacêutico do meu pai e eu via a importância que tinham os produtos mais novos, os mais recentes. Eu via também como pesava economicamente para o laboratório o fato de depender de produtos importados que não eram fabricados no Brasil e que no país não havia competência para faze-los. Aí percebi o valor do conhecimento novo, a importância que tinha e o significado econômico e estratégico das descobertas.

Isso se incrementou quando eu fiz o curso de Química. Eu fui fazer o curso de Química porque um professor meu no colégio sugeriu que eu procurasse uma carreira ligada à pesquisa. Ele deve ter percebido alguma inclinação, alguma tendência minha. E eu fiz o curso de Química na Faculdade de Filosofia, num ambiente em que a atividade de pesquisa era muito forte. Por causa disso eu resolvi fazer o doutorado na USP. Naquela época não havia ainda cursos de pós-graduação regulares no Brasil. O orientador com quem eu defendi a tese, que foi o professor Pawel Krumholz, era um pesquisador muito bom e também tinha feito uma carreira muito importante trabalhando em empresa. Ele foi diretor industrial da Orquima, uma empresa muito importante na época. Isso aumentou meu interesse por pesquisa.

Trabalhei em Química por alguns anos e meu interesse por materiais veio de uma situação curiosa. Eu estava praticamente me formando, nas férias do meu último ano da graduação. Estava num apartamento, depois do almoço, descansando. Lembro-me de ter olhado as paredes do apartamento e percebido que, com tudo que eu tinha aprendido no curso de Química, eu não tinha muito a dizer sobre as coisas que eu enxergava: a tinta, os revestimentos etc. Aquilo era Química, mas também era Materiais, e naquela época não havia no curso de Química muito interesse por materiais. De fato, materiais se tornaram muito importantes em Química por causa dos plásticos e borrachas, principalmente, que nessa época ainda não tinham a importância que têm hoje. Estou falando de 1964, aproximadamente.

Bem, aí comecei a trabalhar em Físico-Química, depois trabalhei um pouco numa área mais voltada à Bioquímica, a Físico-Química Biológica, e, em 1976, recebi uma tarefa do Departamento na USP, que era a de instalar um laboratório de coloides e superfícies. Um dos primeiros projetos foi de modificação de superfície de plásticos, no caso, o teflon. E aí eu percebi que uma grande parte da Química de coloides e superfícies existia por causa de Materiais, porque ela se prestava para criar e desenvolver novos materiais. A partir daí eu fui me envolvendo cada vez mais com materiais, principalmente com polímeros, um pouco menos, com cerâmicos e, menos ainda, com metais.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais? Considere na sua resposta todos os aspectos da sua atividade profissional, inclusive os casos de transferência de conhecimento à indústria.

Fernando Galembeck: – Eu vou falar mais ou menos seguindo a história. Eu acho que o primeiro resultado importante na área de Materiais foi justamente uma técnica voltada à modificação de superfície de teflon, que é um material no qual é muito difícil alguma coisa grudar. Tanto que tem a expressão do “político teflon”, que é aquele em que nada que se joga gruda. Só que, em determinadas situações, a gente quer conseguir adesão no teflon, que determinada coisa grude. E por um caminho um pouco complicado, eu acabei percebendo que eu já sabia fazer uma modificação de teflon, mas que eu nunca tinha percebido que era importante. Eu conhecia o fenômeno; tinha observado ele durante minha defesa de tese. Eu sabia que acontecia uma transformação do teflon. Mas foi quando estava visitando um laboratório da Unilever em 1976, conversando com um pesquisador, que eu percebi que havia gente se esforçando para modificar a superfície do teflon e conseguir adesão. Aí, juntando o problema com a solução, logo que voltei ao Brasil tentei verificar se aquilo que eu tinha observado anteriormente realmente serviria, e deu certo. Isso deu origem à minha primeira publicação sozinho e a meu primeiro pedido de patente, numa época em que praticamente não se falava em patentes no Brasil, principalmente no ambiente universitário. Eu fiquei muito entusiasmado com o seguinte: fui procurado por empresas que tinham interesse em aproveitar aquilo que eu tinha feito; uma no próprio teflon, outra em outro polímero. Então eu me senti muito bem, porque tinha uma descoberta, tinha uma patente e tinha empresas que, pelo menos, queriam saber o que era para ver a possibilidade de utilizá-la. E mais uma coisa, logo depois da publicação do artigo eu recebi um convite para participar de um congresso nos Estados Unidos que abordava justamente a questão de modificação de superfícies. Superfícies de polímeros, de plásticos e borrachas, foi um assunto com o qual fiquei envolvido praticamente durante todo o resto da minha vida, até agora.

Eu vou mencionar um segundo fato, que até o momento não teve consequências do mesmo tipo. Eu descobri um método que permite fazer uma caracterização e uma separação de partículas muito pequenas. Foi um trabalho bastante interessante. Isso foi publicado, também gerou um depósito de patente, mas não teve uma consequência prática. Recentemente surgiram problemas ligados com nanopartículas, que é um assunto muito importante hoje em Materiais, e que representam uma possibilidade de aplicação daquilo que eu fiz há mais de 30 anos. O nome da técnica é osmossedimentação.

Em seguida veio um trabalho que fiz trabalhando em projetos junto com a Pirelli cabos. Com essa história de superfícies e polímeros acho que eu tinha me tornado mais ou menos conhecido e fui procurado pela Pirelli, que me contratou como consultor e também contratou projetos que fiz na Unicamp. Um resultado desses projetos, que eu acho mais importante, foi o desenvolvimento de um isolante para tensões elétricas muito altas. Esse não foi um trabalho só meu, mas sim de uma equipe bastante grande, da qual fiz parte. Tinha várias pessoas da Pirelli e várias na Unicamp. O resultado desse projeto foi que a Pirelli brasileira conseguiu ser contratada para fornecer os cabos de alta tensão do Eurotúnel, ainda nos anos 80. Eu acho que esse foi um caso bem importante que teve um produto e significou um resultado econômico importante. Aqui eu quero insistir que isso foi feito no Brasil, por uma equipe brasileira. A empresa não era brasileira, mas a equipe estava aqui.

Depois teve vários trabalhos feitos com nanopartículas, numa época em que a gente nem as chamava de nanopartículas; chamávamo-las de partículas finas ou simplesmente de partículas coloidais pequenas. O primeiro trabalho que eu publiquei sobre nanopartículas foi em 1978. Teve outras coisas feitas em seguida que, no fim, acabaram desaguando num trabalho sobre fosfato de alumínio, que deu origem a teses feitas no laboratório e publicações, e também foi licenciado por uma empresa chamada Amorphic Solutions, do grupo Bunge, que explora, basicamente, fosfato de alumínio. O assunto começou em meu laboratório, ficou no laboratório por vários anos, depois uma empresa do grupo Bunge aqui no Brasil se interessou, passou a participar, nós colaboramos. Isso se tornou um projeto bastante grande de desenvolvimento. A Bunge depois achou inviável tocar o projeto no Brasil e hoje está lá nos Estados Unidos. Eu acho uma pena que esteja lá, mas aí teve outras questões envolvidas, inclusive de desentendimento com a Unicamp, que é a titular das patentes. Se olhar a página da Amorphic Solutions na Internet você poderá ver várias aplicações do produto. Pelo que percebo, atualmente estão enfatizando o uso como material anticorrosivo para proteção de aço.

Mais ou menos na mesma época, num trabalho ligado também a nanopartículas, teve o desenvolvimento de nanocompósitos de borracha natural com argilas. Isso foi licenciado por uma empresa brasileira chamada Orbys, que lançou um produto chamado Imbrik, que é um produto que a empresa fornece, por exemplo, para fazer rolos de borracha para fabricação de papel.

Outro caso de produto. Eu tinha feito um projeto com a Oxiteno, que fabrica matérias primas para látex, os tensoativos. Ela queria ter uma ideia de quanto se consegue mudar o látex mudando o tensoativo. Eu fiz um projeto com eles, que considero um dos mais interessantes daqueles em que estive envolvido. O resultado foi que percebemos que, mudando um pouco o tensoativo, nós mudávamos muito o látex. Esses látex são usados em tintas, adesivos, resinas. Então a gente via que tinham uma variabilidade enorme. Esse trabalho foi divulgado, foi publicado. Não deu patente porque foi um trabalho de entendimento. Então, uma outra empresa, a Indústrias Químicas Taubaté (IQT) me procurou para fazer um látex catiônico, mas por um caminho novo. Látex catiônicos em geral são feitos com sais de amônio quaternários, os quais têm algumas restrições ambientais. A empresa queria uma alternativa que não tivesse essas restrições. No fim do projeto nós fizemos os látex catiônicos sem as restrições ambientais e a IQT colocou o produto no mercado.

Teve outro caso, que também foi muito interessante, apesar de que acabou morrendo. Aqui no Brasil havia uma grande fabricante de polietileno tereftalato, o PET, que é usado para muitas coisas, inclusive para garrafas. Eles souberam do trabalho que eu tinha feito com nanocompósitos, aquele da Orbys que eu mencionei, e me procuraram querendo fazer nanocompósitos do PET. Nós tivemos que procurar escapar daquilo que já estava patenteado no exterior e conseguimos um caminho totalmente novo. A empresa chamava-se Rhodia-Ster, e hoje ela faz parte de uma outra empresa, italiana, chamada Mossi e Ghisolfi. A empresa se entusiasmou e acabou patenteando isso no Brasil, e, em seguida depois, no exterior. Numa certa altura, eles resolveram que iam tocar o trabalho internamente, e o fizeram durante alguns anos. Um dia o meu contato na empresa me telefonou para me dizer o seguinte: “Olha, nós estávamos trabalhando com duas tecnologias; uma era essa aí com a Unicamp e a outra, em outro país. As duas estão funcionando, mas agora a empresa chegou num ponto em que optou por completar o desenvolvimento de uma”. Quando chegam na fase final de um desenvolvimento de materiais, os custos dos projetos ficam muito altos. Tem que usar grandes quantidades de materiais, fazer muitos testes com clientes. Então, a empresa decidiu tocar uma, que infelizmente não era aquela na qual eu tinha trabalhado. No fim das contas, foi um pouco frustrante, mas acho que foi interessante porque durante esse tempo todo, a empresa apostou bastante no caminho que a gente tinha iniciado aqui. Além disso, cada projeto desses significa recursos para o laboratório, significa dinheiro para contratar gente, empregos etc. Então, esses projetos acaba dando muitos benefícios, mesmo quando não chegam até o fim.

Agora, pulando alguns pedaços, vou chegar no último resultado, que é bem recente, de depois que eu sai da Unicamp e vim para o CNPEM. Um objetivo do CNPEM é o aproveitamento de materiais de fonte renovável para fazer materiais avançados. Tem toda uma filosofia por trás disso, relacionada ao esgotamento de recursos naturais, à sustentabilidade… Nós temos trabalhado bastante para conseguir fazer coisas novas com materiais derivados da biomassa, e o principal interesse está na celulose. Ela é o polímero mais abundante do mundo, mas é um polímero muito difícil de trabalhar. Você não consegue processar celulose como processa polietileno, por exemplo. Uma de nossas metas tem sido procurar formas de plastificar a celulose; ou seja, trabalhar a celulose da forma mais parecida possível àquela que usamos para trabalhar com polímeros sintéticos. Um resultado recente dentro dessa ideia é que nós conseguimos fazer adesivos de celulose em que o único polímero é a própria celulose, o que é uma coisa nova. Foi depositado um pedido de patente no começo do ano, nós estamos submetendo isso agora para publicação e pretendemos trabalhar com empresas interessadas no assunto. Já estamos discutindo um projeto para uma aplicação específica dessa celulose modificada, com uma empresa.

Esse é o caso mais recente. No meio do caminho, vários outros projetos foram feitos com empresas, em questões do interesse das empresas. Revestir uma coisa, colar outra, modificar um polímero para conseguir um certo resultado. Mas essas foram respostas a demandas das empresas, não foram pesquisas iniciadas no laboratório.

Boletim da SBPMat: – Deixe uma mensagem para nossos leitores que estão iniciando suas carreiras de cientistas.

Fernando Galembeck: – Em primeiro lugar, em qualquer carreira que a pessoa escolher, ela tem que ter uma dose de paixão. Não importa se a pessoa vai trabalhar no mercado financeiro, em saúde ou o que quer que ela vá fazer; antes de mais nada, o que manda é o gosto. A pessoa querer fazer uma carreira porque ela vai dar dinheiro, porque vai dar status… Eu acho que é ruim escolher assim. Se a pessoa fizer as coisas com gosto, com interesse, o dinheiro, o prestígio, o status virão por outros caminhos. O objetivo é que a pessoa faça uma coisa que a deixe feliz, que se sinta bem fazendo-a, que a deixe realizada. Isso vale não só para a carreira científica, mas para qualquer outra carreira também. Na científica, é fundamental.

Outra coisa é que tem que estar preparado para o trabalho duro. Não existe caminho fácil. Eu conheço pessoas jovens que procuram muito a grande sacada que vai lhes trazer sucesso com relativamente pouco trabalho. Bom, eu acho melhor não esperarem isso. Pode até acontecer, mas esperar isso é mais ou menos a mesma coisa do que esperar ganhar a Mega-Sena para ficar rico.

Eu já tenho mais de 70 anos, então já vi muita gente e muita coisa acontecer. Algo que me chama a atenção é como jovens que pareciam muito promissores acabam não dando muito certo. Francamente, eu penso que uma coisa que não é boa é um jovem dar certo muito cedo, porque eu tenho a impressão de que ele acostuma com a ideia de que sempre vai dar certo. E o problema é que não tem nada, nem ninguém, nem nenhuma empresa que sempre dê muito certo. Sempre vai ter o momento do fracasso, o momento da frustação. Se a pessoa está preparada para isso, quando chega o momento, ela supera, enquanto outros são destruídos – não conseguem superar. Por isso tem que ter cuidado para não se iludir com o sucesso, achar que, porque deu certo uma vez, sempre dará certo. Tem que estar preparado para lutar.

Quando eu fiz faculdade, pensar em fazer pesquisa parecia uma coisa muito estranha, coisa de maluco. As pessoas não sabiam muito bem o que era isso nem por que uma pessoa iria fazer isso. Tinha gente que dizia que a pesquisa era como um sacerdócio. Eu trabalhei sempre com pesquisa, associada com ensino, associada com consultoria e, sem que eu nunca tenha procurado ficar rico, consegui ter uma situação econômica que eu acho que é muito confortável. Mas eu insisto, meu objetivo era fazer o desenvolvimento, fazer o material, não o dinheiro que eu iria ganhar. O dinheiro veio, ele vem. Então, eu sugiro que as pessoas focalizem o trabalho, os resultados e a contribuição que o trabalho delas pode dar para outras pessoas, para o ambiente, para a comunidade, para o país, para o conhecimento. O resto virá por acréscimo.

Resumindo, a minha mensagem é: trabalhem seriamente, dedicadamente e com paixão.

Finalmente, eu gostaria de dizer que acho que o trabalho de pesquisa, o trabalho de desenvolvimento ajuda muito a pessoa a crescer como pessoa. Ele afasta a pessoa de algumas ideias que não são muito proveitosas e bota a pessoa dentro de atitudes que são importantes e realmente ajudam. Uma vez um estudante perguntou para Galileu: “Mestre, o que é o método?”. A resposta de Galileu foi: “O método é a dúvida”. Eu acho que isso é muito importante em atividade de pesquisa, a qual, em Materiais, em particular, é especialmente interessante porque o resultado final é uma coisa que a gente pega na mão. Na atividade de pesquisa a pessoa tem que estar o tempo todo se perguntando: “Eu estou pensando isto, mas será que estou pensando certo?”, ou “Fulano escreveu aquilo, mas qual é a base do que ele escreveu?”. Essa é uma atitude muito diferente da atitude dogmática, que é comum no domínio da política e da religião, e muito diferente da atitude da pessoa que tem que enganar, como o advogado do mafioso ou do traficante. O pesquisador tem que se comprometer com a verdade. Claro que também existem pessoas que se dizem pesquisadores e promovem a desinformação. Alguns anos atrás, falava-se de uma coisa chamada de “Bush science”, expressão que remete ao presidente Bush. A “Bush science” eram os argumentos criados por pessoas que ganhavam dinheiro como cientistas, mas que produziam argumentos para dar sustentação às políticas de Bush. Ou seja, o problema existe em ciência também, mas aí voltamos àquilo que falei no início. A pessoa não pode entrar nisto porque vai ganhar dinheiro, vai ter prestígio ou vai ser convidado para jantar com o presidente; ela tem que entrar nisto pelo interesse que ela tem pelo próprio assunto.