Boletim da SBPMat – edição 48.

 

Saudações!

Edição nº 48 – 31 de agosto de 2016 

XV Encontro da SBPMat/ XV Brazil-MRS Meeting - Campinas (SP) 25-29/09/2016 

Resumos aceitos: 1.909. 

Inscrições. Estão abertas as inscrições para participar do evento. Encerra hoje o período para inscrições com desconto. Aqui. 

Prêmios. Graduandos e pós-graduandos que tiveram trabalhos aprovados nos simpósios do evento ainda podem submeter resumos estendidos para concorrerem aos prêmios para estudantes. O prazo foi prorrogado até 06/09. Apenas um arquivo pode ser submetido e, após submissão, edições no resumo estendido não são permitidas. Além do Bernhard Gross Award, haverá neste ano um prêmio da ACS (American Chemical Society). Os prêmios só serão outorgados aos vencedores se eles estiverem na cerimônia de encerramento (29/09, das 11h45 às 14h00). Saiba mais nas instruções para autores.

Programa. Está disponível no site nas versões resumida e completa (simpósio por simpósio). Aqui.

Sessões especiais – Science Lunch “Research in Germany”, 26/09, das 12h00 às 14h00. Reunirá cientistas e agências de fomento da Alemanha para falar com o público sobre oportunidades de pesquisa desse país. Vagas limitadas. Saiba mais e faça sua inscrição gratuita. 

Sessões especiais – Meet the Editors, 27/09, das 12h00 às 14h00. A mesa redonda “Meet the editors” reunirá Paul Weiss (editor-chefe da ACS Nano), Susan Sinnott (editora-chefe da Computational Materials Science), Ifor Samuel (editor-chefe da Synthetic Metals) e Tim Smith (diretor na IOP Publishing) para falar com o público sobre publicação científica. Vagas limitadas. Inscrições gratuitas no ato da inscrição ao encontro. Aqueles que já efetuaram a inscrição ao evento e desejam participar desta atividade devem clicar em “alterar atividades” e selecioná-la. 

Sessões especiais – Materials Research and Innovation, 28/09, das 12h00 às 14h00. Este painel reunirá representantes da Mahle, Braskem e Inova-Unicamp, que apresentarão casos de colaboração universidade – empresa para P&D no Brasil e discutirão o papel da pesquisa em materiais na inovação. Vagas limitadas. Inscrições gratuitas no ato da inscrição ao encontro. Aqueles que já efetuaram a inscrição ao evento e desejam participar desta atividade devem clicar em “alterar atividades” e selecioná-la.

Tutoriais: Dois tutoriais serão oferecidos no dia 25/09 das 14h00 às 17h00 aos inscritos no evento, sem custo adicional. Um deles é sobre simulações computacionais de sistemas de átomos usando Reactive Force Fields (teoria e prática). O segundo, organizado pelo prof. Valtencir Zucolotto, abordará capacidades necessárias para fazer ciência de alto impacto, inclusive escrita científica. Reserve sua vaga no momento da inscrição. Se você já efetuou a inscrição ao evento e deseja participar de um dos tutoriais, clique em “alterar atividades” e selecione o tutorial.

Publicação de contribuições apresentadas: Os trabalhos apresentados no XV Encontro da SBPMat poderão ser submetidos por seus autores a avaliação por pares para publicação em periódicos científicos do IOP. Saiba mais. 

Plenárias: Veja os resumos das palestras plenárias e palestra memorial do nosso evento e os CVs dos cientistas que vão proferi-las. Aqui. 

Expositores: Haverá 43 estandes de empresas e instituições.

Hospedagem e passagens: Lista da agência de turismo Follow Up com hotéis, albergues, pousadas e formulário para reserva de vôos. Aqui.

Pacotes turísticos: O site da Follow Up também sugere opções de pacotes turísticos para antes e depois do evento. Aqui.

Local do evento: Veja vídeo sobre a cidade de Campinas e folder sobre o centro de convenções Expo D. Pedro. 

Organizadores: Coordenam esta edição do evento as professoras da Unicamp Ana Flávia Nogueira (Instituto de Química) e Mônica Alonso Cotta (Instituto de Física “Gleb Wataghin”). Saiba quem são os membros da comissão local e veja fotos dos organizadores, aqui.

Notícias da SBPMat
A SBPMat tem a satisfação de anunciar que o XVI Encontro da SBPMat/ XVI Brazil-MRS Meeting será realizado em Gramado (RS) de 24 a 28 10 a 14 de setembro de 2017.
Artigo em destaque 

Um estudo desenvolvido no Brasil por meio de simulações computacionais mostrou que um defeito na rede de átomos de nanofitas de bismuto (bidimensionais) gera estados condutores em regiões das nanofitas que deveriam ser isolantes. O trabalho faz uma importante contribuição ao estudo de uma família de materiais recentemente descoberta, a dos isolantes topológicos, e foi publicado na revista científica Nano Letters.  Veja nossa matéria de divulgação.

Gente da nossa comunidade
O professor Victor Carlos Pandolfelli (DEMa-UFSCar) foi escolhido e assumiu como um dos editores-chefes do periódico científico Ceramics International (Elsevier). Saiba mais.
Entrevistas com palestrantes do XV Brazil-MRS Meeting/Encontro da SBPMat
Inserir num computador as propriedades necessárias para determinada aplicação e obter o projeto do material mais adequado a ela é uma das tentadoras promessas da Ciência Computacional de Materiais. Esse campo de pesquisa terá seu lugar nas palestras plenárias do XV Brazil-MRS Meeting/Encontro da SBPMat, principalmente na palestra de Susan Sinnott, professora e diretora do Departamento de Ciência e Engenharia de Materiais da Pennsylvania State University (EUA) e editora-chefe do periódico Computational Materials Science. Dentro da produção científica de Sinnott, que conta com mais de 10 mil citações, há importantes contribuições ao desenvolvimento de ferramentas de simulação, em escala atómica, de sistemas de materiais heterogêneos. Veja nossa entrevista com Susan Sinnott

.

Dicas de leitura
Pesquisa com participação brasileira avança na compreensão do ruído magnético, que gera imperfeições em aplicações dos materiais magnéticos (divulgação de paper do periódico Physical Review Letters). Aqui.
Oportunidades
  • Oportunidades para pesquisadores no Laboratório Nacional de Luz Síncrotron (LNLS). Aqui. 
  • Concurso para professor da UFPA: Materiais, Processos e Bioprocessos. Aqui. 
  • Concurso para professor no Programa de Engenharia de Nanotecnologia da COPPE. Aqui. 
  • Concurso para professor do DEMa-UFSCar em materiais cerâmicos. Aqui.
  • Pós-doutorado no programa de pós-graduação em Física da UFSC. Aqui.
  • Pós-doutorado em Bioeletroquímica no IQSC – USP. Aqui. 
Próximos eventos da área
  • XV Encontro da SBPMat. Campinas, SP (Brasil). 25 a 29 de setembro de 2016. Site.
  • Aerospace Technology 2016. Estocolomo (Suécia). 11 a 12 de outubro de 2016. Site.
  • AutoOrg 2016. 5 th Meeting on self-assembly structures in solutions and at interfaces. Florianópolis, SC (Brasil). 2 a 4 de novembro de 2016. Site. 
  • I Simpósio Nacional de Nanobiotecnologia; II Workshop de Nanobiotecnologia da UFMG – Avanços & Aplicações. Belo Horizonte, MG (Brasil). 1 a 2 de dezembro de 2016. Site.
      
Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails.

 

Interviews with plenary speakers of the XV Brazil-MRS Meeting: Susan Sinnott (Penn State, USA).

susan sinnottComputational methods make a difference when the challenge is to develop a new material for a given technology or to adjust material properties to fit a specific application.

In the end of September, the computational materials scientist Susan Sinnott will talk about this topic of her expertise in a plenary lecture at the XV Brazil-MRS Meeting. Sinnott is Professor and Department Head of Materials Science and Engineering at Pennsylvania State University (USA). She is also the editor-in-chief of “Computational Materials Science” (Elsevier).

Susan Sinnott received her B.S. degree in Chemistry (with honors) from the University of Texas in 1987 and her doctoral degree in Physical Chemistry from Iowa State University in 1993. Then she worked as a postdoctoral associate at the U.S. Naval Research Laboratory until 1995. After that, she became a faculty member of the University of Kentucky. In 2000, she began her tenure at the University of Florida (UF). In 2012, she was named the Alumni Professor of Materials Science and director of the Cyberinfrastructure for Atomistic Materials Science at UF. In 2013, she was president of the American Vacuum Society (AVS). In 2015, she joined the Pennsylvania State University (Penn State).

Susan Sinnott is the author of more than 210 refereed journal papers and 8 book chapters. She has over 10,000 citations and an h-index of 46, according to Google Scholar.

She is a Fellow of the Materials Research Society, American Physical Society, American Ceramic Society, American Vacuum Society, and American Association for the Advancement of Science.

In the XV Brazil-MRS Meeting, Susan Sinnott will not only deliver the plenary lecture “Role of Atomic-Scale Modeling in Materials Design and Discovery”, but also take part in the roundtable “Meet the editors” to discuss scientific publication issues. Besides her position as editor-in-chief of “Computational Materials Science”, this scientist serves as associate editor, principle editor and divisional associated editor for other journals.

Here follows a short interview with the scientist.

SBPMat newsletter: – In your opinion, what are your most significant contributions to the field of materials modeling?  Explain them very briefly and, if possible, share references of resulting publications or patents, products etc.

Susan Sinnott: – My research program uses computational atomistic methods to design and investigate materials. This area has seen tremendous growth in the last two decades because of a combination of factors, including the increasing availability and low cost of fast computers, the refinement of atomistic methods, the shrinking of device dimensions, and the improved ability of experimentalists to study materials at the nanometer scale. It approaches well-established continuum level modeling (such as finite element analysis) and fluid dynamics at high length scales (100s-1000s nanometers), and overlaps with traditional physics and chemistry at small length scales (1-10 nanometers).

A major contribution from my research group is the development of inventive methods to enable the modeling of new material systems at the atomic level. In particular, my collaborators and I developed a new empirical, reactive potential for molecular dynamics simulations that allows for the modeling of heterogeneous material systems at the atomic scale, something that has traditionally only been possible with computationally intensive first principles methods such as density functional theory. This method has allowed us to investigate such otherwise intractable problems as Cu thin film growth on ZnO surfaces, and model the catalytic activity of metal clusters on oxide surfaces. These potentials have been incorporated into an open-source massively parallel molecular dynamics software developed at Sandia National Laboratory to make them available to the modeling community.

Some relevant publications are:

  • “Simulating Multifunctional Structures”, S.R. Phillpot and S.B. Sinnott, Science 325, 1634-1635 (2009).
  • “Classical atomistic simulations of surfaces and heterogeneous interfaces with charge-optimized many body potentials”, T. Liang, T-R. Shan, Y.-T. Cheng, B.D. Devine, M. Noordhoek, Y. Li, Z. Lu, S.R. Phillpot, and S.B. Sinnott, Materials Science and Engineering Reports 74, 255-279 (2013).

SBPMat newsletter: – In the abstract of your plenary lecture, you mention the concept of “materials by design”. Could you explain this idea in a few words? Today, is “materials by design” a fact or a promise?

Susan Sinnott: – The ability to design a material with desired properties a priori using computational methods has been a promise of the field of computational materials science for many years. This promise relies on designing materials that do not currently exist or with properties that are desired from compositions that are largely unknown. The day that we can input the properties desired for a given part or device into a computer and have it predict the composition and microstructure or morphology needed to produce those properties has not yet arrived but remains the ultimate goal of “materials by design” initiatives. Currently, the integration of computational and experimental approaches is more complete than ever before. This enables computational materials science methods to make predictions that can be subsequently validated, and for experimental observations to be explained. Advances depend on continued improvements in the accuracy and predictability of computational methods along with continuing improvements in the linkages of the computational results to data from experimental characterization and production methods. An integral component to the new paradigm for materials design and discovery is the production and integration of datasets from calculations, simulations, experiments, or a combination of all of these. Therefore the seamless integration of database mining and materials informatics methods with conventional experimental and computational materials science methods is required. Lastly, the materials community must reach a critical comfort level and associated understanding of the strengths and limitations of coupling these methods so that such comparisons can be made on a routine basis.

A relevant paper that discusses these ideas in more detail is:

“Material design and discovery with computational materials science”, S.B. Sinnott, Journal of Vacuum Science and Technology A 31, 050812 (2013)

SBPMat newsletter: – If you desire, leave an invitation for our readers to go to your plenary lecture at the XV Brazil-MRS Meeting.

Susan Sinnott: – I invite you to find out more at my plenary lecture at the XV Brazil-MRS Meeting.

Link to the abstract of Susan Sinnott´s plenary lecture at the XV Brazil-MRS Meeting: http://sbpmat.org.br/15encontro/speakers/abstracts/10.pdf

Artigo em destaque: Nanofitas isolantes com regiões condutoras.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Topologically Protected Metallic States Induced by a One-Dimensional Extended Defect in the Bulk of a 2D Topological Insulator. Erika N. Lima, Tome M. Schmidt, and Ricardo W. Nunes. Nano Lett., 2016, 16 (7), pp 4025–4031. DOI: 10.1021/acs.nanolett.6b00521

Nanofitas isolantes com regiões condutoras

Uma pesquisa realizada no Brasil faz uma relevante contribuição ao estudo dos isolantes topológicos, classe de materiais cuja existência foi prevista teoricamente em 2005 e confirmada experimentalmente em 2007. O estudo foi reportado em um artigo recentemente publicado na Nano Letters (fator de impacto 2015: 13,779).

Os isolantes topológicos possuem a interessante propriedade de se comportarem como isolantes em seu interior e como condutores em sua superfície ou borda. Conforme detalha Ricardo Wagner Nunes, professor da Universidade Federal de Minas Gerais (UFMG) e autor correspondente do artigo, “isolantes não-topológicos também podem ter superfícies condutoras, mas no caso dos isolantes topológicos é possível identificar que a condução de carga e spin na superfície é muito robusta, por ser “protegida” pela simetria de reversão temporal”.

No artigo da Nano Letters, o professor Nunes e seus colaboradores, Erika Lima, da Universidade Federal do Mato Grosso (UFMT) – campus Rondonópolis, e Tome Schmidt, da Universidade Federal de Uberlândia (UFU), reportaram seu trabalho sobre um isolante topológico bidimensional, uma nanofita de bismuto formada por apenas duas camadas de átomos de bismuto, sobrepostas e ligadas, de um átomo de espessura cada uma. Usando métodos computacionais, os cientistas mostraram que o interior da nanofita de bismuto, em vez de ser totalmente isolante, pode ter estados condutores (também chamados de estados metálicos) gerados a partir de um determinado tipo de irregularidade na rede de átomos do material, conhecido como defeito estendido 558.

Representação da nanofita de bismuto bicamada com o defeito 558, vista de cima (esquerda) e de lado (direta). As bolinhas verdes representam os átomos da camada superior do material e as azuis, os átomos da camada inferior. No centro da figura da esquerda, nota-se facilmente o defeito: pentágonos e um octógono interrompem a repetição de hexágonos.
Representação da nanofita de bismuto bicamada com o defeito 558, vista de cima (esquerda) e de lado (direta). As bolinhas verdes representam os átomos da camada superior do material e as azuis, os átomos da camada inferior. No centro da figura da esquerda, nota-se facilmente o defeito: pentágonos e um octógono interrompem a repetição de hexágonos.

“Em nosso trabalho, mostramos que um defeito linear no interior de um isolante topológico bidimensional pode gerar estados quânticos eletrônicos unidimensionais que conduzem carga e spin no interior do material”, precisam os autores.

Os autores chegaram aos resultados que sustentam essa conclusão por meio de cálculos feitos em supercomputadores, simulando o que aconteceria com os estados quânticos dos elétrons no material com a presença de defeitos. “Utilizamos cálculos de primeiros princípios dentro da Teoria do Funcional da Densidade”, detalham os autores. Para se ter uma ideia, a simulação computacional de defeitos em nanoestruturas de bismuto, relatam os autores, demandou um custo computacional de aproximadamente 400 horas em supercomputadores localizados no Departamento de Física da UFMG e no Centro Nacional de Processamento de Alto Desempenho em São Paulo (Cenapad), na UNICAMP.

A figura mostra a curva de dispersão dos estados topológicos metálicos, localizados no defeito 558, marcados em azul e vermelho.
A figura mostra a curva de dispersão dos estados topológicos metálicos, localizados no defeito 558, marcados em azul e vermelho.

No artigo, os autores também propõem a existência do pentaoctite, um novo isolante topológico bidimensional. Esse material, que ainda não foi sintetizado, seria uma bicamada de bismuto, com uma rede cristalina formada por átomos dispostos em pentágonos e octógonos. “Em nossos cálculos mostramos que essa nova “fase” do bismuto bidimensional tem baixa energia de formação, o que abre a possibilidade de ser sintetizada em laboratório”, afirmam os autores.

De acordo com os autores, o trabalho reportado na Nano Lettters suscita diversas questões do âmbito da pesquisa fundamental, como a influência de impurezas magnéticas e não-magnéticas sobre o transporte de carga e de spin nos estados topológicos propostos, e a conexão entre as simetrias da rede e a natureza dos estados topológicos de borda no pentaoctite. “Sob um ponto de vista aplicado, seria interessante se nosso trabalho viesse a motivar estudos experimentais sobre isolantes topológicos bidimensionais baseados em bismuto e outros materiais, que possibilitassem uma colaboração teórico-experimental nesse tema”, comentam os autores, deixando um convite aberto aos grupos de pesquisa experimental.

A história do trabalho de pesquisa

“O trabalho se originou de um casamento de meus interesses em defeitos topológicos estendidos em materiais bidimensionais e tridimensionais, com a experiência do professor Tome Mauro Schmidt (UFU) e da Erika Lima, que foi sua orientanda de doutorado no tema de isolantes topológicos”, relata Nunes.

Em 2012, Nunes e outros colaboradores tinham publicado um artigo na Nano Letters sobre estados magnéticos (não topológicos) gerados por defeitos estendidos lineares em uma monocamada de grafeno. Posteriormente, em conversas com Schmidt, foi definida uma colaboração visando investigar se um defeito estendido com a mesma morfologia levaria à formação dos estados topológicos em um isolante topológico bidimensional de bismuto.

Em seu pós-doutorado no grupo do professor Nunes, realizado em 2015, Erika Lima fez todos os cálculos computacionais. A interpretação dos resultados e a redação do artigo foram realizados pelos três pesquisadores, que são os autores do artigo.

A pesquisa que gerou o artigo contou com financiamento da CAPES, CNPq, FAPEMIG e do INCT de Nanomateriais de Carbono.

autores
Montagem de fotos dos autores do artigo. Começando pela esquerda do leitor, Erika Lima, atualmente professora da UFMT, Tome Schmidt, professor da UFU, e Ricardo Nunes, professor da UFMG.

Prof. Victor Carlos Pandolfelli (UFSCar) eleito editor-in-chief do periódico Ceramics International.

Victor Carlos Pandolfelli.
Victor Carlos Pandolfelli.

O professor Victor Carlos Pandolfelli, do Departamento de Engenharia de Materiais da Universidade Federal de São Carlos (DEMa-UFSCar) foi escolhido e assumiu como um dos editors-in-chief da Ceramics International.  O periódico, divulgado globalmente, é publicado pela Elsevier e tem 41 anos de história. Atualmente tem uma taxa de aceitação de 25% dos artigos submetidos. É classificado como A1 pela CAPES em várias áreas de avaliação.

Pandolfelli concluiu o doutorado em Leeds (Reino Unido) em 1989 e fez pós-doutorado na École Polytechnique de Montreal (Canadá) em 1996 e 1997. É professor titular do DEMa-UFSCar, membro titular da Academia Brasileira de Ciências, membro titular da World Academy of Ceramics, fellow da American Ceramic Society, membro titular da Academia Nacional de Engenharia e guest professor da Wuhan University of Science and Technology (China). É membro do conselho da World Academy of Ceramics (2014-2018), membro do conselho técnico internacional da Morgan International (Inglaterra) e coordenador latino-americano da FIRE (Federation for International Refractories Research and Education), que envolve 10 universidades em diferentes países e 17 empresas líderes na área de refratários. É autor de 480 artigos publicados em periódicos científicos e 2 livros. Recebeu 12 prêmios internacionais.

Boletim da SBPMat – edição 47.

 

Saudações %primeiro_nome%!

Edição nº 47 – 29 de julho de 2016 

XV Encontro da SBPMat/ XV Brazil-MRS Meeting - Campinas (SP) 25-29/09/2016 

1.909 resumos foram aceitos para apresentação no XV Encontro da SBPMat/ Brazil-MRS Meeting. 

Inscrições. Estão abertas as inscrições para participar do evento. Valores com desconto até 31 de agosto. Aqui. 

Prêmios. Interessados em concorrer ao prêmio do evento para estudantes, o Bernhard Gross Award, que distinguirá até um oral e um pôster de cada simpósio, devem submeter um resumo estendido até 22 de agosto. Saiba mais nas instruções para autores.

Sessões especiais. Organizado pela campanha “Research in Germany”, o “Science Lunch” (26 de setembro das 12 às 14 hs) reunirá cientistas e agências de fomento da Alemanha para falar com o público sobre oportunidades de pesquisa nesse país. Saiba mais. No mesmo horário, no dia 27 de setembro, a mesa redonda “Meet the editors” reunirá Paul Weiss (editor chefe da ACS Nano), Susan Sinnot (editora chefe da Computational Materials Science) e Tim Smith (diretor na IOP Publishing) para falar com o público sobre publicação científica. Em breve serão divulgados, nos canais da SBPMat, os links para realizar a inscrição (gratuita) nestas atividades.

Tutoriais: Dois tutoriais serão oferecidos no dia 25 de setembro à tarde aos inscritos no evento, sem custo adicional. Um deles é sobre simulações computacionais de sistemas de átomos usando Reactive Force Fields (teoria e prática). O segundo, organizado pelo prof. Valtencir Zucolotto, abordará capacidades necessárias para fazer ciência de alto impacto, inclusive escrita científica. Reserve sua vaga no momento da inscrição.

Publicação de contribuições apresentadas: Os trabalhos apresentados no XV Encontro da SBPMat poderão ser submetidos por seus autores a avaliação por pares para publicação em periódicos científicos do IOP. Saiba mais. 

Plenárias: Veja os resumos das palestras plenárias e palestra memorial do nosso evento e os CVs dos cientistas que vão proferi-las. Aqui. 

Expositores: Mais de 30 empresas já garantiram sua participação como expositoras do evento. Outras empresas interessadas em participar do encontro com estandes e outras formas de divulgação devem entrar em contato com Alexandre, no e-mail comercial@sbpmat.org.br.

Hospedagem e passagens: Lista da agência de turismo Follow Up com hotéis, albergues, pousadas e formulário para reserva de vôos. Aqui.

Pacotes turísticos: O site da Follow Up também sugere opções de pacotes turísticos para antes e depois do evento. Aqui.

Local do evento: Veja vídeo sobre a cidade de Campinas e folder sobre o centro de convenções Expo D. Pedro. 

Organizadores: Coordenam esta edição do evento as professoras da Unicamp Ana Flávia Nogueira (Instituto de Química) e Mônica Alonso Cotta (Instituto de Física “Gleb Wataghin”). Saiba quem são os membros da comissão local e veja fotos dos organizadores, aqui.

Artigo em destaque 

Uma equipe de cientistas de instituições brasileiras fez uma contribuição ao campo da produção de hidrogênio, visando seu uso como combustível alternativo. Em primeiro lugar, os pesquisadores desenvolveram um novo método de fabricação de nanopartículas de óxido metálico a partir de líquidos iônicos. Depois, a equipe testou o desempenho das nanopartículas obtidas na função de catalisadores de um processo de produção de hidrogênio realizado a partir de fontes renováveis e abundantes. O trabalho, realizado na UFGRS, foi reportado em artigo recentemente publicado no Journal of Materials Chemistry AVeja nossa matéria de divulgação.

Entrevistas com palestrantes do XV Brazil-MRS Meeting/Encontro da SBPMat
Os semicondutores orgânicos não têm muitos segredos para o professor Ifor Samuel, líder e fundador de um grupo de pesquisa e de um centro de P&D sobre o assunto na University of St Andrews (Escócia). No seu dia-a-dia, Samuel procura não apenas compreender profundamente esses materiais, mas também encontrar novas aplicações para eles em campos muitos diversos, desde a medicina dermatológica até a detecção de explosivos. Além de ter centenas de artigos publicados com mais de 12 mil citações, Samuel possui várias patentes que já foram licenciadas a empresas. No XV Brazil-MRS Meeting/Encontro da SBPMat, o cientista proferirá uma palestra plenária sobre optoeletrônica baseada em semicondutores orgânicos. Veja nossa entrevista com Ifor Samuel.
Dicas de leitura
Divulgação científica internacional

  • “Pele” optoeletrônica: filme ultrafino, flexível, esticável e macio adere à pele e funciona como sensor e display (divulgação de paper da Science Advances). Aqui.
  • Físicos brasileiros estudam pela 1ª vez como átomos vibram nas bordas do “fósforo negro”, material promissor para a fabricação de diversos dispositivos (divulgação de paper da Nature Communications). Aqui.
  • Depois de ter sua microestrutura modificada, cimento recebe aditivos e, pela primeira vez, fica fosforescente. Aqui. 

Periódicos

  • Novo periódico da série Nature Partner Journals: “npj 2D Materials and Applications”. Saiba mais.

Métricas

  • Relação dos 300 pesquisadores de Ciência e Engenharia de Materiais mais citados no mundo, baseada no banco de dados Scopus, inclui dois palestrantes de plenárias do XV Brazil-MRS Meeting/ Encontro da SBPMat: Lei Jiang e Anders Hagfeldt. Aqui.

História da pesquisa em Materiais no Brasil

  • Matéria da revista Pesquisa Fapesp conta um pouco da história do Instituto de Química de Araraquara (Unesp) e alguns de seus laboratórios, atuantes em Ciência e Engenharia de Materiais. Aqui.
Próximos eventos da área
  • Minicurso na Área de Processos Fotodinâmicos na UFABC: “Photodynamic processes: shining light on sensing and actuating in biological systems”. Santo André, SP (Brasil). 8 a 12 de agosto de 2016. Mais.
  • Primeira Escola de Pesquisadores da USP. São Carlos, SP (Brasil). 10 a 11 de agosto de 2016. Mais.
  • XXV International Conference on Raman Spectroscopy (ICORS2016). Fortaleza, CE (Brasil). 14 a 19 de agosto de 2016. Site.
  • 26ª edição da Reunião Anual dos Usuários (RAU) do Laboratório Nacional de Luz Síncrotron (LNLS). Campinas, SP (Brasil). 24 a 25 de agosto de 2016. Site.
  • XV Encontro da SBPMat. Campinas, SP (Brasil). 25 a 29 de setembro de 2016. Site.
  • Aerospace Technology 2016. Estocolomo (Suécia). 11 a 12 de outubro de 2016. Site.
      
Você pode divulgar novidades, oportunidades, eventos ou dicas de leitura da área de Materiais, e sugerir papers, pessoas e temas para as seções do boletim. Escreva para comunicacao@sbpmat.org.br.
Descadastre-se caso não queira receber mais e-mails.

Caso não esteja visualizando corretamente esta mensagem, acesse este link
 

Artigo em destaque. Nanopartículas super eficientes para catalisar a produção de hidrogênio, um combustível alternativo.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. Virgínia S. Souza, Jackson D. Scholten, Daniel E. Weibel, Dario Eberhardt, Daniel L. Baptista, Sérgio R. Teixeira and Jairton Dupont. J. Mater. Chem. A, 2016, 4, 7469-7475. DOI: 10.1039/C6TA02114J.

Nanopartículas super eficientes para catalisar a produção de hidrogênio, um combustível alternativo

Enquanto algumas unidades de carros que usam hidrogênio como combustível começam a ser comercializadas, cientistas de diversos lugares do mundo continuam trabalhando para encontrar as formas mais limpas, sustentáveis, seguras e econômicas de gerar e armazenar hidrogênio. De fato, apesar de ser o elemento mais abundante do universo e estar presente na água e em uma infinidade de outros compostos, o hidrogênio não pode ser encontrado em estado puro em nosso planeta, e precisa, portanto, ser obtido a partir de outros compostos.

Um dos melhores métodos, dos pontos de vista ecológico e econômico, para se produzir hidrogênio é o water splitting, que consiste na separação de moléculas de água em seus dois elementos primários, gerando os gases hidrogênio (H2) e oxigênio (O2). Essa divisão pode ser realizada utilizando a energia abundante da luz solar, a temperatura ambiente. Porém, para que, na prática, a luz consiga dividir uma molécula de água, é necessário contar com a ajuda de nanopartículas feitas de determinados materiais semicondutores que funcionam como catalisadores ou, mais precisamente, fotocatalisadores.

Em um estudo totalmente realizado no Brasil, uma equipe de cientistas desenvolveu um novo método, simples e eficiente, para fabricar nanopartículas de óxido de tântalo (Ta2O5) com ótimo desempenho como catalisadores na geração de hidrogênio. A pesquisa foi reportada em um artigo recentemente publicado no periódico Journal of Materials Chemistry A (fator de impacto: 8,262).

Fotos dos autores principais do artigo. Começando pela esquerda do leitor: a doutora Virgínia Souza, o professor Jackson Scholten e o professor Jairton Dupont.
Fotos dos autores principais do artigo. Começando pela esquerda do leitor: a doutora Virgínia Souza, o professor Jackson Scholten e o professor Jairton Dupont.

O trabalho foi desenvolvido com financiamento da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), dentro da pesquisa de doutorado de Virgínia Serra Souza no Instituto de Química da Universidade Federal do Rio Grande do Sul (IQ-UFRGS), sob orientação do professor Jairton Dupont.

“A ideia desta pesquisa surgiu quando buscávamos uma rota alternativa e eficiente para a síntese de nanopartículas de Ta2O5 e, então, após alguns experimentos, decidimos testar a possibilidade de utilizar líquidos iônicos como fontes e agentes estabilizantes dos nanomateriais”, conta o professor Jackson Damiani Scholten, um dos autores correspondentes do artigo e membro do grupo de pesquisa do IQ-UFRGS. Esse grupo tem ampla experiência no estudo e desenvolvimento de líquidos iônicos (sais que se apresentam em estado líquido a temperatura ambiente). Devido às suas propriedades físico-químicas, os líquidos iônicos podem ser usados durante a fabricação de nanopartículas como agentes estabilizantes, para manter as partículas na escala nanométrica.

Souza, Scholten e Dupont prepararam dois tipos de líquidos iônicos contendo tântalo e geraram as condições para que acontecesse a hidrólise (quebra de ligações químicas de um composto por efeito da adição de água). Os elementos resultantes da hidrólise, provenientes da água e do líquido iônico, se recombinaram formando as nanopartículas de óxido de tântalo.

A equipe pôde verificar que tinha produzido nanopartículas de óxido de tântalo de tamanho entre 1,5 e 22 nm, sendo que as menores tinham sido geradas a partir de um dos líquidos iônicos e as maiores, do outro. Com auxílio do professor Daniel E. Weibel, também do IQ-UFRGS, a composição superficial das nanopartículas foi estudada. Os cientistas propuseram que as nanopartículas obtidas eram híbridas: em volta do óxido de tântalo havia restos de líquido iônico.

Para ver como as nanopartículas se desempenhavam como catalisadores na separação de moléculas de água para geração de hidrogênio, a equipe realizou os testes fotocatalíticos em equipamentos do Instituto de Física da UFRGS, disponibilizados pelo professor Sérgio R. Teixeira. Os testes foram feitos numa solução contendo, além da água, etanol – composto que contribui ao aumento da taxa de produção de hidrogênio.

“Para nossa satisfação, as nanopartículas de Ta2O5 apresentaram um dos melhores resultados já publicados para a produção de H2 a partir de uma solução água/etanol”, lembra o professor Scholten. Esse resultado excepcional foi atribuído no artigo à presença de líquido iônico nas nanopartículas. “Acredita-se que o líquido iônico residual propicie a formação de uma região hidrofílica na superfície do Ta2O5 favorecendo a aproximação das moléculas polares (água e etanol)”, explica Scholten. Para terem mais certeza a respeito, os cientistas retiraram o líquido iônico das nanopartículas mediante um tratamento térmico e comprovaram que sua atividade fotocatalítica era muito baixa.

Em outra etapa da pesquisa, Dario Eberhardt, então professor da Universidade de Caxias do Sul (UCS), colaborou com a equipe na deposição de nanopartículas de platina de cerca de 1 nm na superfície das nanopartículas híbridas de óxido de tântalo pela técnica de sputtering, realizada no IF-UFRGS. O material foi caracterizado com o auxílio do professor Daniel L. Baptista, do IF-UFRGS. Com a adição da platina, o desempenho das nanopartículas de óxido de tântalo com líquido iônico nos testes fotocatalíticos foi ainda melhor.

Desta maneira, este trabalho desenvolvido na região Sul do Brasil apresentou um novo método de fabricação de catalisadores super eficientes para uso na produção de hidrogênio, um combustível alternativo promissor, a partir de água e etanol, dois recursos renováveis e abundantes.

figura NP para H2
Esta figura cedida pelos autores do artigo representa o processo de fabricação de nanopartículas de óxido de tântalo a partir da hidrólise de líquidos iônicos, seguida da deposição de nanopartículas de platina no primeiro material e, finalmente, a aplicação desse segundo material na obtenção de gás hidrogênio pelo processo de “water splitting”.

XV Brazil-MRS Meeting terá atividade sobre oportunidades de pesquisa na Alemanha (“science lunch”).

logo researchingermanyA campanha “Research in Germany” convida os participantes do XV Brazil-MRS Meeting a participarem do “Science Lunch”, que ocorrerá no dia 26 de setembro (segunda-feira) das 12 às 14 hs, na sala Araucária do centro de convenções Expo D. Pedro.  De acordo com os organizadores dessa atividade, será oferecido um almoço informal (gratuito), no qual os participantes poderão fazer networking científico e conhecer a Alemanha como local de pesquisa. Além de cientistas convidados, que vão falar sobre suas pesquisas, instituições de fomento alemãs vão se apresentar e oferecer orientação individual para pessoas interessadas em estudar ou pesquisar na Alemanha. Este evento será uma oportunidade também para cientistas que buscam informações a respeito de cooperações com parceiros na Alemanha e financiamento de projetos.

Para participar (gratuitamente) desta atividade, é necessário preencher um formulário de inscrição disponível aqui: https://ssl.daad.de/limesurvey/538867/lang-en. As vagas são limitadas.

Interviews with plenary speakers of the XV Brazil-MRS Meeting: Ifor Samuel (University of S. Andrews, UK).

ifor samuelOrganic semiconductors are materials that combine useful properties of plastics (easy shaping, flexibility, low weight, low-cost processing) with the possibility of conducting electricity and emitting light. At the University of St Andrews, which lies since 1413 in a beautiful seaside location in Scotland (UK), Prof. Ifor Samuel converts his fascination for organic semiconductors into new materials, devices and applications.

Ifor Samuel received his MA and PhD diplomas from the University of Cambridge (England, UK), after working on optical spectroscopy of organic semiconductors. After his PhD, Samuel moved to Paris for two years to perform postdoctoral work at CNET-France Telecom, investigating the non-linear optical properties of organic materials. Back to England, he carried out research at Cambridge for a year, as research fellow at Christ’s College.  After that, he set his own research group on light-emitting polymers at the University of Durham where he also held a Royal Society University Research Fellowship. In 2000 he joined the University of St Andrews, where he founded, in 2001, the Organic Semiconductor Centre, dedicated to interdisciplinary research on understanding and improving organic semiconductors and exploring their applications in the semiconductor, electronics and optoelectronics industries. In 2004 he founded the company Ambicare Health Ltd that produces wearable light sources for healthcare applications.

Ifor Samuel holds an H-index of 58. He has published more than 400 journal papers. His publications have more than 12,000 citations. He is a Fellow of the Royal Society of Edinburgh, the Institute of Physics, the International Society for Optics and Photonics (SPIE) and the Royal Society of Chemistry. Among other prizes, he won the Chemical Dynamics Award for 2016 of the Royal Society of Chemistry for his contributions to understanding light emission and fundamental photophysical processes in organic semiconductors.

At the University of St Andrews, Ifor Samuel is Professor of Physics, Director of the Organic Semiconductor Centre and head of the Organic Semiconductor Optoelectronics group. He is a member of the editorial board of the Journal of Photonics for Energy, and Editor-in-Chief of Synthetic Metals, a journal of electronic polymers and electronic molecular metals.

Here follows a short interview with Professor Ifor Samuel, who will be in Campinas (Brazil) at the end of September to talk about Organic Semiconductor Optoelectronics in a plenary lecture of the XV Brazil-MRS Meeting.

SBPMat newsletter: – In your opinion, what are your most significant scientific contributions to the organic semiconductors field?  Explain them very briefly and, if possible, share references of resulting publications.

Fluorescence of some organic semiconductors.
Fluorescence of some organic semiconductors.

Ifor Samuel: – There have been two main themes to my research. One is understanding organic semiconductors with the aim of using that understanding to improve them.  In this direction, I have studied the light emission process in conjugated polymers which is very important for organic light-emitting diodes (OLEDs) [1,2], developed as a new class of OLED material (with P.L. Burn) [3], and measured exciton diffusion which is very important in polymer solar cells [4].

The other major theme has been pushing the boundaries of devices and applications.  Here, instead of developing new materials, I have been exploring what new things can be done with existing materials.  For example, whilst nearly everybody was working on OLEDs for displays, I had a very interesting discussion with James Ferguson, head of dermatology at Ninewells Hospital in Dundee, leading to the development of wearable light sources for treatment of non-melanoma skin cancer [5].  More recently my team developed a wearable organic optoelectronic sensor for muscle contraction [6].  We have also been working with the Belgian Royal Military Academy on using conjugated polymer fluorescence and lasing for explosive detection for humanitarian demining.  Recently we demonstrated (as part of a large project with collaborators in Edinburgh, Strathclyde and Oxford) the use of organic semiconductors for visible light communication, achieving record data rates for white visible light communication [7].

  1. Measurement of Absolute Photoluminescence Quantum Efficiencies in Conjugated Polymers. N.C. Greenham, I.D.W. Samuel, G.R. Hayes, R.T. Phillips, Y.A.R.R. Kessener, S.C. Moratti, and A.B. Holmes. Chem. Phys. Lett241, 89 (1995).
  1. Fluorescent receiver for visible light communications.
    Fluorescent receiver for visible light communications.

    Efficient interchain photoluminescence in a high-electron-affinity conjugated polymer. I.D.W. Samuel, G. Rumbles and C.J. Collison. Physical Review B. 52, 11573 (1995).

  1. A green phosphorescent dendrimer for light-emitting diodes. S.C. Lo, N.A.H. Male, J.P.J. Markham, S.W. Magennis, P.L. Burn, O.V. Salata and I.D.W. Samuel. Adv. Mater. 14, 975 (2002).
  1. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. G.J. Hedley, A.J. Ward, A. Alekseev, C.T. Howells, E.R. Martins, L.A. Serrano, G. Cooke, A. Ruseckas and I.D.W. Samuel. Nature Comm. 4, 2867 (2013).
  1. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. S.K. Attili, A. Lesar, A. McNeill, M. Camacho-Lopez, H. Moseley, S. Ibbotson, I.D.W. Samuel and J. Ferguson. Brit. J. Derm161, 170 (2009).
  1. Conjugated polymer laser.
    Conjugated polymer laser.

    Wearable organic optoelectronic sensors for medicine. A.K. Bansal, S.B. Hou, O. Kulyk, E.M. Bowman and I.D.W. Samuel. Adv. Mater. 27, 7638 (2015).

  1. Visible light communication using a blue GaN µLED and fluorescent polymer color converter. Chun, P.P. Manousiadis, S. Rajbhandari, D.A. Vithanage, G. Faulkner, D. Tsonev, J.J.D. McKendry, S. Videv, E.Y. Xie, E.D. Gu, M.D. Dawson, H. Haas, G.A. Turnbull, I.D.W. Samuel and D.C. O’Brien. IEEE Photonics Technology Letters 26, 2035 (2014).

SBPMat newsletter: – You have authored many patents. Are there products in the market based on our inventions?

Ifor Samuel: – The majority of my patents are licensed to companies that are developing them.  There are several patents relating to light-emitting dendrimers as highly efficient solution-processed OLED materials.  These were initially licensed to Opsys Ltd in Oxford, who were later acquired by Cambridge Display Technology, who in turn are now wholly owned by Sumitomo Chemical and incorporate aspects of the technology in their products.  For the skin cancer treatment, the patents were licensed to the spin-out company Ambicare Health Ltd.  Ambicare have brought two related products to market – one is a wearable red light source for skin cancer treatment, and the other is a wearable blue light source for acne treatment.

SBPMat newsletter: – The properties of organic semiconductors are different from those of inorganic semiconductors, leading to creation of novel devices. Could you give some examples of existing and not-yet invented devices based on organic semiconductors?

Ifor Samuel: – The advantages of organic semiconductors come from how they combine novel semiconducting optoelectronic properties with simple fabrication and the scope to tune properties by changing their structure.  An existing organic semiconductor device is an OLED mobile phone display or television.  They give very vivid images, together with outstanding contrast and viewing angle.  However, in contrast to inorganic semiconductors which are rigid and brittle, organic semiconductors can be used to make flexible devices – such as light-emitting bandages for medicine.  The flexibility has not yet been fully exploited, but also simplifies manufacture which could be by simple roll to roll processes.  This would be an excellent way to make solar cells in Brazil.  The laser explosive sensors are completely different from inorganic lasers because the explosive vapour binds to the gain medium and modifies its light emission.

SBPMat newsletter: – If you desire, leave an invitation for our readers to go to your plenary lecture at the XV Brazil-MRS Meeting.

Ifor Samuel: – I have really enjoyed my previous visits to the Brazil MRS meeting and look forward to visiting Campinas.  Do come to my lecture to hear about the remarkable world of organic semiconductors and their applications.

Link to the abstract of Ifor Samuel´s plenary lecture at the XV Brazil-MRS Meeting: http://sbpmat.org.br/15encontro/speakers/abstracts/6.pdf

New journal: npj 2D Materials and Applications.

Aiming to create a top-tier interdisciplinary platform for scientists to share and promote 2D materials research and applications, npj 2D Materials and Applications is a new online-only, open access journal.

2D Materials and Applications is part of the Nature Partner Journals (npj) series, launched by Springer Nature as part of the Nature Research portfolio of journals, and published in partnership with the Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT Nova) with the support of the European Materials Research Society (E-MRS).

npj 2D Materials and Applications will publish original papers, review articles and short communications to reflect the latest breakthrough and developments taking place in all aspects of 2D materials, including allotropes (different structures of the same element) and compounds, ultralight composite materials, their properties (including mechanical properties), and their isolation, synthesis and manufacturing.

The journal will also publish research relating to the use of 2D materials in applications such as photovoltaics, optoelectronics and photonics, semiconductors, sensors, electrodes, water purification/filtration/distillation, and energy storage.

Led by Editor-in-Chief Professor Andras Kis, the journal is now open for submissions.

Visit the journal website to find out more: http://www.nature.com/npj2dmaterials/

See flyer here.