Artigo científico em destaque: Interação entre ouro e eumelanina – um material promissor para o desenvolvimento de dispositivos bioeletrônicos.

O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

Julia Wünsche, Luis Cardenas, Federico Rosei, Fabio Cicoira, Reynald Gauvin, Carlos F. O. Graeff, Suzie Poulin, Alessandro Pezzella, Clara Santato. In Situ Formation of Dendrites in Eumelanin Thin Films between Gold Electrodes.  Advanced Functional Materials, 2013. Article first published online : 10 JUN 2013, DOI: 10.1002/adfm.201300715.

Texto de divulgação:

Interação entre ouro e eumelanina – um material promissor para o desenvolvimento de dispositivos bioeletrônicos

Olhos e ouvidos artificiais e dispositivos que realizem a interface entre o corpo humano e braços robóticos são algumas das aplicações que a Bioeletrônica promete. Ainda em estágio inicial, o desenvolvimento dessa área da pesquisa depende em boa parte do desenvolvimento de materiais que sejam semicondutores e biocompatíveis ao mesmo tempo. Um dos materiais mais promissores e mais estudados no contexto da Bioeletrônica é a eumelanina (um tipo de melanina determinante, por exemplo, na definição da cor dos cabelos dos seres humanos). A eumelanina começou a ser estudada sob a perspectiva da Ciência de Materiais na década de 1960, quando suas características semicondutoras foram descobertas. O problema é que a melanina, tanto a natural quanto a sintetizada por métodos tradicionais, não produz filmes finos de boa qualidade que viabilizem seu uso como material para dispositivos bioeletrônicos.

No ano 2004, no Brasil, mais precisamente na cidade de Ribeirão Preto (SP), na Universidade de São Paulo (USP), o grupo de pesquisa do professor Carlos Graeff desenvolveu uma forma de produzir melanina solúvel em dimetilsulfóxido (DMSO), o que possibilitou a produção de filmes finos de alta qualidade. A descoberta foi publicada no Journal of Non-Crystalline Solids (http://dx.doi.org/10.1016/j.jnoncrysol.2004.03.058). “A partir desta publicação e outras subsequentes recebemos o contato da professora Clara Santato, uma especialista na produção de dispositivos eletrônicos orgânicos da Escola Politécnica de Montréal (Canadá), para desenvolvermos um projeto comum”, relata o professor Graeff, atualmente professor da Universidade Estadual Paulista (Unesp) – campus de Bauru.

A colaboração então iniciada continuou ao longo dos anos e gerou uma pesquisa que demonstrou a existência de peculiares interações entre a eumelanina e o ouro. Os resultados desse trabalho foram publicados online no dia 10 de junho deste ano na prestigiada revista Advanced Functional Materials. O artigo agregou as competências em síntese de DMSO-melanina do professor Graeff, os recursos humanos e materiais para produção e caracterização de dispositivos eletrônicos a base de melanina do grupo da professora Santato e contribuições de outros grupos do Canadá e da Itália.

Dendritos
Dispositivos bioeletrônicos a base de filmes de eumelanina precisam, a princípio, de eletrodos para gerar uma corrente elétrica que flua através da eumelanina. Pensando nisso, os autores do artigo construíram um sistema composto por um substrato de dióxido de silício (SiO2) texturizado com partículas de ouro (os eletrodos) e, entre duas partículas do metal, depositaram o filme de eumelanina. Num contexto de 90% de umidade do ar e temperatura ambiente, aplicaram uma tensão de 1 volt, gerando um eletrodo positivo e outro negativo nas partículas de ouro e um fluxo de corrente elétrica entre elas.

Com o auxílio de um microscópio de força atômica, o experimento permitiu a observação de uma paulatina formação de nanoestruturas sobre o filme. Inicialmente, essas nanoestruturas surgiram próximas ao eletrodo positivo em forma de nanoagregados, compostos basicamente por ouro e por algo de eumelanina. Ao aplicar tensão por mais alguns minutos, novos nanoagregados foram surgindo e se aproximando do eletrodo negativo, até chegar a ele. Nesse momento, começou a nucleação dos nanoagregados, a qual gerou estruturas em forma de dendritos (as ramificações dos neurônios) com alto conteúdo de ouro, surgidas a partir da região de contato com o eletrodo negativo. Enquanto a tensão continuou a ser aplicada, os dendritos continuaram a se formar, chegando a unir o eletrodo negativo ao positivo por meio de suas ramificações.

Além de terem formato parecido, as nanoestruturas dendríticas e os dendritos neuronais se assemelham no papel que desempenham, o de transmitir impulsos elétricos. De fato, os dendritos crescidos no filme de eumelanina demonstraram ser altamente condutores.

Esta imagem de microscopia de força atômica mostra o filme de DMSO-eumelanina hidratado, de 30 nm de espessura, após receber tensão de 1 V durante 3 horas:

A imagem permite ver que os nanoagregados de ouro e eumelanina se formam na região próxima ao eletrodo positivo, avançam pelo filme e se depositam nas proximidades do eletrodo negativo, levando, finalmente, à formação dos dendritos.

Processo Seletivo da Pós-graduação em Física e Química de Materiais da UFSJ (MG)

Já estão abertas as inscrições para o processo de seleção dos cursos de Mestrado e Doutorado em Física e Química de Materiais da Universidade Federal de São João del Rei (UFSJ).

Interessados devem comparecer, até o dia 2 de agosto, das 9h às 11h e das 14h às 17h, na Secretaria do Programa FQMat, Sala 2.19, Bloco A do Departamento de Ciências Naturais (DCNAT), Campus Dom Bosco – São João del-Rei. A taxa de inscrição é de R$ 75.

Confira o edital no link www.ufsj.edu.br/fqmat/processo_seletivo.php.

Mais informações pelo telefone (32) 3379-2535 ou pelo e-mail fqmat@ufsj.edu.br.

Interviews with plenary lecturers of the XII SBPMat Meeting: Mercouri G. Kanatzidis (Northwestern University – USA).

About two-thirds of all used energy is lost as waste heat. Bulk thermoelectrics (materials that can directly convert temperature differences to electric voltage and vice-versa) can improve this current situation by transforming some of the waste heat into useful electricity, but, in most cases their conversion efficiency is not sufficient to allow for commercial use. This efficiency is related to the ability of electrons to traverse the materials as they are excited by heat and to phonon scattering, and it is measured by the so-called ZT values (the higher a material’s ZT, the higher its conversion efficiency).

Efforts have been made to enhance the efficiency of thermoelectric materials, mainly by nanostructuring them. In his plenary talk at the XII SBPMat Meeting, professor Mercouri Kanatzidis (Northwestern University, USA) will present his panoscopic approach to highly efficient thermoelectrics. This approach considers not only the nanostructure of the material but also its mesoscale architecture. Using this strategy, professor Kanatzidis and his collaborators developed the top-performing thermoelectric system at any temperature, a lead telluride (PbTe) – based material. The achievement was published in the journal Nature in September 2012 (doi:10.1038/nature11439). The speaker will also address in his talk the substitution of tellurium by sulfur or selenium in thermoelectric materials for cost reduction.

Professor Kanatzidis obtained his BSc from Aristotle University (Greece) and his PhD in chemistry from the University of Iowa. He was a University Distinguished Professor of Chemistry at the Michigan State University before moving to the Northwestern University, where he heads a research group focused in solid-state inorganic chemistry. Mercouri is also the editor-in-chief of the Journal of Solid State Chemistry and Senior Scientist at the Materials Science Division of the Argonne National Laboratory.

See below our interview with the lecturer.

SBPMat: – Could you exemplify some possible concrete applications of high-performance thermoelectric materials in daily life? In your opinion, how far is the real use of thermoelectric materials from the state-of-the-art?

Mercouri Kanatzidis (M.K.):  – Thermoelectric materials can be applied to internal combustion engines to help harvest exhaust heat and generate electricity that can be applied to the vehicle’s electrically driven devices. This will raise the overall efficiency of the vehicle. There is a staggering amount of energy in exhaust heat of a fossil fuel powered engine. Major auto companies in the US, Germany and Japan are actively developing this technology. Depending on the price of oil, government regulations and cost of the technology the implementation of thermoelectric materials in autos, trucks, etc may take anywhere from a couple of years to decades.

SBPMat: – Which are the thermoelectrics´ next challenges for materials science and engineering?

M.K.: – The current state of performance of thermoelectric materials is adequate for commercial applications. The next challenges lie in the fabrication of actually thermoelectric modules and devices that will pass the necessary testing before final application. Challenges such as long term stability, low cost assembly and fatigue testing need to be addressed.

SBPMat: – Can you share with us, very briefly, the story of the genesis of your panoscopic approach to highly efficient thermoelectric materials?

M.K.:  – About ten years ago we had a novel material composition which had two unlikely characteristics. It had a very high electrical conductivity and thermoelectric power combined with surprisingly low thermal conductivity. The thermal conductivity was lower than theory could explain. This material was first of its kind (referred to as LAST for lead, antimony, silver, tellurium) at that time to display a breakthrough ZT of 1.6, nearly double of the then state of the art. Because of this we delved deeply onto its “guts” using transmission electron microscopy in collaboration with Professors Polychroniadis and Frangis of the University of Thessaloniki in Greece. A few months after they received the samples they reported to us on their findings with a somewhat disappointing note saying that the materials were very complex and inhomogeneous on the nanoscale, therefore impure. In discussions I detected reluctance to deal with the material again. They did. In my lab however we immediately recognized that this very inhomogeneity and the nanoscale precipitates it contained was the root cause of the surprisingly very low thermal conductivity and the very high ZT. This was consistent with theoretical predictions emerging at the time that nanoscale precipitation in a matrix can result in great reduction in thermal conductivity. So we got very excited. We had discovered nanostructuring in thermoelectrics. After our paper appeared in Science in 2004, the thinking of the thermoelectrics community quickly shifted from pursuing single phase materials to focusing on more complex two-phase nanostructured materials. Now the great majority of activity in the community is in nanostructured materials.

The new paradigm led to additional breakthroughs such as how to design and synthesize nanostructured materials, and to higher ZT as well. The panoscopic approach was realized when we were challenged to create two-phase materials that did not degrade electronic transport through them. While matrix of a thermoelectric material with a small amount of a second phase in it can achieve unprecedented levels of low thermal conductivity, it nevertheless is an “impure system” and electrons transported through such a medium know this. Thus, in most cases the second phase degrades the electrical properties and higher ZTs are not realized.

State of the art thermoelectric: (a) A mesoscaled granular composite of broad range of grain sizes to scatter long mean free path phonons. (b) Wwithin a single grain a ubiquitous nanostructuring is in place of a second phase that scatters short and intermediate mean free path phonons. The (a)/(b) combination results in a very low levels of thermal conductivity.

My group members Kanishka Biswas and Lidong Zhao and our collaborators Ctirad Uher and Vinayak Dravid noticed that when SrTe was added to p-type PbTe in as much as 2-4% concentration the hole carriers were behaving as if no SrTe was there. The explanation to this puzzle came from the recognition which was backed by theoretical calculations that the conduction bands in PbTe and SrTe were similar in energy and the holes as a result could traverse the SrTe nanoparticles with no scattering. This led to the concept to band alignment between matrix and second phase. The PbTe-SrTe material with its nanostructuring and band alignment was another material with ZT~1.7. As we realized that different ZT improving mechanisms could be integrated in a single system without the effect of one interfering with those of the other, we extended our approach to trying to integrate all possible mechanisms. We managed to properly introduce electronic band engineering for thermoelectric power enhancement and mesoscale engineering for further reduction on the thermal conductivity to reach the point we now are a record breaking ZT of 2.2. This is very exciting and bodes well for further breakthroughs in the near future.

SBPMat: – Feel free to leave any other comments about your plenary lecture for our readers.

M.K.: – My lecture will be aimed at reaching the broad but scientifically informed audience at the meeting to outline the current state and thinking in the field of thermoelectrics.

See the abstract of Mercouri Kanatzidis plenary lecture “Electrical power from heat: All-scale hierarchical thermoelectrics with and without earth-abundant materials”.

See Professor Kanatzidis biographical sketch.

Processo seletivo na USP para contratação de docente por prazo determinado, em Física da Matéria Condensada por prazo

Estão abertas, de 15 a 24 de julho de 2013, as inscrições ao Processo Seletivo para a contratação de 1 (um) docente, por prazo determinado, como Professor Contratado III (doutor), em Regime de Turno Parcial, em jornada de 12 (doze) horas semanais de trabalho, no Departamento de Física dos Materiais e Mecânica do Instituto de Física da Universidade de São Paulo, na seguinte área de conhecimento: Física da Matéria Condensada. A contratação vigorará até 31 de dezembro de 2013. O salário é de R$ 1.592,11.

O formulário de inscrição e o edital estão disponíveis no site http://web.if.usp.br/ataac/view/concurso. (Edital IF-53/13)

Informações adicionais poderão ser obtidas na Assistência Acadêmica do IFUSP. Telefones 3091-6020 / 3091-7000.

Minientrevistas com palestrantes do XII Encontro da SBPMat: Carlos Paz de Araujo (UCCS – EUA).

O professor Carlos Paz de Araujo (UCCS - EUA).O pesquisador, inventor, professor e empresário Carlos Paz de Araujo nasceu no Brasil, na cidade de Natal (RN). Realizou seus estudos superiores em Engenharia Elétrica na Universidade de Notre Dame, nos Estados Unidos. Ao concluir seu doutorado em 1982, também na Universidade de Notre Dame, iniciou sua carreira de professor na Universidade de Colorado – Colorado Springs (UCCS), onde permanece até hoje. Em 1984 foi um dos fundadores da empresa Ramtron – atualmente líder em semicondutores ferroelétricos para diversas aplicações. Em 1986 cofundou a empresa Symetrix Corporation, dedicada à pesquisa em materiais avançados e processos para a indústria de semicondutores. Hoje, Paz de Araujo é chairman executivo da companhia. O palestrante é detentor de mais de 500 patentes concedidas nos Estados Unidos e outros países, sendo cerca de 200 delas sobre materiais para FERAM (ferroelectric random access memory). Paz de Araujo participou de 25 projetos de licenciamento e colaboração com entidades da indústria e do governo, como, por exemplo, Panasonic, Delphi, Harris, Hughes Aircraft, Siemens, Sony, Epson, Ramtron Corporation, STMicroelectronics, IMEC, Micron, Raytheon, NASA e Hynix. Em 2006 foi distinguido com o prêmio Daniel E. Noble da IEEE, por meio do qual a maior associação profissional do mundo, a IEEE, destaca contribuições notáveis em tecnologias emergentes. Paz de Araujo foi selecionado por suas contribuições fundamentais à área de memórias FERAM e à sua comercialização. O seu constante trabalho de desenvolvimento de tecnologias e transferência ao mercado resultou em bilhões de dispositivos comercializados em diversos países e utilizados em telefones celulares, leitores de DVD, computadores e cartões inteligentes, entre outros produtos.

No XII Encontro da SBPMat, Carlos Paz de Araujo proferirá uma palestra plenária na qual revisará o estado da arte em memórias não voláteis – memórias que conservam a informação armazenada mesmo estando desligadas da fonte de energia, como, por exemplo, as ROM, FLASH e as próprias FERAM. Memórias de tipo FERAM têm significativas vantagens com relação aos outros tipos de memórias não voláteis no que diz respeito a sua alta durabilidade, capacidade de serem regravadas, baixo consumo de energia e velocidade de gravação, entre outras características. As memórias não voláteis constituem um dos temas mais estudados desde final dos anos 1960 e são atualmente objeto de vigorosa pesquisa e desenvolvimento. O tema ainda apresenta muitos desafios à área de Materiais. Na palestra, Paz de Araujo também comentará oportunidades de pesquisa, desenvolvimento e comercialização desses dispositivos.

Segue uma entrevista com o palestrante.

Boletim da SBPMat (B. SBPMat): – Quais são os principais desafios que as memórias não voláteis apresentam atualmente à área de Materiais?

Carlos Paz de Araujo (C.P.A): – Como se sabe, existem dois tipos de memórias, as voláteis e as não voláteis. As primeiras, como a DRAM e SRAM (dynamic random access memory e static random access memory, repectivamente), dominaram o mercado por muito tempo, mas sempre se sonhou com ter uma memória universal que “não esquecesse” quando a potência é desligada. As memórias não voláteis hoje são dominadas pela FLASH, a qual está no fim da sua capacidade de melhorar.
Mas tanto as voláteis como as não voláteis estão chegando a seu limite de capacidade, velocidade e baixa potência. Então, o futuro está em achar uma boa memória não volátil que tenha os seguintes requisitos: baixo custo por bit; alta velocidade para ler, escrever e apagar; pouco uso de potência elétrica e grande capacidade de memória. Isso sempre foi um sonho, pois todas as memórias não voláteis criadas até hoje vivem pouco tempo – podem ser apagadas e reescritas apenas 100 mil vezes, no máximo – e são muito vagarosas na escrita (na base de 10 microsegundos por bit). Com o tempo, a memória FLASH bateu até a capacidade da DRAM, apesar de seu uso restrito em tempo de vida. Mesmo assim, o laptop que estou usando já não tem disco rígido e sim uma “FLASH drive”.
Atualmente, toda a pesquisa vai na direção das memórias não voláteis, e isso tem muitas implicações em termos de desafios. Primeiro, a cada geração de litografia (espessura de uma linha de metal num circuito integrado), existem problemas que forçam o desenvolvimento de novos materiais e tecnologia de processos físico-químicos. Por exemplo, um microprocessador Pentium feito com litografia de 45 nanometros fica muito mais complexo quando é feito a 22 nanometros. O próprio transistor básico, o MOSFET plano, não existe mais nesse segundo nível e passa a ser o FinFET. E, como tudo depende do transistor, toda a tecnologia muda. Imagine que o comprimento de onda da luz está na faixa de 200 a 400 nanometros… Então, uma linha de um material como o cobre de apenas 10 nanometros de largura é uma coisa muito complexa. Já a 32 nanometros, a memória FLASH tem apenas menos de 50 elétrons para guardar um bit. Dessa maneira é impossível ter boa qualidade, por isso fica difícil depender de uma memória FLASH para guardar informações com muita segurança – e muito menos no nível de 22 nanometros.
Na procura de uma nova memória, chegou a ferroelétrica (FERAM), mas ela não desce além de 90 nanometros porque o tratamento térmico para criar o material ocorre acima de 400° C, que é o limite máximo para tecnologias de 65 nanometros ou menos. Mesmo assim, a nível de microcontroladores embarcados e circuitos rápidos e de baixa potência, a FERAM é hoje a memória mais avançada e tem um mercado enorme.
Mas as duas memórias que concorrem para ganhar o nome de “memória universal” são resistivas, e, assim, não usam um capacitor para guardar a carga ou a informação. A resistiva que guarda a informação por meio de mudança de fase do material de condutor a isolador é chamada RERAM e a que usa um processo magnético de alinhamento de spin é a STTRAM (spin torque transfer RAM).
Eu criei uma nova versão da RERAM que chamo de CERAM (correlated electrons RAM), pois o processo de guardar informação depende da ocupação ou não de um orbital da camada 3d em elementos chamados metais de transição. Assim, elétrons de alta correlação são controlados para abrir ou fechar gaps na sua estrutura eletrônica, e assim serem responsáveis pelo efeito ultrarrápido de memória. Essa memória já é para a geração de 28, 22, 15 e 10 nanometros. Imagine então os desafios, não só de usar novos processos, mas também de compreender e desenhar essa interação em nível subatômico, onde as distâncias agora são de menos de 0,01 nanometro. Tanto a Física como a Ciência de Materiais e a Engenharia de Dispositivos mudam completamente, pois o elétron é agora uma onda, e não uma partícula como nos transistores de tamanhos maiores.

B.SBPMat:- Olhando para sua carreira de pesquisador e de inventor, quais foram suas principais contribuições ao avanço da pesquisa em Materiais? E quais foram os seus desenvolvimentos de maior impacto social?

Aplicação da tecnologia FERAM desenvida por Araujo em cartões inteligentes.

C.P.A.: – Na área de Materiais, eu diria que a chave mestre foi a capacidade de desenvolvermos toda uma tecnologia de materiais com atividades não semicondutoras, isto é, dielétricos e ferroelétricos, de 200 a 5 nanometros, com propriedades úteis para novos dispositivos eletrônicos. Esse foi um avanço muito grande em materiais de origem metalorgânica em líquido e deposição tipo MOCVD (metalorganic chemical vapor deposition). Com isso, nós fizemos microcapacitores em chips que ainda hoje são usados em telefones celulares e aparelhos auditivos.
Além disso, com o desenho de materiais com a estrutura perovskita, nós aperfeiçoamos a memória ferroelétrica (FERAM) para funcionar 1.000 trilhões de vezes em escrever e apagar, com potência de apenas 1,2 volt. Muitos tipos de chips foram criados com isso. No mercado já tem 2 bilhões de unidades. A aplicação mais interessante é o circuito embarcado usado nos cartões de metrô e linha ferroviária japonesa, que é o mais seguro do mundo. Esses cartões são usados como cartão de crédito, transporte, para pagamento em lojas e restaurantes… Em fim, o e-cash do Japão todo usa esse componente. É extraordinário que já faça cinco anos que todos os PCs do Japão trazem a leitora de RFID embutida no teclado do computador para ler esses cartões. Todas as transações na Internet são feitas com esse cartão, com tecnologia originalmente do nosso grupo. O Brasil, infelizmente, ainda não quis essa tecnologia, mas quase todas as impressoras de jato de tinta ou a laser, assim como aparelhos de DVD, Playstation e outros já usam memórias FERAM.
Acho que essas são as coisas mais importantes que fizemos e que afetam a sociedade global.

B.SBPMat: – De acordo com a sua rica experiência em transferir tecnologia ao mercado, quais são os mecanismos mais eficientes para fazê-lo? Como você consegue que suas patentes sejam licenciadas por empresas e sejam aplicadas em tantos produtos?

C.P.A.: – Esta é uma pergunta muito complexa, e que não tem resposta muito simples. Eu diria que, depois de mais de 200 patentes já publicadas nos Estados Unidos e mais de 300 no resto do mundo, eu não tenho uma resposta perfeita que dê para todo mundo. No meu caso, em particular, eu só acredito em pesquisa que resolva um problema fundamental. Assim, depois de achado o problema, eu procuro não reinventar a roda, e procuro, quando necessário, ter “a física” completamente entendida. Trabalho numa relação muito forte entre experimentos e teoria. Depois que o modelo é achado, os experimentos são controlados e parâmetros de qualidade e repetibilidade são estreitados, até se sair do nível de laboratório e entrar na produção em massa. Assim, eu foco no que está sendo procurado (alguma coisa útil) e vejo onde está faltando a ponte entre pesquisa e aplicação. Essa ponte é mais pesquisa e mais teoria, mas seu fim é algo útil. Dessa maneira, mesmo chegando tarde ou não tendo a capacidade monetária de, por exemplo, uma Samsung, fica simples estar cara a cara ou na frente das grandes empresas, pois a gente acha a peça chave e patenteia e, com a patente, a gente barra o uso comercial até a indústria se render e comprar os direitos de nossas patentes. Nós fizemos isso várias vezes. A dificuldade é sempre achar o problema certo. As respostas são mais fáceis do que achar o problema certo.

B.SBPMat: – Fique à vontade para deixar algum outro comentário sobre sua palestra plenária para nossos leitores da comunidade de pesquisa em Materiais.

C.P.A.: – Eu vou tentar colocar a audiência em contato com o que é de maior importância na área de micro ou nanoeletrônica do ponto de vista do engenheiro de estado sólido. Isto significa que, na pesquisa, Materiais, Física e até Química são recursos que precisarão ser integrados para criar novas gerações de tecnologia. A nova eletrônica é criada por engenheiros de estado sólido de dispositivos trabalhando com físicos e cientistas de materiais.
Hoje quase todos os circuitos são compostos de memórias. A memória chega a ser 90% do chip. Nesse contexto, e considerando que hoje todos os dispositivos devem ser móveis e usar baixa potência, o ponto chave para o futuro bem próximo é a memória não volátil.
No momento, com esses novos sistemas de materiais para magnetismo e elétrons altamente correlacionados, o meio de guardar informações não é só o semicondutor. Na realidade, ele é válido só para circuitos lógicos, pois na estrutura de nenhum semicondutor existe efeito de memória.
Assim, existe sempre a chance de um país como o Brasil ficar na linha de frente em microeletrônica se ele souber que o semicondutor é uma commodity, e que o valor agregado está no final do processo, em acoplar a memória. Não vale a pena fazer uma fábrica de 3 bilhões de dólares quando se pode comprar uma lâmina com todos os transistores por 600 dólares e lhe agregar valor numa fábrica de 30 milhões de dólares.

Veja o resumo da palestra plenária do professor Carlos Paz de Araujo.

Veja o miniCV do palestrante.

Simpósios do XII Encontro da SBPMat: mais de 1.800 trabalhos submetidos e cerca de 1.500 já aprovados.

Entre os dias 24 e 30 de junho está sendo finalizado o envio das notificações de aceite e correção dos trabalhos submetidos pela comunidade de pesquisa em Materiais aos simpósios do XII Encontro da SBPMat.

De acordo com os dados processados até o momento (27/06/13), foram 1.874 trabalhos recebidos para avaliação, dos quais 1.496 já foram aceitos. Cerca de 200 trabalhos estão sendo modificados por seus autores, por recomendação dos pareceristas, para serem novamente avaliados. O prazo para modificação dos trabalhos corrigidos acaba neste domingo, dia 30 de junho.

Alguns simpósios contaram com mais de 150 trabalhos submetidos: o C, sobre síntese e propriedades de materiais nanométricos (356 trabalhos); o D, sobre materiais e dispositivos para energia renovável, sustentabilidade e proteção ambiental (203 submissões), o P, dedicado à apresentação de painéis de temas não contemplados nos outros simpósios (187 trabalhos) e o H, sobre biomateriais e nanomateriais para biossistemas (181 trabalhos).

Os trabalhos aprovados para os simpósios J, K e M (Damage Inspection – Techniques and Applications, X-ray Tomography and Radiography Imaging e Electron Microscopy: from micro to nanoanalysis) serão apresentados no evento dentro de um único simpósio.

Vale lembrar que, no encontro deste ano, serão premiados os melhores painéis de cada simpósio apresentados por estudantes de pós-graduação ou graduação, considerando a qualidade dos resumos, contribuição científica, qualidade dos painéis e apresentação.

Minientrevistas com palestrantes do XII Encontro da SBPMat: Douglas Soares Galvão (Unicamp).

O professor Douglas Soares Galvão (divulgação).

Douglas Soares Galvão é mestre e doutor pelo Instituto de Física Gleb Wataghin da Unicamp, aonde ingressou como professor em 1990. Na graduação, formou-se, também em Física, pela Universidade Federal do Rio Grande do Norte (UFRN). Realizou trabalhos de pós-doutoramento nos Estados Unidos, na empresa de pesquisa e desenvolvimento em telecomunicações Bell Communications Research e na Universidade de Princeton. É autor de mais de 160 artigos publicados em periódicos indexados, totalizando aproximadamente 3.800 citações.

Na palestra plenária do XII Encontro da SBPMat, o pesquisador falará sobre desafios e perspectivas da modelagem de nanomateriais num contexto de problemas e demandas surgidas da nanotecnologia. Em particular, Galvão abordará propriedades mecânicas incomuns de materiais a base de carbono na escala nano, o aproveitamento dessas propriedades para criar macromateriais funcionais e a formação espontânea de estruturas metálicas complexas que só podem existir na nanoescala – assuntos tratados em artigos científicos de sua autoria que foram publicados em revistas científicas de alto impacto como a Science e a Nature Nanotechnology.

Segue uma minientrevista com o palestrante.

Boletim da SBPMat (B. SBPMat): – Qual é a importância da modelagem na nanociência e na nanotecnologia? Quais papéis essa modelagem está cumprindo atualmente?

Nanofios de ouro e prata.

Douglas Soares Galvão (D.S.G.): – Com os avanços recentes na parte de hardware e software e a redução dos preços dos computadores, a modelagem se tornou hoje uma ferramenta importante na área de Materiais, em particular para nanomateriais. É possível hoje construir modelos confiáveis que permitem evitar testes desnecessários nos laboratórios, consequentemente reduzindo os custos e o tempo para produzir novos produtos e/ou materiais.

B. SBPMat: – Comente particularidades da interação do pesquisador experimental e o teórico na área de nanomateriais. Há muitos pesquisadores no Brasil e no mundo trabalhando com modelagem de nanomateriais?

D.S.G.: – É de fundamental importância. Infelizmente no Brasil ainda não existe uma tradição consolidada dessas interações, principalmente quando envolve parceiros industriais. O número de grupos no Brasil ainda é pequeno, mas está crescendo rapidamente. No mundo é uma área em forte expansão.

B.SBPMat: – Comente sobre a evolução das ferramentas computacionais para se adaptarem à escala nano.

D.S.G.: A escala nano coloca novos desafios para a modelagem. Nós temos muito boas ferramentas para a escala atômica e para as escalas meso e macroscópica. Na escala nano algumas dessas ferramentas não funcionam bem; o desafio agora é construir e/ou adaptar essas ferramentas para a escala nano. Algumas vezes isso não é fácil.

B.SBPMat: – Na sua avaliação, quais são os principais desafios na área de modelagem de nanomateriais?

D.S.G.: – O grande desafio é construir modelos que permitam projetar o uso de nanomateriais para aplicações multifuncionais em macroescala. Um dos problemas em que estamos muito interessados é o de construir modelos para explicar como fibras de nanotubos de carbono funcionam como músculos artificiais.

Veja o resumo da palestra plenária do professor Douglas Soares Galvão.

Serpentinas de carbono (capa da Physical Review Letters).

 

Osciladores de nanotubos de carbono (capa da Physical Review Letters.

Concurso para professor da UFVJM (MG).

Estão abertas até o dia 11 de julho as inscrições para o concurso da Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), campus Diamantina, na área de Processos de Fabricação e Planejamento de Indústrias Mecânicas. São requisitos para os candidatos possuir graduação e mestrado em Engenharias, inclusive de Materiais.

Mais informações no Edital 120/2013, em:

http://www.ufvjm.edu.br/rh/index.php?option=com_content&view=article&id=1587&Itemid=37&fb_source=message

Prêmio para trabalho da UNIFESP e UFSCAR sobre o efeito de material bioativo na consolidação de defeitos ósseos.

O trabalho intitulado “Terapia laser de baixa intensidade e scaffolds de Biosilicato® no reparo ósseo em ratos”, desenvolvido pelo pós-doutorando Paulo Sérgio Bossini sob a supervisão da professora Ana Cláudia Muniz Rennó, do Departamento de Biociências da Universidade Federal de São Paulo (UNIFESP), campus Baixada Santista, foi premiado pela North American Association for Light Therapy (NAALT) em um congresso realizado em Palm Beach Gardens, na Flórida, no início deste ano.

O trabalho está sendo realizado em parceria com os professores Edgar Dutra Zanotto, Oscar Peitl e Ana C. M. Rodrigues e o bolsista de doutorado Murilo Crovacce , do Departamento de Engenharia de Materiais (DEMa), pesquisadores do Laboratório de Materiais Vítreos (LaMaV), e o professor Nivaldo Antonio Parizotto, do Departamento de Fisioterapia, todos da Universidade Federal de São Carlos (UFSCar).

O objetivo do estudo premiado foi avaliar os efeitos do Biosilicato®, material bioativo desenvolvido no LaMaV DEMa-UFSCar, na consolidação de defeitos ósseos induzidos em tíbias de ratos.

Todos os integrantes da equipe são pesquisadores principais ou colaboradores do CeRTEV (Center for Research, Technology and Education in Vitreous Materials) – um dos Centros de Pesquisa, Inovação e Difusão (Cepids) aprovados neste ano pela Fapesp.