Sócio fundador da SBPMat recebe Medalha Carneiro Felippe.

Angelo Fernando Padilha, professor titular da Escola Politécnica da USP (EPUSP), foi homenageado pela Comissão Nacional de Energia Nuclear (CNEN) com a Medalha Carneiro Felippe, destinada a distinguir personalidades que se destacaram no desenvolvimento de aplicações pacíficas da energia nuclear. A outorga foi realizada no dia 10 de outubro, durante a cerimônia do 62º Aniversário da CNEN, na sede da entidade, localizada no Rio de Janeiro. Padilha foi presidente da CNEN de 2011 a 2015.

No ano 2000, Padilha participou da comissão que fundou a SBPMat.

Presidente da CNEN, os três diretores da CNEN e o ex-presidente Angelo Fernando Padilha (Foto: Douglas Troufa /CNEN).
Presidente da CNEN, os três diretores da CNEN e, com a medalha na mão, o ex-presidente Angelo Fernando Padilha (Foto: Douglas Troufa /CNEN).

Gente da comunidade: entrevista com o pesquisador Angelo Fernando Padilha.

Prof. Angelo Fernando Padilha (USP).
Prof. Angelo Fernando Padilha (USP).

Angelo Fernando Padilha nasceu no dia 30 de agosto de 1951 em Novo Horizonte, uma pequena cidade do estado de São Paulo. Cursou o ensino primário e os primeiros anos do secundário (o então chamado “ginásio”) na cidade natal e, aos 16 anos, mudou-se para São Carlos, a uns 170 km de Novo Horizonte, para fazer o “curso científico”, que abrangia os últimos três anos do ensino secundário e oferecia ao aluno uma formação com ênfase maior do que no “curso clássico” nas disciplinas de Matemática, Física, Química e Biologia.

Em 1970, ingressou no curso de graduação em Engenharia de Materiais da Universidade Federal de São Carlos (UFSCar), que acabara de ser criado. Formou-se em 1974. No ano seguinte, realizou uma especialização em Ciência e Tecnologia Nucleares da Comissão Nacional de Energia Nuclear (CNEN), oferecida no Instituto de Energia Atômica (IEA), atual Instituto de Pesquisas Energéticas e Nucleares (IPEN), na cidade de São Paulo. No mesmo ano, ele começou a trabalhar no IEA com pesquisa e desenvolvimento de materiais para reatores nucleares. Também em 1975, Padilha iniciou o mestrado em Engenharia Metalúrgica da Universidade de São Paulo (USP), o qual concluiu em 1977 com a aprovação da sua dissertação sobre recuperação e recristalização em uma liga de alumínio.

Em 1978, ainda vinculado ao IEA, iniciou o doutorado em Engenharia Mecânica na Universität Karlsruhe, atual Karlsruher Institut für Technologie (KIT), Alemanha, obtendo o diploma de Doktor-Ingenieur em 1981 após a defesa de sua tese sobre precipitação em um aço inoxidável, utilizado no elemento combustível do reator rápido regenerador (fast breeder reactor) alemão SNR300. No ano seguinte, no Max Planck Institut für Metallforschung, na cidade alemã de Stuttgart, Padilha fez uma especialização de três meses em Ciência dos Materiais na qual estudou diagramas de fases envolvendo metais refratários.

De 1984 a 1986, além de desenvolver atividades de pesquisa no IPEN, atuou como docente no curso de graduação em Engenharia Metalúrgica da Universidade Presbiteriana Mackenzie.

De 1987 a 1988, realizou um pós-doutorado na Ruhr Universität Bochum (RUB), na Alemanha.

Em 1988, depois de passar 13 anos trabalhando no IPEN, Angelo Padilha tornou-se docente do Departamento de Engenharia Metalúrgica e de Materiais da Escola Politécnica da USP (EPUSP). Na Politécnica fez a livre-docência em 1989, e, em 1993, foi aprovado em concurso de professor titular.

No ano 1993, voltou à RUB, na Alemanha, para realizar uma especialização em aços inoxidáveis dúplex. Em 1998, realizou um segundo pós-doutorado, na University of Wales Swansea, hoje Swansea University, no Reino Unido.

De julho de 2011 a novembro de 2015, foi cedido pela USP para exercer cargos diretivos em entidades ligadas ao Ministério de Ciência, Tecnologia e Inovação (MCTI), atualmente de Ciência, Tecnologia, Inovações e Comunicações (MCTIC). Nesse período, foi presidente e presidente da comissão deliberativa da CNEN, presidente da Rede Nacional de Fusão (criada em 2006 para coordenar e ampliar a pesquisa em fusão nuclear no Brasil) e presidente do conselho de administração de duas empresas do segmento nuclear vinculadas ao MCTI, a Nuclebrás Equipamentos Pesados (NUCLEP) e a Indústrias Nucleares do Brasil (INB). Além disso, foi membro do comitê de coordenação dos fundos setoriais e, de 2012 a 2014, membro do conselho técnico-científico do Centro Brasileiro de Pesquisas Físicas (CBPF).

É autor de mais de 100 artigos publicados em periódicos científicos indexados e cerca de vinte livros e capítulos de livros, como o conhecido livro didático “Materiais de Engenharia”. Sua produção acadêmica conta com, aproximadamente, 2.800 citações, segundo o Google Scholar. Já orientou 25 dissertações de mestrado e 24 teses de doutorado.

Ao longo da sua trajetória profissional, Padilha recebeu uma série de distinções da Presidência da República, Marinha do Brasil e Associação Brasileira de Metalurgia e Materiais (ABM), entre outras entidades.

Atualmente, Angelo Padilha é professor titular da EPUSP, onde ministra disciplinas na graduação e pós-graduação e desenvolve pesquisas sobre metais. Ele é membro titular da Academia de Ciências do Estado de São Paulo desde 2012 e bolsista de produtividade do CNPq de nível sênior (nível outorgado a cientistas ativos na pesquisa e formação de recursos humanos que tenham sido bolsistas de nível 1 A ou B por, no mínimo, 15 anos). Seu índice h é de 27, de acordo com o Google Scholar.

Segue uma entrevista com o pesquisador.

Boletim da SBPMat: – Conte-nos o que o levou a estudar Engenharia de Materiais na primeira turma de Engenharia de Materiais da América Latina (UFSCar, 1970-1974) e a se tornar um pesquisador da área.

Angelo F. Padilha: – Durante o curso ginasial, eu já havia decidido ser engenheiro, mas não tinha clareza sobre que modalidade de Engenharia escolheria. Concluído o ginásio em minha cidade natal (Novo Horizonte, SP), fui para São Carlos, fazer o curso científico. São Carlos foi essencial para a minha formação. A cidade oferecia tudo que um garoto de 16 anos e distante dos pais poderia desejar! No meio estudantil, fervilhavam cultura, debate e rebeldia. Estou falando do início de 1967. O período pior do regime militar iniciado em 1964 ainda estava por vir.

Fui alertado da criação de um curso de Engenharia de Materiais em São Carlos por uma tia, que havia lido um artigo ou uma entrevista do professor Sérgio Mascarenhas no jornal da cidade e ficara impressionada. Foi a primeira vez que ouvi falar desta modalidade de Engenharia. O exame de ingresso foi instigante, muito diferente dos vestibulares da época. Fui muito bem classificado e fiz matrícula. A primeira turma de Engenharia de Materiais da UFSCar era composta de 50 alunos: 2 garotas e 48 rapazes. A universidade foi instalada em uma fazenda de mais de 200 alqueires, pouco distante da cidade. As instalações iniciais foram adaptadas. O ambiente era calmo e acolhedor. Hoje, posso avaliar melhor do que podia à época e estou convencido de que o curso como um todo foi excelente. Ofereceu-nos uma base científica consistente e moderna. A proporção de aulas experimentais foi a mais elevada que tenho conhecimento, para um curso de engenharia. Graças à base científica e tecnológica adquirida nos cinco anos de UFSCar, pude aproveitar bem o mestrado em Engenharia Metalúrgica na Escola Politécnica e depois o doutorado na faculdade de Engenharia Mecânica da Universidade de Karlsruhe. Grande parte da nossa turma fez pós-graduação, em universidades de primeira linha do Brasil e do exterior.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à área de Materiais? Descreva brevemente as contribuições de mais impacto ou mais destacadas considerando todos os aspectos da atividade científica.

Angelo F. Padilha: – A área de Materiais fez muito mais por mim do que eu fiz por ela. Nunca trabalhei na fronteira do conhecimento, tampouco procurei nichos científicos. Procuro utilizar conceitos científicos modernos e técnicas experimentais avançadas para estudar, entender e aperfeiçoar materiais tradicionais e amplamente utilizados, tais como aços e ligas de alumínio. Por exemplo, meu artigo (em coautoria com Paulo Rangel Rios) mais lido e citado é um trabalho de revisão, publicado em 2002 e aborda a microestrutura de aços inoxidáveis austeníticos; um material descoberto em 1911 e ainda bastante utilizado.

Encaro como uma obrigação agradável escrever livros técnicos em português. Publiquei meu primeiro livro, sobre técnicas de análise microestrutural, em coautoria com Francisco Ambrózio Filho, em 1985. Sinto-me gratificado ao ver meus livros espalhados por várias bibliotecas do país. Embora sejam todos muito simples, são lidos e até citados.

Gosto muito da atividade docente, tive muitas centenas, talvez milhares, de alunos e dezenas de orientados. Até hoje sinto prazer em orientar estudantes e em dar aulas de Ciência dos Materiais no primeiro ano da Poli e de disciplinas mais específicas nos anos finais da graduação e na pós-graduação. Considero a interação com a indústria essencial para um professor e pesquisador da área de Engenharia. Mais da metade dos trabalhos que orientei foram em cooperação com a indústria.

Boletim da SBPMat: – Você tem uma significativa trajetória de pesquisa e gestão em instituições do segmento da energia nuclear. Quais são, na sua visão, os desafios da pesquisa em Materiais para área nuclear?

Angelo F. Padilha: – Meu primeiro emprego como engenheiro foi na área nuclear, na Coordenadoria de Ciência e Tecnologia de Materiais (CCTM) do Instituto de Energia Atômica (IEA), hoje IPEN-CNEN. O grupo foi criado e era liderado pelo Professor Shigueo Watanabe. Era composto de cerca de 50 pessoas, quase todos físicos do estado sólido. A convivência com eles foi para mim uma escola importante.

As aplicações da tecnologia nuclear contemplam não apenas a geração de energia núcleo-elétrica, mas também numerosas aplicações na indústria, na medicina, na agricultura, além da propulsão nuclear. Por exemplo, o número de pessoas que já se beneficiaram dos radio-fármacos produzidos no IPEN é comparável ao número de pessoas que se beneficiam da energia elétrica gerada pelos reatores instalados em Angra dos Reis.

Quase todos os materiais utilizados na construção de um reator nuclear, ou de um submarino de propulsão nuclear, ou até mesmo de uma centrífuga para enriquecimento isotópico de urânio são materiais que não foram desenvolvidos para estas aplicações. Na década de 1950, quando os norte-americanos construíram o primeiro reator nuclear para geração de energia núcleo-elétrica e o primeiro submarino de propulsão nuclear, em termos de materiais, eles precisaram desenvolver principalmente a tecnologia do urânio e do zircônio. Centenas de outros materiais indispensáveis para as aplicações mencionadas já eram disponíveis ou precisaram tão somente de alguma adaptação.

Por outro lado, as tecnologias nucleares apresentam algumas características especiais: i) são dominadas por poucos países; ii) muitas delas não podem ser adquiridas no mercado; iii) existe pouca cooperação internacional, especialmente nas tecnologias nucleares sensíveis; iv) são tecnologias complexas e exigem uma grande quantidade de recursos humanos e econômicos para serem desenvolvidas; v) são em geral tecnologias maduras, dominadas e aperfeiçoadas ao longo de décadas. Um país ao dominar uma tecnologia madura, pode rapidamente transformá-la em vantagem geopolítica ou econômica.

O Brasil construiu ao longo dos últimos sessenta anos um programa nuclear que pode ser classificado como um dos dez ou doze mais importantes do planeta. Além disto, temos grandes reservas de urânio. Do ponto de vista de materiais, ainda somos dependentes de importações, que frequentemente encontram grandes obstáculos. Acredito que os maiores desafios e oportunidades na área de materiais para aplicações nucleares estão na produção nacional, nas adaptações e nos aperfeiçoamentos. É mais provável que as inovações futuras sejam do tipo incremental do que radical.

Boletim da SBPMat: – Deixe uma mensagem para os leitores que estão iniciando suas carreiras científicas.

Angelo F. Padilha: – Procure obter uma formação científica consistente, o resto será consequência. Um pesquisador com conhecimentos profundos em disciplinas fundamentais, tais como termodinâmica, cristalografia e transformação de fases será sempre bem-vindo em qualquer grupo de pesquisa. Não desanime ao enfrentar a nossa mastodôntica e caolha burocracia.

Boletim da SBPMat: – Seu nome consta na “comissão interdisciplinar de materiais”, criada no final do ano 2000 para viabilizar a fundação da SBPMat. Se possível, compartilhe alguma lembrança ou comentário a respeito da sua participação na criação da sociedade.

Angelo F. Padilha: – Acredito que a SBPMat foi criada no momento certo e com o perfil adequado. Em minha opinião, esta é a principal razão do seu perdurável sucesso. Todos da “Comissão Interdisciplinar de Materiais” contribuíram de alguma forma; uns mais e outros menos. Eu estou certamente entre os que menos contribuíram. Acho que a capacidade de articulação agregadora do Guillermo Solórzano e a liderança científica do Edgar Zanotto foram decisivas. Tenho orgulho de ter participado da criação da SBPMat.

Reator Multipropósito Brasileiro: um laboratório nacional de nêutrons para a comunidade de pesquisa em Materiais.

Prédio do reator e laboratórios.

No final de setembro de 2015, no contexto do XIV Encontro da SBPMat, cerca de 40 pesquisadores da área de Materiais participavam de um simpósio sobre o Reator Multipropósito Brasileiro (RMB), projeto que está sendo desenvolvido pela Comissão Nacional de Energia Nuclear (CNEN) e que, quando inaugurado em Iperó (SP), agregará uma importante ferramenta de pesquisa às atuais facilidades de que o Brasil dispõe.

De fato, o RMB fornecerá feixes de nêutrons que, na interação com amostras e com a mediação de diversas técnicas experimentais, poderão fornecer informações únicas sobre a estrutura dos materiais. Para isso, o projeto RMB prevê a construção de uma série de laboratórios com equipamentos de difratometria (de alta resolução, de alta intensidade, Laue, de tensão residual); espalhamento de baixo ângulo; análise de gamas prontos; espectrometria de três eixos e neutrongrafia, entre outras técnicas. Essa infraestrutura de pesquisa deve constituir um laboratório aberto à comunidade científica e funcionando dia e noite, mais de 300 dias por ano: o Laboratório Nacional de Nêutrons.

Como seu nome indica, o RMB atenderá vários objetivos. Além de fornecer feixes de nêutrons para pesquisa científica, será usado em testes de irradiação de materiais e combustíveis utilizados em usinas nucleares geradoras de eletricidade e submarinos propulsados por reatores nucleares, por exemplo. O reator também terá a importante missão de produzir radioisótopos e fontes radioativas para a saúde, indústria, agricultura e meio ambiente, substituindo importações e até mesmo gerando exportações.

Entrevista com o coordenador técnico

Para explicar com um pouco mais de detalhe o projeto RMB, e, em particular, suas aplicações na Ciência e Tecnologia de Materiais, entrevistamos José Augusto Perrotta, coordenador técnico do empreendimento RMB. Mestre em Engenharia Nuclear pelo Instituto Militar de Engenharia (IME) e doutor em Tecnologia Nuclear pela Universidade de São Paulo (USP), Perrotta trabalha como tecnologista na CNEN desde 1983.

Boletim da SBPMat: – Comente brevemente todas as possibilidades que o futuro RMB oferecerá à comunidade de Ciência e Tecnologia de Materiais. De que maneira os feixes de nêutrons poderão ser aproveitados para pesquisa e desenvolvimento nessa área?

Núcleo de produção e pesquisa.

José Perrotta: – O RMB é um empreendimento que possui como parte central um reator nuclear de pesquisa multipropósito e vários laboratórios para realizar as pesquisas, serviços e produtos propostos.

O reator foi concebido com um alto fluxo de nêutrons para:

  1. Produzir radioisótopos na qualidade e quantidade necessárias às aplicações brasileiras;
  2. Ter capacidade de irradiar e testar combustíveis nucleares utilizados nas várias aplicações e condições de irradiação do programa nuclear brasileiro;
  3. Ter capacidade de irradiar materiais com nêutrons e verificar seu desempenho sob irradiação;
  4. Ter possibilidade de irradiar amostras para realizar análise química por ativação de nêutrons;
  5. Extrair feixes de nêutrons para pesquisas de estrutura de materiais em várias áreas de aplicação.

Com relação ao item (ii), o reator é preparado para receber amostras de combustíveis e circuitos de irradiação que simulem as condições de reatores PWR, ou seja, testar combustíveis dos reatores de potência utilizados ou desenvolvidos no país.

Com relação ao item (iii), dentro do núcleo do reator existem duas posições com alto fluxo de nêutrons para irradiação de materiais. Nessas posições podem ser colocadas amostras em cápsulas com ambiente (temperatura e meio da inserção da amostra) controlado. Nessas posições podem ser testadas amostras de materiais estruturais e amostras de componentes de reatores de potência utilizados no país.

O reator e infraestrura do reator (piscinas, células quentes e blindagens de transporte) são projetados para atendimento dos dois itens anteriores (ii e iii).

Um Laboratório de Análise Pós-Irradiação está projetado com células quentes e toda infraestrutura para análises mecânicas, físicas e de microscopia das amostras irradiadas, tanto para as amostras de combustíveis irradiados quanto de materiais estruturais.

Com relação ao item (iv), está projetado um laboratório de radioquímica e análise por ativação. O laboratório é conectado ao reator por tubos pneumáticos que permitem enviar amostras para irradiação no reator e trazê-las de volta ao laboratório para análise. Foram definidas várias posições de irradiação no reator, variando a gama de fluxo de nêutrons em que as irradiações podem ser realizadas. O laboratório possui células quentes para recebimento e manuseio das amostras irradiadas antes de sua destinação aos equipamentos de análise (radioquímica ou espectrometria gama). O laboratório será gerenciado como um laboratório nacional o que permitirá sua utilização pela comunidade científica brasileira.

Com relação ao item (v), o reator está projetado com um tanque refletor de água pesada que, mecanicamente, permite a extração de feixe de nêutrons. Esses nêutrons são térmicos e para obter nêutrons frios está projetado um pequeno tanque com deutério a 19 ºK (fonte fria). Serão extraídos nêutrons térmicos em duas posições, e nêutrons frios em outras duas posições. Cada tubo de extração pode conter até três guias de nêutrons. Essas guias conduzirão o feixe de nêutrons para posições em um saguão de experimentos no prédio do reator, e para um prédio chamado prédio das guias de nêutrons. Nessas guias de nêutrons poderão ser acoplados os equipamentos de base científica e tecnológica para as análises das amostras com o feixe de nêutrons. Existe um tubo de extração adicional de nêutrons térmicos para realizar imagens com feixe de nêutrons (neutrongrafia). O saguão de experimentos no prédio do reator e o prédio de guias formarão o que denominamos “Laboratório Nacional de Nêutrons”.

Boletim da SBPMat: – Haverá estações experimentais para Ciência e Tecnologia de Materiais, análogas às do LNLS? Quais? Estarão abertas a toda a comunidade científica? Operarão constantemente enquanto o reator estiver funcionando?

José Perrotta: – As linhas de nêutrons, como mencionado são cinco: três com nêutrons térmicos e 2 com nêutrons frios. Quatro das linhas podem ter até três guias. Nessas guias serão colocados os equipamentos (ou estações) experimentais.

As seguintes estações podem vir a ser utilizadas no início de operação do Laboratório Nacional de Nêutrons (LNN):

  1. Prédio das Guias de Nêutrons.
  • Para nêutrons térmicos: Difratômetro de Alta Resolução; Difratômetro de Alta Intensidade; Difratômetro Laue; Difratômetro de Tensão Residual
  • Para nêutrons frios: Espalhamento de Baixo Ângulo; Análise de Gamas Prontos
  1. Saguão de Experimentos no Prédio do Reator.
  • Nêutrons Térmicos: Espectrômetro de Três Eixos; Neutrongrafia
A tabela apresenta a potência de outros reatores nucleares de pesquisa do mundo. O RMB terá 30 MW. Dados fornecidos por José Perrotta.

O RMB trará para a comunidade de pesquisa do país um importante laboratório de utilização de feixe de nêutrons. Este laboratório, por suas características técnicas, é complementar ao Laboratório Nacional de Luz Síncrotron (LNLS), que também tem um projeto de grande vulto que é o Sirius. É proposta do empreendimento RMB que o Laboratório de Feixe de Nêutrons seja, a exemplo do LNLS, um laboratório nacional. Isto facilitará o acesso da sociedade científica brasileira à instalação.

O funcionamento das linhas de nêutrons está associado à operação do reator. O reator operará 24 horas por dia, em ciclos de 25 a 28 dias, de forma a atingir uma disponibilidade superior a 80% do tempo anual (acima de 300 dias em operação plena). O LNN poderá operar durante todo esse tempo.

Um ponto importante é que o LNN terá independência operacional em relação à operação do reator, ou seja, a operação do reator oferece o feixe de nêutrons e não interfere na operação do LNN.

Boletim da SBPMat: – Do ponto de vista da Ciência e Tecnologia dos Materiais, quais serão as vantagens do futuro RMB com relação aos demais reatores que atualmente existem no Brasil?

José Perrotta: – O Brasil possui quatro reatores nucleares de pesquisa em operação. O mais antigo, e também o de maior potência (5 MW), é o reator IEA-R1 do Instituto de Pesquisas Energéticas e Nucleares (IPEN) em São Paulo que foi inaugurado em 1957. Outros dois reatores de pesquisa de baixa potência, o reator IPR-R1 do Centro de Desenvolvimento de Tecnologia Nuclear (CDTN) em Belo Horizonte (100 kW) e o reator Argonauta do Instituto de Engenharia Nuclear (IEN) no Rio de Janeiro (500 W), foram construídos na década de 60. Esses três reatores, de projetos norte-americanos, foram construídos dentro dos campi universitários da USP, UFMG, e UFRJ, respectivamente, e originaram os principais institutos de pesquisas nucleares da Comissão Nacional de Energia Nuclear (CNEN), os quais se desenvolveram à proporção do tamanho dos reatores e de suas aplicações. Esses reatores e os institutos da CNEN que cresceram ao seu redor foram fundamentais no desenvolvimento e utilização de tecnologia nuclear que temos hoje no país, e na formação dos recursos humanos associados. O quarto reator nuclear de pesquisa, o reator IPEN/MB-01 localizado no IPEN, é uma instalação do tipo unidade crítica (100 W) e foi construído na década de 80, já com tecnologia nacional, visando o desenvolvimento autônomo da tecnologia para reatores nucleares de potência.

O reator do RMB é de 30 MW e possui concepção e projeto modernos. Os reatores hoje existentes no país não possuem fluxos de nêutrons para garantir operação comercial ou características adequadas para uma pesquisa de alto nível. Além de ser uma instalação mais moderna, o fluxo de nêutrons do RMB é uma ordem de grandeza superior ao do reator IEA-R1 e possui funções que hoje não são atendidas por esse reator. Os outros três reatores são de baixíssimo fluxo de nêutrons.

Boletim da SBPMat: – Você poderia estimar quando ocorreria a inauguração do RMB e seus laboratórios de pesquisa?

José Perrotta: – O empreendimento RMB pode ser executado em um período de 6 a 7 anos. No estágio atual de desenvolvimento isto ocorreria em 2022, caso sejam disponibilizados os recursos integrais para o projeto. É importante destacar que, além da necessidade de recursos financeiros intensivos para sua realização, o empreendimento, por ter instalações nucleares e radiativas, requer licenças ambientais e nucleares para sua construção e operação. Isso implica em tempos adicionais para sua implantação.

Financiadores e parceiros no desenvolvimento do RMB

A execução do projeto do RMB ocorre sob responsabilidade da Comissão Nacional de Energia Nuclear (CNEN). O empreendimento é coordenado pela Diretoria de Pesquisa e Desenvolvimento da CNEN e desenvolvido por meio de seus institutos de pesquisa: Instituto de Pesquisas Energéticas e Nucleares (IPEN), Instituto de Engenharia Nuclear (IEN), Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE) e Instituto de Radioproteção e Dosimetria (IRD).

Ao longo das etapas de desenvolvimento do RMB, a CNEN conta e contará com parcerias e contratação de empresas nacionais e estrangeiras. Alguns dos parceiros que participaram até o momento: a Marinha do Brasil e o governo do Estado de São Paulo, na cessão do terreno onde será localizado o RMB; o Centro de Tecnologia da Marinha em São Paulo (CTMSP), e a Comissão Nacional de Energia Atômica (CNEA) da Argentina que desenvolve o reator nuclear de pesquisa RA-10, similar ao RMB, na Argentina. Empresas contratadas: a empresa argentina INVAP, que projetou o reator de pesquisa OPAL da Austrália, e a empresa brasileira Intertechne desenvolveram o projeto básico de engenharia do empreendimento.

Com custo estimado em US$ 500 milhões, o RMB é patrocinado pelo Governo Federal através do Ministério da Ciência Tecnologia e Inovação (MCTI).