Artigo em destaque. Espalhamento de elétrons e buracos em grafeno: efeito do oxigênio evidenciado.

O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

Ive Silvestre, Evandro A. de Morais, Angelica O. Melo, Leonardo C. Campos, Alem-Mar B. Goncalves, Alisson R. Cadore, Andre S. Ferlauto, Helio Chacham, Mario S. C. Mazzoni, and Rodrigo G. Lacerda. Asymmetric Effect of Oxygen Adsorption on Electron and Hole Mobilities in Bilayer Graphene: Long- and Short-Range Scattering Mechanisms. ACS Nano, 2013, 7 (8), pp 6597–6604. DOI: 10.1021/nn402653b.

Texto de divulgação

Espalhamento de elétrons e buracos em grafeno: efeito do oxigênio evidenciado

Um trabalho sobre propriedades eletrônicas do grafeno totalmente desenvolvido no Brasil com a participação de dez pesquisadores brasileiros rendeu um artigo publicado na prestigiosa revista ACS Nano.

A equipe investigou a mobilidade de portadores de carga no grafeno bicamada. No grafeno, o movimento tanto dos elétrons quanto dos “buracos” (partículas conceituais de carga positiva que equivalem à ausência de elétrons na rede cristalina) podem gerar correntes elétricas no material. Porém, a mobilidade de elétrons e buracos pode ser afetada pela existência de centros espalhadores de cargas. “O entendimento dos mecanismos de espalhamento de cargas no transporte elétrico do grafeno é fundamental para uma melhor otimização e eficiência dos dispositivos eletrônicos baseados neste material”, contextualiza Rodrigo Lacerda, professor do Departamento de Física da Universidade Federal de Minas Gerais e último autor do artigo. “Nesse contexto, a principal contribuição do nosso trabalho está relacionada à identificação simultânea de dois diferentes tipos de centros espalhadores de cargas que afetam o transporte elétrico em uma bicamada de grafeno”, precisa o professor.

Visando aplicar o grafeno em sensores de oxigênio, os pesquisadores decidiram investigar o efeito desse gás na mobilidade dos portadores de carga do grafeno bicamada. “Atualmente, existe uma grande demanda da indústria automotiva e na área biomédica por sensores de oxigênio que trabalhem em condições de temperatura ambiente e baixa potência”’, conta Lacerda. O grafeno, de acordo com o professor, possui um grande potencial para o desenvolvimento de uma nova classe de sensores rápidos, seletivos e ultrassensíveis.

O trabalho foi desenvolvido dentro da pesquisa de doutorado da estudante Ive Silvestre, orientada por Lacerda, e em conjunto com o doutor Evandro Morais, ambos primeiros autores do artigo. A tese da estudante foi defendida no início de novembro no Departamento de Física da UFMG. “Apesar de ainda termos carência em infraestrutura, nosso departamento é um dos líderes de pesquisa em nanomateriais de carbono, sendo, nos últimos anos, o centro coordenador de várias redes de pesquisa, como o INCT de Nanomateriais de Carbono coordenado pelo professor Marcos Pimenta”, diz o professor. “Graças a estas iniciativas, obtivemos as condições mínimas experimentais para a realização do trabalho”, completa.

Para realizar os experimentos, foi fabricado um dispositivo consistente em duas camadas de grafeno depositadas num substrato de óxido de silício. O dispositivo foi colocado numa câmara de testes na qual foram realizadas as medidas elétricas in situ a diversas temperaturas enquanto se introduzia e retirava o fluxo de oxigênio.

A figura acima mostra a mudança na mobilidade dos elétrons e dos buracos em função da interação da bicamada de grafeno com as moléculas de oxigêno. Inset: Dispositivo de bicamada de grafeno sob exposição de moléculas de oxigênio.

Os pesquisadores observaram que, num efeito de caráter reversível, o oxigênio reduzia significativamente a mobilidade dos elétrons enquanto aumentava a dos buracos. Buscando o aprofundamento na compreensão dos resultados experimentais, o grupo experimental da UFMG desenvolveu uma intensa colaboração com um grupo teórico do mesmo departamento e universidade, liderado pelos professores Mário Sérgio Mazzoni e Hélio Chacham. “Inúmeras discussões produtivas conjugadas à intensa verificação da literatura nos levaram ao entendimento mais profundo do problema, possibilitando a conclusão deste bonito trabalho”, relata Lacerda.

O trabalho faz uma contribuição importante ao tema da mobilidade de cargas no grafeno ao identificar a ação simultânea de dois tipos de centros espalhadores de cargas, os de longo alcance e os de curto alcance, sendo estes últimos de tipo ressonante. “Anteriormente ao nosso trabalho, não havia sido reportada experimentalmente na literatura uma evidência tão marcante da presença de centros ressonantes em grafeno (e bicamadas)”, destaca o professor Lacerda.

Quanto ao oxigênio, ele desempenha dois papeis fundamentais nos mecanismos de espalhamento descritos no artigo da ACS Nano. Por um lado, o oxigênio preso entre o grafeno e o óxido de silício age como barreira à ação de imperfeições do substrato que atuariam como centros de espalhamento de longo alcance e acaba aumentando a mobilidade dos buracos. Por outro lado, moléculas de oxigênio adsorvidas pelo grafeno exercem o papel de centros espalhadores ressonantes, os quais reduzem a mobilidade dos elétrons. “A assimetria que notamos para a mobilidade dos portadores na bicamada exposta às moléculas de oxigênio foi sem dúvida um aspecto relevante”, diz Lacerda. “Até então, as observações de que moléculas adsorvidas (provenientes de uma fonte externa como um gás) podiam exercer um papel de centros espalhadores do tipo ressonante era apenas prevista teoricamente”, conclui.