Interview with Professor Jose Arana Varela, honored with the Bridge Building Award from American Ceramic Society.

Professor Arana Varela (to the left) receiving the award. Photo by American Ceramic Society.

On the last January 27th, in Daytona Beach (Florida, United States), during the 38th edition of International Conference and Exposition on Advanced Ceramics and Composites, the Bridge Building Award of the American Ceramic Society was given to a Brazilian for the first time, Professor José AranaVarela, president of our SBPMat from 2010 to 2011. The honor annually distinguishes people from outside the United States who have notably contributed to the field of engineering ceramics.

Graduated in Physics from University of São Paulo in 1968, Arana Varela also has a Master’s Degree in Physics for the Instituto Tecnológico de Aeronáutica (ITA), becoming a Master in 1975. He took his PhD from 1977 to 1981 at University of Washington (United States), conducting research in the field of ceramic materials.

Currently, Arana Varela is Full Professor at Universidade Estadual Paulista Julio de Mesquita Filho (UNESP) and president-director of the executive board of São Paulo Research Foundation (Fapesp), as well as member of the council for competitivity and innovation at São Paulo Federation of Industries (FIESP). Professor Arana Varela is also full member of the Brazilian Academy of Sciences (ABC), among other associations, and member of the editorial body for the journals Ceramics International, Science of Sintering, Cerâmica and Materials Research. Besides, he coordinates the innovation division at the Multidisciplinary Center for Development of Ceramic Materials.

His scientific papers gather over 6,500 citations. In the last 13 years, he has been the author of more than 500 articles, published in international journals. Up to this moment, he has advised and co-advised assignments for over 30 masters and over 40 doctoral theses.

Throughout his career, he has received more than 20 awards from organizations such as American Ceramic Society, Sociedad Española de Cerámica y Vidrio, CNPq, Associação Brasileira de Metalurgia e Materiais and Associação Brasileira de Cerâmica.

A brief interview with the researcher can be seen below:

SBPMat Bulletin: – Tell us a little bit about your story: which were the opportunities and choices that led you to become a researcher in the field of ceramic materials?

José Arana Varela: – Our choice of being a scientist in mateirals started during the Master’s at ITA, in  1972. During this period (in 1975), I met Professor O. J. Whittemore from the University of Washington, Seattle, during his visit to Universidade Federal de São Carlos for a year. As my master’s research was related to a physico-chemical view of thermal decomposition of talcum, which is a ceramic material, Professor Whittemore became interested in it and made some remarks regarding ceramic processing (his specialty). Thence the invitation for a doctorate in Seattle (from 1977 to 1981).

SBPMat Bulletin: – In your own analysis, which were your main contributions to the science and technology of materials? Specifically, can you comment on your main contributions to the field of engineering ceramics, the focus of Bridge Building Award?

José Arana Varela: — As the main theme of our doctoral theses was related to sintering models, we performed a simple study about variable effects, such as water vapor and heating rate in densification and microstructure of magnesium oxide ceramic. We created a model to take into account the structural rearrangement in sintering process.

Considering the evolution on application of ceramic materials in Microelectronics, due to functionality of these materials, we started the Electroceramic line in the 90’s. The functionality initially chosen was resistivity variation with electrical field (ceramic varistors) due to its application, mostly with lightning rods and electric circuits protectors. After understanding and contributing with varistor’s system based on zinc oxide (ZnO), we proposed to change the system considering another semi-conductor (stannous oxide). In this case, we developed throughout the years a stannous oxide varistor with properties that were much superior to traditional ZnO varistors.

Other contributions are related to development of thin ceramic films with Perovskite structure, with the purpose of optimizing their dielectric, piezoelectric and ferroelectric properties by using chemical deposition. We have advanced in the knowledge of chemical deposition, which we call polymeric precursors methods. One of the applications of these films are related to the manufacture of ferroelectric memories. With this, our students have worked in characterizing thin films with ferroelectric properties in some systems such as barium titanate, lead zirconate titanate, as well as strontium niobate and tantalate. A patent in ferroelectric memories, licensed to Panasonic, was proposed by a group led by Professor Carlos Paz de Araujo, at University of Colorado.

The latest contribution is related to sensors with nanometric structure, in collaboration with a group led by Professor Harry Tuller at MIT. Recent results were very promising and they showed great sensitivity in nanosensors based on stannous monoxide. It is important to point out that we have recently applied for patent regarding this study.

SBPMat Bulletin: – “Bridge building”, building bridges. Can you share with us a retrospective on the main bridges built throughout your career and the ones you would like to build?

José Arana Varela: — Our bridges have been built from the moment we finished our PhD at University of Washington. I continued to collaborate with Professor Whittemore for decade and I started other partnerships with Professor Gary Messing at Penn State University e then Professor Richard Bradt at University of Alabama.

Concurrently, we had joint projects in Europe with Professor João Baptista at Universidade de Aveiro, Portugal and with Doctor José Fernandez from Institute of Ceramics and Glass in Madrid, related to the subject of Electroceramics. We began to collaborate with groups in Bordeaux, France (Professor Marc Onillon), as well as André Perrin at University of Rennes. The collaborations proceeded with groups led by Professor Paolo Nanni at University of Genoa, concurrently with group led by Professor Danilo Suvorov at Josef Stephan Institute, in Slovenia and Professor Harry Tuller at MIT, in Boston.

SBPMat Bulletin: — Would you like to leave a message for our readers who are developing their academic or industry career as materials researchers?

José Arana Varela: — Science of Materials is fundamental to developing new useful technologies that will resolve society’s greatest problems. Great advancement in knowledge of ceramic materials, mostly their application in production of energy, communication, environmental control, etc., has been increasing in the past 20 years, mainly because of increased collaboration among researchers in different parts of the world. Science of Materials stopped being polarized between the United States and Europe (Germany, England and France) and it relies on contributions from other players in Asia and certainly Brazil. Fundamental knowledge of mass and charge transportation mechanisms, as well as structure of materials in nanometric scale, is essential to new developments and advances in technology.



Leave a Reply

Your email address will not be published. Required fields are marked *