Artigo em destaque: Elucidando o processamento do germânio para aplicações em micro e nanoeletrônica.

O artigo científico com participação de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: GeO2/Ge structure submitted to annealing in deuterium: Incorporation pathways and associated oxide modifications. Bom, N.M.; Soares, G.V.; Hartmann, S.; Bordin, A.; Radtke, C. Applied Physics Letters 105, 141605 (2014); DOI: 10.1063/1.4898062.

Matéria de divulgação: Elucidando o processamento do germânio para aplicações em micro e nanoeletrônica

O germânio (Ge) é um dos materiais semicondutores elencados como possíveis alternativas ao silício para aplicações na indústria micro e nanoeletrônica. Contudo, o processamento de materiais baseados em germânio visando a otimizar suas propriedades elétricas para essas aplicações ainda se apresenta como desafio à ciência.

Nesse contexto, uma equipe de pesquisadores da Universidade Federal do Rio Grande do Sul (UFRGS) investigou o tratamento térmico (annealing) de estruturas de germânio em atmosfera de deutério (isótopo do hidrogênio que permite o uso de técnicas analíticas específicas para sua quantificação). Os resultados do estudo foram recentemente publicados no prestigiado periódico Applied Physics Letters (APL).

O estudo que deu origem ao artigo faz parte da pesquisa de doutorado, em andamento, de Nicolau Molina Bom, orientada pelo professor Claudio Radtke no marco do programa de pós-graduação em Microeletrônica da UFRGS. “Este trabalho surgiu como sequência dos estudos desenvolvidos durante meu mestrado, envolvendo sistemas de óxido de alumínio sobre germânio (Al2O3/Ge)”, relata Nicolau.

Na pesquisa de mestrado, também orientada por Radtke, Bom observou que a deposição de materiais dielétricos sobre substratos de germânio, bem como seu processamento por meio de tratamentos térmicos, induzem a oxidação do semicondutor e a formação de dióxido de germânio (GeO2). Devido às reações que ocorrem entre o óxido formado e o substrato de germânio, a estrutura sofre modificações físico-químicas que ocasionam a degradação de suas propriedades elétricas. “Assim, ficou claro que a compreensão destes mecanismos era fundamental para o uso do germânio em aplicações industriais”, conta Bom.

Incorporação de hidrogênio

No artigo publicado na APL, os autores reportam que o tratamento térmico foi realizado em amostras de dióxido de germânio sobre germânio (GeO2/Ge), de dióxido de germânio sobre silício (GeO2/Si) e de dióxido de silício sobre silício (SiO2/Si). Um dos efeitos do tratamento evidenciados por meio das análises foi a incorporação de hidrogênio, em maiores proporções no GeO2/Ge do que no SiO2/Si.

Os autores atribuem esse efeito à ocupação, por parte dos átomos de hidrogênio, de vacâncias de oxigênio (pontos da rede cristalina nos quais, no lugar dos átomos esperados, existem “vagas”), geradas durante o tratamento térmico, tanto no interior do dióxido de germânio quanto na interface GeO2/Ge.

Outro efeito observado pelos cientistas foi a volatilização da camada de óxido, principalmente a temperaturas superiores a 450 ºC, acarretando modificações na estrutura química da camada de óxido remanescente nas amostras.

Representação esquemática dos principais resultados do artigo, enviada por Nicolau Bom.

Contribuição e aplicações do trabalho

“O maior mérito de nosso estudo consiste na elucidação dos processos físico-químicos envolvidos na incorporação de hidrogênio em estruturas de GeO2/Ge”, avalia Nicolau Bom, que é autor correspondente do artigo. “Além disso, a compreensão dessas interações terá papel decisivo na escolha dos parâmetros adequados de processamento em aplicações industriais envolvendo germânio”, completa.

De fato, os resultados do estudo podem ser aplicados, por exemplo, no desenvolvimento de transistores de efeito de campo metal-óxido-semicondutor (MOSFET) baseados em estruturas de germânio. “O MOSFET é o “carro-chefe” da indústria micro/nanoeletrônica e referência para a Lei de Moore”, comenta Bom. Entretanto, de acordo com o doutorando, os resultados apresentados no artigo também podem ser úteis na fabricação de dispositivos com arquiteturas inovadoras, como o transistor de efeito de campo de poço quântico (QWFET). “O alto desempenho apresentado por QWFETs – em virtude das altas mobilidades obtidas pelo confinamento quântico – coloca este dispositivo como uma alternativa promissora para superar as limitações físicas dos MOSFETs convencionais”, afirma Bom.

O estudo que originou o artigo da APL recebeu financiamento do INCT Namitec, INCT de Engenharia de Superfícies, CNPq, CAPES e FAPERGS.

Física, Química, Ciência de Superfícies e Micro/nanoeletrônica

O artigo da APL se insere em um contexto maior de pesquisa, dentro do grupo “Físico-química de superfícies e interfaces sólidas” (FQSIS) da UFRGS. A ideia central que norteia esse trabalho é compreender os mecanismos físico-químicos envolvidos em materiais alternativos à estrutura clássica SiO2/Si, de modo a superar as limitações da nanoeletrônica baseada no silício.”Neste contexto, a interdisciplinaridade entre Física, Química e Engenharia é uma consequência natural do trabalho, onde os conhecimentos oriundos dos diferentes campos de estudo se complementam na investigações destes sistemas”, comenta.

Além de estudos sobre germânio, o grupo conta com trabalhos desenvolvidos em torno de dielétricos de porta com alta constante dielétrica (os chamados high-κ), SiC (material voltado a aplicações em condições extremas de temperatura, tensão e frequência) e grafeno.

Quatro dos cinco autores do artigo. A partir da esquerda, Samuel Hartmann, Nicolau Molina Bom, Cláudio Radtke e Anderson Bordin.

Pós-doutorado na UFRGS em micro-nanomateriais, monitoração e processos para aplicação industrial.

Com bolsa PNPD/CNPq, por 6 meses. Já disponível; renovável por mais 1 ano.

Local: Instituto de Física, UFRGS – Porto Alegre, RS (Programa de Pós-Graduação nível 7, o máximo, por avaliação da CAPES).

Perfil do candidato: Doutorado em Física, Química, Engenharia ou Ciência dos Materiais. Conhecimentos anteriores relacionados ao projeto serão apreciados.

Informações e candidatura: Enviar link para CV-Lattes ou CV completo, indicação de dois professores-pesquisadores de referência para contato (telefone, e-mail, carta de recomendação) e um parágrafo sobre motivações/expectativas para flavio.horowitz@ufrgs.br, até 31/05/2014 (ou, em 2ª chamada, 10/06/2014).

Gente da nossa comunidade: entrevista com o pesquisador Fernando Zawislak.

O professor Fernando Zawislak. Crédito: arquivo pessoal.

Fernando Claudio Zawislak nasceu em 1935 no município gaúcho de Santa Rosa, numa família de origem polonesa que morava no meio rural. Na década de 1940, os pais de Fernando o enviaram a Porto Alegre junto com um de seus irmãos para estudar como alunos internos. Em 1952, a família toda se mudou para a capital gaúcha, dando continuidade à decisão de priorizar a educação dos filhos.

Em 1958, Fernando Zawislak se formou em Física pela Universidade Federal do Rio Grande do Sul (UFRGS). De 1960 a 1961 fez estágio no Laboratório Van de Graff da Universidade de São Paulo (USP) com os professores Oscar Sala e Ernst Hamburger. Ali teve os primeiros contatos com a pesquisa. Em seguida, retornou ao Instituto de Física da UFRGS e iniciou e coordenou um grupo de pesquisa experimental na área de Física Nuclear. Nesse campo, orientado pelo professor John D. Rogers, obteve o título de doutor, aprovado “com louvor” em 1967, transformando-se no primeiro doutor em Física formado pela UFRGS. De 1968 a 1970, fez pós-doutorado no California Institute of Technology (Caltech), nos Estados Unidos.

Em 1979 passou a trabalhar no campo da implantação iônica e uso de técnicas de feixes de íons para modificação e análise de materiais. Com este objetivo foi pesquisador visitante por um ano no Laboratório de Implantação Iônica de Orsay, da Universidade de Paris (França). Em 1981, fundou o Laboratório de Implantação Iônica na UFRGS mediante a aquisição de um acelerador de 400 kV. Em 1996 realizou a compra de um acelerador de 3 MV, o qual permitiu ampliar as atividades do laboratório para novos campos, como semicondutores, polímeros, metais e ligas metálicas, entre outros. Coordenou o Laboratório de Implantação Iônica desde a sua fundação até 2009. Hoje, o laboratório é o maior de seu tipo na América Latina, conta entre seus resultados com mais de 60 doutores formados e cerca de 1.000 artigos científicos publicados, além de trabalhos desenvolvidos em colaboração com grupos do Brasil, Alemanha, Argentina, Austrália, Coreia do Sul, Dinamarca, Espanha, Estados Unidos, França e Nova Zelândia. Durante a década de 1990, Zawislak participou no planejamento e na obtenção de recursos do Centro de Microscopia Eletrônica da UFRGS e da criação do  de Programa de pós-graduação em Ciência dos Materiais (PGCIMAT) da UFRGS.

Aposentou-se da UFRGS em 2005. É Professor Emérito da federal gaúcha, pesquisador nível 1 A do CNPq, membro titular da Academia Brasileira de Ciências e Comendador e Grã-Cruz da Ordem Nacional do Mérito Científico. Durante sua carreira formou 14 doutores e 16 mestres, publicou mais de 160 artigos científicos em revistas internacionais indexadas e foi chairman de, entre outras, duas das mais importantes conferências internacionais da área de implantação iônica, a Ion Beam Modification of Materials (Canela, RS, 2000) e a Radiation Effects in Insulators (Gramado, RS, 2003), ambas realizadas pela primeira vez em país latino-americano.

Segue uma breve entrevista com o pesquisador.

Boletim da SBPMat: – Quais são, na sua própria avaliação, as suas principais contribuições à Ciência e Engenharia de Materiais? Conte-nos também o que o levou a realizá-las.

Fernando Zawislak: – Eu iniciei minha carreira científica trabalhando na área de Física Nuclear Experimental. Inclusive, fiz doutorado nessa área. Em 1968 fui para Califórnia para fazer o pós-doutorado no California Institute of Technology. Lá, nesse instituto, estava se iniciando a área de Ciência de Materiais, e, mais precisamente, a área de implantação iônica e análise por feixe de íons. Os Estados Unidos tinham decidido investir fortemente na área de interdisciplinaridade, especialmente em Ciência dos Materiais. Lá no Caltech eu não trabalhei em Materiais, mas acompanhei os trabalhos. E eu disse: “Se eu tiver oportunidade, vou iniciar no Brasil essa área de implantação iônica e estudos de materiais por feixes de íons”.

A Califórnia era um dos três ou quatro lugares do mundo onde estava iniciando a área de implantação iônica e análise de materiais. E eu ia nos seminários, apesar de estar trabalhando em outra área. Então voltei ao Brasil em 1970, mas foi só em 1982 que consegui instalar o Laboratório de Implantação Iônica. Foi uma mudança radical na minha vida, mas acho que isto é importante: todo pesquisador deveria, se possível, mudar uma ou duas vezes de área durante sua carreira para ir sempre para uma área mais moderna. Eu estava trabalhando numa área mais antiga, onde estava difícil publicar, e a implantação iônica estava começando, e até agora é muito importante.

Nessa área de Ciência de Materiais, que iniciei em 1982 quando mudei de área, adquiri o primeiro implantador, e formei, nesses vinte e poucos anos, até a minha aposentadoria, muitos doutores e mestres, publiquei mais de cem trabalhos e desenvolvi estudos, basicamente na área de nanoestruturas de materiais e modificação de materiais por feixes de íons.

Na verdade, eu estava interessado na interdisciplinaridade, e a área de Ciência de Materiais é evidentemente interdisciplinar. Essa interdisciplinaridade é absolutamente necessária, como os Estados Unidos descobriram, fundando nessa época vinte centros interdisciplinares. Assim, no Brasil, quando eu voltei, comecei a lutar por essa interdisciplinaridade. Na verdade todo mundo era a favor, mas nem a universidade nem as agências de fomento apoiavam as áreas interdisciplinares. Existia um domínio das disciplinas clássicas. Cada departamento focava na sua área e, com o surgimento de novas áreas, as pessoas não queriam compartilhar, não queriam perder alunos, bolsas… Bom, mas lutamos bastante, e eu fui um dos que lutaram pela criação da pós-graduação em Ciência dos Materiais na UFRGS, junto com colegas da Física, da Química, da Engenharia. E conseguimos realizar.

Então, os frutos da minha atividade em Materiais foram, de um lado, o Laboratório de Implantação Iônica e, por outro lado, a criação da pós-graduação em Ciência dos Materiais. Também tive uma ação muito intensa tentando convencer nas reuniões científicas de que era absolutamente essencial entrar na área interdisciplinar porque todos os grandes avanços da pesquisa e da inovação são interdisciplinares.

Até hoje, o Laboratório de Implantação Iônica é o maior da América Latina e é similar em eficiência e equipamentos a muitos dos bons laboratórios do mundo todo. O laboratório tem 25 doutores, sendo que sempre tem 21 ou 22 permanentes e 3 ou 4 pós-doutores. Tem 30 alunos de pós-graduação, uma meia dúzia de técnicos, mais os alunos de iniciação científica… Temos um total de mais de 50 pessoas no laboratório. Eu dirigi o laboratório até 2010, quando fui substituído por um colega, um jovem, que é o Pedro Grande.

O curso de Pós-Graduação em Ciência dos Materiais, eu acho que também está indo muito bem, mas ainda tem dificuldades. Eu cheguei a formar alunos do curso, mas agora estou aposentado.

Boletim da SBPMat: – Quais são, na sua opinião, os principais desafios atuais da área de implantação iônica com relação à Ciência e Engenharia de Materiais?

Fernando Zawislak: – Eu acho que o importante da implantação iônica é que ela engloba várias áreas de pesquisa, começando pela Física, Química, várias Engenharias, Biologia, Genética, Geologia, todos são campos onde a implantação iônica e, principalmente, a análise de materiais no acelerador, são importantes. Nós conseguimos medir quantidades muito pequenas de impurezas, por exemplo. De uns cinco anos para cá nós introduzimos microfeixes, que são feixes focalizados para o tamanho de um mícron. Esse feixe tem condições de analisar microestruturas, incrustações da Geologia ou da Microeletrônica. Agora nós temos dois aceleradores no laboratório, um menor, que é o primeiro, e outro de 3 MV que foi adquirido no final de década de 1990. As técnicas, como RBS, MEIS etc. medem, inclusive, as formas e tamanhos das nanopartículas. A gente, por um lado, implanta uma impureza numa matriz e, de acordo com a energia da implantação e a temperatura, você faz nanopartículas desde 2 ou 3 nm até 100 nm. Então eu acho que o futuro e os desafios são muito grandes, e a técnica tem muita potencialidade em muitas áreas. Por exemplo, nós estamos analisando o vinho do Rio Grande do Sul. Eu acho que o laboratório está indo muito bem. Eu me aposentei, mas, graças a Deus, fui bem substituído. O laboratório está indo até melhor do que quando eu era coordenador…

Boletim da SBPMat: – Conte-nos quais são suas principais ocupações atuais e seus projetos para o futuro.

Fernando Zawislak: – Bom, no futuro eu não estou pensando muito. Eu estou aposentado faz dez anos, sou Professor Emérito. Ainda tenho bolsa do CNPq, pois continuo publicando, mas agora a minha produtividade propriamente de pesquisa está diminuindo. Eu estou usando o meu tempo para ajudar os colegas mais jovens, participando de algumas sociedades, de alguns conselhos… Em fim, atividades para uma pessoa que já está na aposentadoria. Meu último aluno se formou no ano passado, doutor, e já não estou aceitando mais alunos, mas continuo ajudando se me pedem alguma coisa.

Boletim da SBPMat: – Gostaria de deixar uma mensagem para nossos leitores que estão iniciando suas carreiras de cientistas?

Eu acho que o importante para o pesquisador é escolher a carreira numa área que ele goste. Como professor, muitos colegas me perguntam: “Que carreira deve meu filho seguir?”. Eu costumo responder: “Qualquer uma, desde que ele goste. Todas são boas”.

Eu também acho que os jovens agora não devem fazer um curso de graduação muito afunilado numa área só. Acho que devem ficar com a mente aberta para a interdisciplinaridade, colaborar com outros colegas, eventualmente cursar disciplinas em outras áreas. Para mim, isso é muito importante, porque ficar muito focalizado numa área tem um espectro muito restrito: vai acabar sendo professor na universidade. E acho que a expectativa do Brasil é que os jovens saiam da universidade e criem indústrias, inovação etc.

Penúltimo conselho: escolha um orientador atualizado em campo moderno de trabalho.

E o último é: tem que ser empreendedor. Isso é o que falta. No Brasil discute-se muito essa questão da interação da indústria com a universidade, mas não adianta, não se pode transformar um industrial “velho” que ficou rico fazendo parafusos, e convencê-lo de que tem que contratar doutores e fazer um laboratório de pesquisa. São os jovens os que têm que iniciar isso. Nos resultados das nossas universidades, alguns sucessos de inovação tecnológica foram feitos por alunos que saem do doutorado e até da graduação. Então, como se faz um jovem empreendedor? Tem que procurar fazer estágios, na indústria, se possível, e, eventualmente, ir para um país onde exista essa cultura do empreendedor, como, por exemplo, os Estados Unidos, a Alemanha, a Coreia, o Japão. Aqui no Brasil, os químicos são mais empreendedores do que os físicos, algumas áreas da Engenharia também, mas ainda falta, e isso é extremamente importante. Seria importante conscientizar o jovem de que ele pode sair da universidade e ir para um novo campo para inovar tecnologicamente.