Artigo científico em destaque: variações no diâmetro de nanofios e o papel das instabilidades no crescimento.



O artigo científico de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é:

D. S. Oliveira, L.H.G. Tizei, D. Ugarte, M. A. Cotta. Spontaneous Periodic Diameter Oscillations in InP Nanowires: The Role of Interface Instabilities. Nano Letters, 2013, 13 (1), pp 9–13. DOI: 10.1021/nl302891b.

 

Texto de divulgação:

Nanofios semicondutores com variações periódicas de diâmetro: instabilidades no crescimento dos nanofios.

Ao produzir nanofios do composto semicondutor fosfeto de índio (InP), pesquisadores do Instituto de Física Gleb Wataghin (IFGW) da Unicamp observaram no microscópio eletrônico de varredura uma particularidade interessante. Um dos grupos de nanofios exibia marcadas variações de seu habitual formato cônico, apresentando partes mais grossas, tipo pneuzinhos, periodicamente ao longo do nanofio.

As variações no diâmetro apareciam em quase 80% dos nanofios de cinco nanometros de diâmetro no ápice, os mais finos, e eram muito mais visíveis perto do topo do nanofio do que na base dele. As variações tinham se gerado de maneira espontânea, mas os pesquisadores tinham mantido constantes os parâmetros de produção durante todo o processo. Por que, então, essas variações morfológicas? Os cientistas tinham pela frente o desafio de elucidar os detalhes da cinética de crescimento dos nanofios. O modelo desenvolvido por eles seria publicado, em janeiro deste ano, no periódico Nano Letters.

Imagem de microscopia de varredura de um nanofio de InP com oscilações (acima) e sem oscilações (abaixo). Barra de escala de 1 micrometro.

O crescimento dos nanofios de fosfeto de índio

Para compreender a explicação desenvolvida pelos pesquisadores brasileiros sobre a origem dessas oscilações periódicas de diâmetro, é necessário entender o processo de produção dos nanofios.

Dentre as diferentes formas de produzir um nanofio, a mais popular atualmente utiliza o mecanismo de crescimento “vapor-líquido-sólido”, conhecido pela sigla VLS. No VLS, uma pequena partícula catalisadora é depositada em um substrato dentro de uma câmera de crescimento, na qual se introduz vapor do material que vai compor o nanofio.

Na pesquisa do artigo da Nano Letters, os pesquisadores utilizaram uma nanopartícula de ouro como catalisador, um substrato de arseneto arseneto de gálio (GaAs) e uma câmera de crescimento epitaxial por feixe químico (CBE). Como o intuito era fazer nanofios de fosfeto de índio, usaram, como vapor, fosfina (PH3) e trimetil-índio (TMI), que são os precursores do índio e do fósforo para o crescimento.

Seguindo o percurso normal do processo VLS, o vapor foi absorvido pela nanopartícula de ouro mais rapidamente do que pelo substrato. Dessa maneira, a nanopartícula ficou supersaturada de índio e fósforo, possibilitando a seguinte etapa do processo, a nucleação. Assim, um núcleo sólido de fosfeto de índio se formou entre a nanopartícula de ouro, que estava em fase líquida, e o substrato. Esse núcleo se propagou e formou uma monocamada de fosfeto de índio. Com sucessivas nucleações, novas monocamadas se formaram uma em cima da outra, gerando um nanofio cada vez mais comprido. A nanopartícula catalisadora, como em todo processo VLS, ficou no topo do nanofio.

O modelo da cinética de crescimento dos nanofios

A pesquisa abordada no artigo da Nano Letters foi realizada no contexto do mestrado do aluno Douglas Soares de Oliveira, realizado no IFGW – Unicamp e orientado pela professora Mônica Cotta. Douglas está agora fazendo o doutorado com a mesma orientadora, ainda em nanofios semicondutores – tema que vem estudando desde sua primeira iniciação científica, iniciada em 2008.  Também participaram da pesquisa publicada na Nano Letters o professor Daniel Ugarte (IFGW-Unicamp) e seu ex-aluno de doutorado Luiz Tizei. “A participação deles foi imprescindível para o resultado final obtido”, diz Cotta.

Os grupos de Cotta e Ugarte têm uma longa história de colaborações e tinham publicado em 2011 um outro trabalho [Chiaramonte, T., Tizei, L. H. G., Ugarte, D., & Cotta, M. A.  Kinetic Effects in InP Nanowire Growth and Stacking Fault Formation: The Role of Interface Roughening. Nano Letters, 2011, 11 (5), PP 1934–1940. DOI:10.1021/nl200083f] que motivou o tema do mestrado de Douglas.  “Queríamos compreender melhor a rota de incorporação de átomos do grupo III, ao qual pertence o índio, na nanopartícula catalisadora, e o papel da deformação induzida na interface entre a nanopartícula e a fase sólida (substrato ou nanofio)”, contextualiza a professora Cotta.

Para isso, os pesquisadores introduziram um grande fluxo de TMI (o vapor do índio) durante o processo VLS.  “Acreditamos que nesse regime ocorre uma competição entre as duas rotas mais prováveis para a incorporação de índio no nanofio durante o crescimento, que são: via interior da nanopartícula para o nanofio, ou, diretamente, da fase vapor no ambiente para o local de crescimento na interface”, justifica Cotta.

Segundo o modelo proposto pelos pesquisadores da Unicamp, essa competição entre as rotas pode modificar estruturalmente a interface entre a nanopartícula de ouro e o nanofio durante o crescimento, alterando assim o ângulo de contato entre eles ou, em outras palavras, gerando instabilidades. “Com um ângulo de contato diferente, não é mantido o equilíbrio de forças que mantém a nanopartícula no topo do nanofio. Isso induz a nanopartícula, líquida, a descer e englobar parte do nanofio. A descida da nanopartícula pela lateral do nanofio favorece a formação de novos núcleos de fosfeto de índio que aumentam o diâmetro do nanofio”, explica a professora.

Mas por que as oscilações do diâmetro são periódicas? Porque o processo é cíclico. A professora Cotta explica que, quando a nanopartícula engloba uma parte da lateral do nanofio, o balanço das forças muda novamente, empurrando a nanopartícula para o topo do nanofio. E tudo volta a começar.

Esquema do modelo proposto na Nano Letters. Em amarelo, a nanopartícula de ouro. Em azul, a parte superior do nanofio em crescimento.

Relevância do trabalho

O modelo da cinética foi desenvolvido com base na análise da geometria, morfologia e composição de pouco mais de 100 nanofios, usando as técnicas de microscopia eletrônica de varredura (MEV) com dispersão de energia de raios X (EDS) e microscopia eletrônica de transmissão. A pesquisa foi inteiramente realizada em Campinas (SP), no IFGW-Unicamp e no Laboratório de Microscopia Eletrônica do LNNANO/CNPEM.

“O estudo da cinética de crescimento de nanofios por si só já é muito importante para o desenvolvimento de materiais semicondutores com novas propriedades”, afirma Cotta. Nesse sentido, o trabalho publicado na Nano Letters mostrou um novo mecanismo para o controle, não apenas morfológico, mas também cristalográfico, dos nanofios de fosfeto de índio. Mas o fato de os nanofios de Douglas e Cotta apresentarem ápices de até cinco nanometros de diâmetro agrega ainda mais valor ao trabalho. “Em estruturas tão pequenas, pesquisas recentes indicam que variações de diâmetro têm grande potencial para aplicações na conversão de energia, por exemplo, utilizando o efeito termoelétrico”, completa a professora.

 

Para saber mais:

Dissertação de mestrado de Douglas Soares de Oliveira, intitulada Nanofios semicondutores: síntese e processos de formação: http://webbif.ifi.unicamp.br/tesesOnline/teses/IF1549.pdf


Comments

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *