Doutorado em materiais na UCS, com bolsa, em projeto sobre EPIs, filtros e superfícies com ação antimicrobiana com foco em SARS-CoV-2, em colaboração com a UNICAMP.
Desde a declaração oficial de pandemia de Covid-19 em 11 de março, bastante polêmica tem surgido sobre o uso de máscaras, principalmente nos primeiros meses. Contudo, um ponto nunca foi questionado: as máscaras que oferecem maior proteção ao usuário devem ser usadas pelos trabalhadores da linha de frente do combate à Covid-19 – esses homens e mulheres que fazem trabalhos essenciais na pandemia e estão em contato diário com altas concentrações do vírus Sars-Cov-2 nos hospitais e cemitérios. Imagens de médicos, enfermeiros e coveiros usando máscaras e outros EPIs (equipamentos de proteção individual) tornaram-se ícones da pandemia que o mundo atravessa.
Na verdade, as máscaras mais indicadas para proteger esses profissionais recebem o nome técnico de “respiradores” (sim, o mesmo termo usado para os aparelhos que ajudam pacientes de UTI a respirar e que também têm sido protagonistas desta pandemia), pois seu objetivo principal é filtrar o ar que o usuário respira, impedindo que uma grande parte das partículas (inclusive as partículas virais) que estão ali suspensas ingressem nas vias respiratórias pelo nariz e a boca.
Os respiradores recomendados para esses profissionais na epidemia de Covid-19 (certificados como N95, KN95, PFF2 ou DS2, segundo o país de certificação) têm alta capacidade de impedir a passagem de partículas. Mas isso não basta. Além de serem bons na filtragem, os respiradores precisam garantir um mínimo de conforto e boa passagem do ar, de modo a não sufocar o usuário ao longo da jornada de trabalho. Precisam também fixar-se firmemente à cabeça. Finalmente, devem garantir vedação eficaz do entorno da boca e nariz para diminuir ao máximo o ingresso de ar não filtrado nas vias respiratórias do trabalhador que os utiliza. Esse conjunto de características distingue os respiradores de outros tipos de máscara, inclusive as máscaras cirúrgicas.
Para reunir essas características, os respiradores tipo N95 agregam uma série de desenvolvimentos e avanços ligados, principalmente, aos materiais utilizados e ao design do produto, bem como aos métodos para comprovar sua eficácia.
Primórdios: a máscara antipraga
A ideia de filtrar o ar para proteger as pessoas de patógenos que ingressam ao organismo pelas vias respiratórias não é nova, mas também não é tão velha assim. Pessoas usando máscaras rígidas ou lenços para se proteger de doenças foram retratadas em quadros do Renascimento. Contudo, essa proteção era associada a diversas crenças sem base científica, e não à ideia de que microrganismos podem causar doenças – conceito cuja descoberta remonta à segunda metade do século XIX na Europa.
No final do século XIX, mais um passo é dado na Europa com o achado científico de que as gotículas que saem pelas vias respiratórias carregam bactérias. Consequentemente, aparecem os primeiros exemplos de cirurgiões utilizando pedaços de gaze amarrados à cabeça por meio de cordas, para cobrir boca e nariz durante as cirurgias, no intuito de não contaminar os pacientes.
Em 1910, enquanto o uso de máscaras cirúrgicas se disseminava lentamente pela Europa, as máscaras saíram das salas de cirurgia. Mais precisamente, foi na chamada “praga da Manchúria”, epidemia ocorrida no norte da China, que se encontra o primeiro claro exemplo de uso de máscaras para tentar proteger o usuário, principalmente os médicos, de uma doença causada por microrganismos. Nessa epidemia, um patógeno (provavelmente uma bactéria) provocava um quadro de pneumonia que, segundo os registros da época, era letal em quase todos os casos. A praga dizimou umas 60 mil pessoas em menos de um ano.
Inicialmente, acreditava-se que a doença fosse transmitida por pulgas de ratos, mas essa ideia caiu quando o médico Wu Lien-teh foi contratado pelo governo da China para lidar com a epidemia. Depois de fazer uma autópsia, Wu obteve a evidência necessária para afirmar que o patógeno se transmitia pelo ar. A partir dessa constatação, e baseado no conceito da máscara cirúrgica que tinha visto na Europa, ele desenvolveu uma máscara formada por um filtro de algodão envolto em gaze que cobria boca e nariz e várias camadas de pano enroladas em volta da cabeça e amarradas na nuca, de modo a garantir uma certa fixação e vedação da máscara ao rosto. Wu chamou sua invenção de “máscara antipraga” e tentou infundir seu uso entre aqueles que cuidavam dos doentes, e, na medida do possível, também entre os pacientes e na população em geral.
Outros modelos de máscaras surgiram nessa época na Manchúria, inclusive um capuz com furos no local dos olhos, mas o modelo de Wu parece ter sido o melhor aceito. Ao que tudo indica, a máscara antipraga, com as suas várias camadas barrando a passagem de gotículas e a vedação relativamente alta, protegia razoavelmente o usuário do patógeno. Porém, algumas pessoas duvidavam da sua eficácia, e até mesmo da transmissão da doença pelo ar. Tal era o caso de um médico francês, bastante proeminente, que chegou à Manchuria para trabalhar na epidemia. Negado ao uso da máscara, adoeceu e morreu em poucos dias, segundo conta Wu na sua autobiografia.
Alguns anos depois, em 1918, o uso de máscaras disseminou-se pelo mundo no ritmo da feroz pandemia de gripe injustamente apelidada de “espanhola”, que foi causada pelo vírus da influenza H1N1 e matou de 50 a 100 milhões de pessoas em cerca de dois anos. Nesse período, as máscaras, feitas de gaze e outros tecidos de algodão, passaram a formar parte não apenas dos uniformes de médicos e enfermeiras, mas também do uniforme dos policiais das cidades e dos soldados que ainda estavam lutando nas trincheiras, no final da primeira guerra mundial. Estas máscaras eram produzidas de forma mais profissional e massiva, com equipes de enfermeiras da Cruz Vermelha cortando e costurando tecidos. Em algumas cidades, uma parte da população adotou o acessório protetor, geralmente montado em casa. Em outras, o uso tornou-se obrigatório.
Enquanto isso, nas primeiras décadas do século XX, os médicos tentavam determinar qual tipo de máscara seria mais eficiente para proteger o usuário de gotículas respiratórias com microrganismos, e alguns novos modelos e patentes surgiram, sem trazer grandes inovações. Geralmente, essas máscaras eram feitas de várias camadas de gaze de algodão. Às vezes incluíam uma camada adicional de material impermeável e, nos modelos mais avançados, uma armação de metal. Todas eram lavadas ou esterilizadas e reutilizadas.
Proteção respiratória para trabalhadores da indústria
Em paralelo, pesquisadores, empresas e governos de países como os Estados Unidos trabalhavam no desenvolvimento e regulamentação da proteção respiratória de outros trabalhadores: os da mineração e construção, altamente expostos a inalar partículas perigosas para a saúde. Esse problema não era novidade. Registros da Roma Antiga, no século I d.C, evidenciam o uso de peles de animais para cobrir parte do rosto no intuito de filtrar pós tóxicos presentes no ar. Contudo, na década de 1930, uma tragédia escancarou a necessidade de se implementar com urgência esse tipo de proteção. Centenas de trabalhadores morreram em decorrência de problemas pulmonares gerados pela inalação de pó de sílica durante a construção de um túnel no estado de Virgínia Ocidental, nos Estados Unidos.
No final da década de 1950, nos Estados Unidos, uma mulher em seus quarenta anos deu um empurrão na história do desenvolvimento de respiradores. Sara Finkelstein, formada em Design, mas afeta às abordagens multidisciplinares, fundou a consultoria Sara Little Design, cujo nome aludia à baixa estatura da sócia (e a seu bom humor). Um de seus primeiros trabalhos foi para a 3M, na divisão de embrulhos e tecidos da empresa, onde estava sendo testado um novo material para fitas decorativas, o “nonwoven” (“tecido não tecido” em português, popularmente denominado com a sigla TNT).
Esse grupo de materiais, tal qual seu nome indica, é definido e compreendido através de seu oposto, o grupo dos tecidos. Enquanto tecidos são obtidos mediante tecelagem ou tricô, tecidos não tecidos são fabricados usando outros processos para ligar as fibras entre si. Um dos processos mais comuns é o melt blowing, no qual um polímero fundido é soprado através de um molde com furos muito pequenos por um forte jato de ar, provocando a deposição aleatória das fibras poliméricas e formando assim o TNT. Outra diferença: tecidos são estruturas ordenadas de fios, geralmente dispostos formando ângulos retos; TNTs são emaranhados de fibras brutas.
Com estrutura muito porosa, formada por poros muito pequenos e fibras entrelaçadas de forma desordenada, os TNTs são ótimos materiais filtrantes: deixam passar gases, enquanto os sólidos ficam retidos no labirinto de fibras.
Mas voltando à Sara Little: ciente do impacto que uma inovação em materiais pode gerar não apenas numa empresa, mas também na vida dos consumidores dos produtos finais, ela fez uma apresentação a diretivos da 3M propondo muitas possibilidades de aplicação dos TNTs, e recomendando o desenvolvimento de uma área de negócios dedicada a esses materiais. Nesse momento, a indústria dos não tecidos era muito nova nos Estados Unidos, bem como na Europa; estima-se que a produção desses materiais em escala piloto tenha começado na década de 1930.
Aparentemente, Sara Little desenhou, para a 3M, alguns produtos usando TNT, começando por um bojo de sutiã. Principalmente, atribui-se a ela a ideia e o design do primeiro respirador da 3M, com seu formato semicircular lembrando o sutiã, o clip para vedar a máscara no nariz e os elásticos para fixá-la à cabeça. Conta-se que a intenção de Sara era criar um protetor para trabalhadores dos hospitais, cuja rotina ela tinha conhecido de perto depois de muitos anos acompanhando familiares doentes. Entretanto, não parece ter havido, naquele momento, um consenso a respeito da necessidade do uso de respiradores por parte dos profissionais da saúde, excetuando a utilização de máscaras em procedimentos cirúrgicos, com a finalidade principal de proteger os pacientes das secreções dos médicos e de proteger os médicos do sangue e outros fluidos dos pacientes.
Na 3M, o primeiro respirador teria sido lançado no início da década de 1960, ainda sem certificação oficial, mas com a comprovação da sua eficiência para filtrar pós, tão necessária para proteger trabalhadores expostos à inalação de partículas nocivas em atividades de mineração, construção e pintura de carros, entre outras. Em 1972, e a 3M seria a primeira empresa a introduzir no mercado um respirador certificado.
Respiradores para médicos e enfermeiros
Com relação à filtração de microrganismos, naquele momento, não existiam claras evidências, mas alguns registros mostram que esses respiradores, fabricados em escala industrial, eram vendidos a médicos e enfermeiros que desejavam se proteger. Com a introdução dos materiais não tecidos substituindo os tecidos, máscaras descartáveis começaram a entrar nos hospitais – novidade bem-recebida na época por representar redução de custos com o pessoal de lavagem e esterilização e, ao mesmo tempo, trazer mais segurança sanitária.
Por cerca de vinte anos, sem grandes novidades de doenças transmissíveis por gotículas respiratórias ou pelo ar, os respiradores N95 se disseminaram e estabeleceram como equipamentos de proteção respiratória na indústria. Entretanto, nos anos 1990, estes equipamentos de proteção individual se propagaram em hospitais perante os surtos de tuberculose resistente a antibióticos que contagiou muitos profissionais da saúde.
Na mesma década, novas tecnologias absorvidas pela indústria permitiram melhorar ainda mais o desempenho dos respiradores, principalmente com relação à retenção de partículas menores, como os vírus. Com esses processos, sobre os quais há algumas patentes, foi possível gerar uma carga eletrostática nas fibras do material não tecido, a qual acaba atraindo as partículas, que ficam retidas no material. Algo similar ao que acontece quando pedacinhos de papel grudam na bexiga que foi esfregada contra o casaco de lã. Graças a esta estratégia, a capacidade dos respiradores de reter partículas aumentou sem precisar adicionar novas camadas de material filtrante, preservando assim o bom ingresso de ar que os respiradores devem oferecer.
Um dos pesquisadores envolvidos nas patentes sobre processos para carga eletrostática de materiais não tecidos tem ganhado bastante visibilidade nos últimos tempos. Trata-se de Peter Tsai, que fez suas contribuições enquanto professor de The University of Tennessee, nos Estados Unidos. Tsai voltou à atividade científica em março deste ano pouco depois de se aposentar. Enquanto especialista em processos de fabricação e tratamento dos materiais não tecidos usados nas máscaras, Tsai tem trabalhado para ajudar a estabelecer mecanismos seguros de esterilização dos respiradores N95, frente à escassez desse produto que a pandemia de Covid-19 tem gerado.
Com todos esses avanços em materiais, tecnologias, conceitos e métodos, os respiradores entraram no século XXI prontos para ajudar os trabalhadores da saúde a reduzir o risco de infecção por doenças virais que se transmitem através de gotículas e secreções respiratórias, e até mesmo pelo ar. E ajudaram mesmo. Respiradores N95 foram recomendados para o pessoal da saúde na epidemia de Sars que ocorreu entre 2002 e 2003, nos surtos de Mers que têm acontecido desde 2012, na pandemia de gripe suína de 2009 e, atualmente, na pandemia de Covid-19.
Equipes científicas multidisciplinares estão trabalhando neste momento em diversas universidades brasileiras para poder entregar à sociedade, no prazo mais curto possível, soluções que ajudem a combater a COVID-19. Muito além de gerar publicações, e até mesmo conhecimento, esses trabalhos tem como objetivo principal o de salvar vidas.
A comunidade de pesquisa em materiais está participando ativamente de alguns desses desafios, os quais poderão gerar soluções tão importantes como testes diagnósticos rápidos, confiáveis e produzidos no país ou materiais virucidas para válvulas de respiradores e EPIs.
No início da tarde de 7 de maio, na sua primeira live, a SBPMat reuniu virtualmente quatro pesquisadores que estão trabalhando nesses desafios. Os cientistas contaram, para um público de cerca de 100 pessoas, de que maneira conseguiram se organizar para tentar dar uma resposta a esta situação emergencial e qual poderá ser o impacto social de seus projetos. Os relatos mostraram a importância do investimento contínuo em pesquisa e da colaboração entre indivíduos e instituições.
A discussão foi mediada por Carlos César Bof Bufon, pesquisador e chefe da Divisão de Dispositivos no Laboratório Nacional de Nanotecnologia (LNNano/CNPEM), quem faz parte do comitê organizador do próximo evento anual da SBPMat, o XIX B-MRS Meeting.
O painel de discussão online, transmitido na plataforma Zoom e no Facebook da SBPMat, foi realizado dentro da Marcha Virtual pela Ciência, evento promovido pela SBPC com o objetivo de chamar a atenção para a importância da ciência.
Testes nacionais para diagnóstico da COVID-19 e detecção de anticorpos
As cientistas Mariana Roesch Ely (professora da UCS, Caxias do Sul, RS) e Talita Mazon (pesquisadora do CTI Renato Archer, Campinas, SP) falaram sobre seus respectivos trabalhos de desenvolvimento de sensores para testes diagnósticos de COVID-19, os quais elas estão realizando com o respaldo de especialistas de áreas como Química, Eletrônica, Informática, Física, Materiais, Biologia e Saúde.
Ambos os sensores são instrumentos do tipo point of care. Essa expressão designa dispositivos miniaturizados que permitem realizar testes em qualquer lugar, sem precisar de laboratórios ou outros equipamentos, obtendo o resultado em poucos minutos.
Segundo as pesquisadoras, os sensores que estão desenvolvendo poderão detectar infectados por COVID-19 a partir do primeiro dia da infecção – característica que nenhuma das técnicas de diagnóstico atualmente usadas no país permite. Finalmente, afirmaram elas, os novos sensores fornecerão resultados mais precisos (com menos falsos negativos ou positivos) do que muitos dos testes rápidos que estão atualmente disponíveis no mercado.
Nos dois trabalhos, o desenvolvimento dos sensores está bastante avançado. Contudo, as duas cientistas coincidiram ao falar em 6 meses como prazo razoável para ter um produto pronto, testado com relação ao método RT-PCR (o mais confiável no momento) e viável na escala industrial.
Na sua fala, a professora Mariana contou que trabalha desde 2012 com o desenvolvimento de sensores baseados na tecnologia magnetoelástica, inicialmente voltados à detecção de bactérias e leveduras. Quando o Brasil sofreu o surto do vírus Zika em 2015, a cientista e toda a rede de pesquisa da qual ela faz parte direcionaram seus trabalhos para esse vírus, ganhando experiência na detecção desse tipo de organismos, que são muito menores que as bactérias. De acordo com a professora Mariana, o sensor magnetoelástico seria capaz de detectar tanto a partícula viral (desde o início da infecção) quanto os anticorpos produzidos pela pessoa que está ou esteve infectada. Dessa maneira, poderia ser uma ferramenta importante para definir medidas e protocolos em todas as fases da pandemia, inclusive a retomada das atividades econômicas presenciais.
A pesquisadora Talita contou que trabalha há cinco anos na integração de materiais cerâmicos e biológicos para desenvolver sensores point of care, os quais, na visão dela, se adaptam bem à realidade brasileira, na qual grande parte da população fica afastada de laboratórios e hospitais. Com a experiência reunida nesse tempo, a cientista conseguiu finalizar em 2019, junto a uma equipe multidisciplinar, um sensor eletroquímico que detecta o vírus Zika com precisão e em poucos minutos. Atualmente, ela está adaptando essa plataforma à detecção do Sars-COV-2 (o vírus que causa a doença COVID-19).
Pensando na possibilidade de produzir o sensor sem necessidade de insumos importados, principalmente na escala industrial, a pesquisadora correu atrás de parceiros locais e adaptou o sensor aos insumos biológicos que poderiam ser produzidos no país. Além disso, ela está estabelecendo uma parceria com a empresa pública da área de microeletrônica CEITEC, localizada no Rio Grande do Sul, cuja capacidade instalada permitiria fabricar os chips de todos os sensores necessários para testar a população brasileira nas próximas fases da pandemia. “Temos que unir forças para desenvolver soluções que de fato possam ser atendidas pela capacidade industrial do país”, expressou a professora Talita.
Materiais virucidas para máscaras e respiradores
No painel, Dachamir Hotza, professor da Universidade Federal de Santa Catarina (UFSC), contou os esforços de superação individual e grupal que tem realizado para levar respostas à sociedade durante a pandemia de COVID-19. Em um desses trabalhos, o pesquisador e seus colaboradores estão realizando a caracterização física e bioquímica de máscaras usadas em hospitais para poder definir de forma precisa em que momento elas perdem suas funcionalidades e precisam ser substituídas. Além disso, trabalhando com outras instituições e uma empresa da região com as quais já colaborava anteriormente, o pesquisador está avançando no desenvolvimento de tecidos com atividade virucida. Uma dificuldade ainda não superada, contou o pesquisador, foi a de acessar um laboratório com nível de segurança suficiente para fazer testes com o novo coronavírus.
Materiais ativos na eliminação do vírus Sars-COV-2 também foram objeto da fala do professor Petrus Santa Cruz, da Universidade Federal de Pernambuco (UFPE). O cientista contou como reuniu conhecimento gerado ao longo de décadas, disponível em artigos e patentes de seu grupo de pesquisa, para seus trabalhos relacionados ao combate à pandemia. Um deles é uma ação emergencial que visa fornecer ao sistema de saúde pública válvulas de respiradores que poderiam ser usados em pacientes infectados com COVID-19 numa fase anterior à intubação, frente a situações de alta ocupação de leitos com ventiladores mecânicos. A equipe interdisciplinar do professor Petrus, que inclui especialistas da área de software, conseguiu vencer o desafio de fabricar essas válvulas em impressoras 3D com a rugosidade superficial necessária para impedir a fixação de microrganismos (inicialmente bactérias e, provavelmente, também vírus). Além disso, o grupo está trabalhando para outorgar a esse e outros materiais um papel ativo na eliminação do vírus, usando nanotecnologia para romper a parede que protege o RNA viral.
Investimentos contínuos para resultados rápidos
Os quatro painelistas destacaram que a capacidade da ciência de dar respostas rápidas à sociedade em momentos emergenciais é resultado de muitos anos de esforços e investimentos. “Não existe um botão liga/ desliga para a ciência, porque ela é feita do acúmulo de conhecimento”, disse o professor Petrus.
Por outro lado, com sucessivos recortes ao orçamento de CTI, muitos pesquisadores brasileiros têm desenvolvido estratégias para driblar as dificuldades e continuar trabalhando. É característica do cientista brasileiro se adaptar a situações adversas, comentou o professor Dachamir.
As falas dos painelistas mostraram que uma combinação entre expertise e persistência, por um lado, e criatividade e reinvenção, por outro, formam parte da receita que estão aplicando em seus trabalhos relacionados ao combate à pandemia.
Outro aspecto destacado pelos cientistas como essencial ao sucesso dos projetos emergenciais foi o trabalho em redes multidisciplinares de colaboração, inclusive junto às empresas que poderiam produzir as soluções na escala industrial. “Este é o momento de cruzarmos as expertises de todos para dar uma resposta rápida à sociedade”, disse a professora Mariana.
O processo seletivo consistirá da análise da adequação ao tema, de caráter eliminatório e classificatório, e da avaliação curricular do candidato e do orientador, de caráter classificatório.
Há disponível uma bolsa de mestrado e uma de doutorado.
Owing to the uncertainties related to the COVID-19, and in order to reduce the risk of hampering the health of our community, the Organizing Committee, the Executive Board of the B-MRS and the IUMRS decided to postpone the 2020 B-MRS and the IUMRS/ICEM meetings.
The conferences are now scheduled to happen from August 29th until September 2nd, 2021, in the city of Iguassu Falls, at the Rafain Convention Center.
All participants will be asked to resubmit their abstracts following a new schedule to be released.