O artigo científico de autoria de membros da comunidade brasileira de pesquisa em Materiais em destaque neste mês é: Kinetic model for photoluminescence quenching by selective excitation of D/A blends: implications for charge separation in fullerene and non-fullerene organic solar cells. L. Benatto, M. de Jesus Bassi, L. C. Wouk de Menezes, L. S. Roman and M. Koehler. J. Mater. Chem. C, 2020,8, 8755-8769.
Modelo cinético para células solares orgânicas mais eficientes
Diferentemente de outras células solares que estão no mercado há mais tempo, como as de silício, as orgânicas são finas, leves, flexíveis e semitransparentes. Com essas características, elas se tornam muito atrativas para segmentos específicos. No Brasil, por exemplo, que conta com produção nacional, podem ser encontradas em prédios empresariais algumas das maiores superfícies instaladas do mundo, além de instalações em alguns shopping centers, caminhões e pontos de ônibus.
Embora as versões orgânicas das células solares também ofereçam vantagens na produção em grande escala (processos industriais mais simples e com menor pegada de carbono, como o roll to roll), a conquista de mercados amplos depende, em grande parte, de continuar a melhorar a sua eficiência na conversão de luz solar em energia elétrica. Para superar esse desafio, o desenvolvimento de materiais com propriedades adequadas e a combinação dos diferentes materiais dentro do dispositivo são essenciais.
Uma equipe científica da Universidade Federal do Paraná (UFPR) dedicou-se a estudar em detalhe, usando ferramentas experimentais e teóricas, o mecanismo de geração de cargas elétricas em células solares orgânicas – um processo complexo que ainda não é compreendido na sua totalidade. Na prática, os resultados deste trabalho auxiliam na escolha de quais materiais devem ser usados e como eles devem ser sintetizados, de modo que suas propriedades potencializem a eficiência da conversão de luz em eletricidade. A pesquisa foi reportada em artigo do Journal of Materials Chemistry C (fator de impacto 7,059), onde recebeu destaque em contracapa.
Desvendando a dissociação do éxciton
No sanduíche de camadas que forma as células solares, a camada ativa (responsável por absorver a luz e gerar as cargas elétricas) é composta por materiais semicondutores, os quais, no caso dos dispositivos orgânicos, são polímeros ou outras moléculas baseadas em carbono. Ao ser excitados pela luz, estes materiais não geram cargas elétricas livres, como acontece nos semicondutores inorgânicos. Eles geram éxcitons, que são pares elétron – buraco ligados por forças de atração entre a carga negativa do primeiro e a positiva do segundo.
Para gerar as cargas livres, que formam a corrente elétrica, é preciso quebrar essa ligação, num fenômeno chamado de dissociação do éxciton. Uma das formas de consegui-lo é criar, na camada ativa, uma interface entre um material doador de elétrons e outro aceitador de elétrons. “Dependendo da combinação desses dois materiais, o processo de dissociação dos éxcitons pode ocorrer em uma escala de tempo muito baixa, resultando numa geração de carga mais eficiente”, explica Leandro Benatto, autor correspondente do paper. “No entanto, esse processo ainda não é bem compreendido”, completa.
O trabalho de Leandro e os outros autores concentrou-se, justamente, em tentar compreender a dissociação do éxciton e a geração de cargas livres na interface entre o material doador e o aceitador. A equipe realizou experimentos de fotoluminescência usualmente utilizados para dimensionar a eficiência na geração de cargas livres em sistemas desse tipo e desenvolveu um modelo matemático que simula o processo. Os resultados experimentais e os teóricos foram muito similares, comprovando a precisão do modelo. “Desenvolvemos um modelo que simula a cinética do processo, englobando diversas etapas da dissociação dos éxcitons e considerando as principais características da interface”, diz ele. “A partir do modelo cinético foi possível reproduzir muito bem os resultados experimentais e observar de forma mais clara os principais fatores que influenciam a eficiência do processo de geração de cargas livres em interfaces doador/aceitador”, completa.
Fulerenos x não fulerenos
O trabalho que gerou o artigo foi coordenado por dois professores do Departamento de Física da UFPR, Marlus Koehler e Lucimara Stolz Roman, que possuem uma parceria de longa data no estudo teórico – experimental de células solares orgânicas. “A parte teórica começou a ser desenvolvida em 2019, no final do meu doutorado em Física pela UFPR sob orientação do professor Marlus, e continuou no meu pós-doutorado no Laboratório de Dispositivos Nanoestruturados (DINE) sob coordenação da professora Lucimara” conta Leandro. Também participaram da pesquisa Maiara de Jesus Bassi, doutoranda em Física no grupo da professora Lucimara, e Luana Cristina Wouk, doutora em Física que também foi orientanda da professora Lucimara, e atualmente trabalha no centro privado de pesquisa aplicada CSEM Brasil, o que auxiliou a contextualizar o problema no cenário de desenvolvimento em larga escala.
A ideia inicial do trabalho foi entender a diferença entre dois tipos de moléculas aceitadoras de elétrons: as derivadas de fulereno (um alótropo do carbono), que têm excelente desempenho na coleta e transporte de elétrons mas possuem um limitado espectro de absorção luminosa, e compostos não derivados de fulerenos, cujas propriedades de coleta e transporte têm sido otimizadas nos últimos anos. “Esse é um tema muito interessante visto que, recentemente, a eficiência das células solares orgânicas baseadas em não fulerenos superou a das baseadas em fulerenos, apesar de que, alguns anos atrás, não se imaginava que os fulerenos seriam superados”, relata Leandro. “Atualmente, células solares orgânicas de não fulerenos produzidas em laboratório alcançaram a eficiência de 18%”, completa.
Esta pesquisa recebeu financiamento das agências brasileiras Capes, CNPq e FAPEMIG, do INCT–Nanocarbono e da COPEL (Companhia Paranaense de Energia).