VII Encontro da SBPMat
English Version

  SBPMat - Brazil - MRS
Área de AutoresVII ExpomatContatoInscrição
 

- Descrições dos simpósios
- General Timetable
- Horário das apresentações orais e de posters


Secretaria:
Aptor

7encontro@sbpmat.org.br

 

Fernando Galembeck

Graduado em Química pela Universidade de São Paulo (FFCL, 1964) e Doutor em Química (Físico-Química, USP, 1970), realizou pós-doutorado nas Universidades do Colorado (1972-3) e da Califórnia (Davis, 1974). É Professor Titular da Universidade Estadual de Campinas, onde leciona disciplinas de Colóides e Superfícies, Polímeros, Química Aplicada,
Físico-Química, Química Geral e Microscopia. Publicou mais de 220 artigos em periódicos científicos especializados e cerca de duzentos trabalhos em anais de eventos. Tem 18 capítulos de livros publicados e mais de 40 comunicações apresentadas em congressos científicos internacionais. Orientou 35 dissertações de mestrado e 30 teses de doutorado, tendo depositado 18 patentes das quais 7 foram licenciadas. Dois produtos baseados nessas patentes foram lançados comercialmente. Exerceu funções dirigentes na Unicamp, MCT, CNPq, ABC, SBQ, SBPC e SBMM, de assessoria e planejamento na Fapesp, MCT, CNPq e Capes e de consultoria em várias empresas, tendo obtido numerosos prêmios, destacando-se o Prêmio Álvaro Alberto de Ciência e Tecnologia de 2007.


A new model for dielectric charging and electrostatic adhesion

Universidade Estadual de Campinas, Campinas, SP, Brazil

Electrostatic charging is widely known but it remains poorly understood, largely due to the lack of widely accepted mechanisms for charge acquisition and dissipation and this is largely related to the lack of consensus on the intervening species, electrons or ions.[1] This has important practical consequences because it makes the prevention of damaging electrostatic discharges rather empirical. It is also important for nanofabrication since electrostatic forces may largely exceed inertial forces for very small particles.
Early work from this laboratory revealed that insulator surfaces contain complex and stable patterns of nano-sized domains that were revealed by using scanning Kelvin probe microscopy, scanning electric potential microscopy (SEPM) or electric force microscopy (EFM).[2] More recently, carriers of excess charges in polymer lattices were identified as ions trapped during emulsion polymerization, by using analytical transmission electron microscopy associated to electron energy-loss spectroscopy (ESI-TEM). However, charge carriers in important insulators that are easily charged such as polyethylene and other thermoplastics, rubbers, cellulose and silicate glass were not identified by using these techniques.
Progress along this line was obtained during work on calibration of SEPM instruments that yielded two results: a procedure for electrostatic patterning of sub-micrometer domains on silica surfaces and the verification of its dependence on the atmosphere relative humidity (RH).[3] This led to a new model for the electrification of insulators, according to which charge bearing species are largely dissociated water ions or ion clusters that are deposited on the solid surfaces or removed from these, coupled to water vapor adsorption-desorption events. Charge transfer in dielectrics is thus coupled to mass transfer across the solid-gas interface and its rate depends largely on the atmosphere relative humidity that also contributes to surface conductance. This new model for the formation and dissipation of electrified domains has already been applied to many situations, especially to explain results on the electrostatic charging of paper and polyethylene. In another context, the identification of the presence of ions in dielectrics also led to a new model for electrostatic adhesion [4] in nanostructured materials,6 that accounted for the remarkable but previously unexpected adhesion between hydrophilic clay and hydrophobic latex particles, that produces new and unmatched mechanical and swelling properties in polymer-clay nanocomposites.
Work supported by CNPq, Fapesp and IMMC (Instituto do Milênio de Materiais Complexos).
References:
[1] Schein,L.B. Science, 2007, 316, 1572-1573.
[2] Galembeck, A.; Costa, C.A.R.; Silva, M.C.V.M.; Souza, E.F.; Galembeck, F. Polymer,
2001, 42, 4845-4851.
[3] Valadares, L.; Linares, E.; Bragança, F.C; Galembeck, F. J. Phys. Chem. C (in the press).
[4] Bragança, F.C.; Valadares, L.F.; Leite, C.A.P.; Galembeck, F., Chemistry of Materials,
2007, 19, 3334-3342.
fernagal@iqm.unicamp.br
Universidade Estadual de Campinas, Institute of Chemistry, CP 6154 Campinas SP, Brazil
13083-970

 

 

 

 

Aptor Software