

Rio de Janeiro Brazil September 20 - 25

Recent Advances in Synchrotron Radiation Investigation of Ferroic Materials

M. E. Montero-Cabrera⁽¹⁾, L. Fuentes-Montero⁽¹⁾, M. E. Fuentes-Montero⁽²⁾ and L. E. Fuentes-Cobas^{(1)*}

(1) Centro de Investigación en Materiales Avanzados, Chihuahua, México, email: luis.fuentes@cimav.edu.mx
(2) Universidad Autónoma de Chihuahua, Chihuahua, Mexico

* Corresponding author.

Abstract - Synchrotron radiation diffraction, scattering and absorption spectroscopy are among the most powerful tools employed today for the investigation of ferroic materials' fine structure. A comparative review of the mentioned techniques, as applied to bulk and nano-structured ferroelectric and magnetoelectric samples is presented and illustrated by means of practical examples.

The information contained in diffraction peaks gives the long-range space-time average structure. It provides the general structure diagram, precise lattice parameters and average atomic positions. In synchrotron applications, it is highly sensitive to symmetry breaking. Space/time deviations from mathematical periodicity decrease diffraction maxima and generate diffuse scattering.

The effect of single- and polycrystal symmetry on 2-D diffraction patterns and on physical properties is briefly reviewed. Associated software is presented.

Research using ferroelectric diffuse scattering in the three-dimensional vicinity of Bragg peaks represents a current tendency aimed at clarifying the static and dynamic characteristics of ferroelectrics above the Curie temperature T_c . The final objective is to elucidate the gestation of ferroelectricity from the paraelectric state.

Two models that represent extremes in the existing diversity of approaches are:

a) (Solid state physics) \rightarrow Softening of the dynamic chains of correlated displacements that form the transverse optical (TO) modes.

b) (Quantum chemistry) \rightarrow Static linearly ordered displacements that have short range in the paraelectric phase and show long-range order in the ferroelectric phase.

Representative case studies, performed by our group and from the literature, are discussed. Phonons in the cubic paraelectric phase of $PbTiO_3$, polarized nanoregions in PZN single crystals, ultra-thin layers of $PbTiO_3$ and linear disorders in BaTiO₃ and KNbO₃ are considered.

Measuring and processing the structured diffuse scattering leads to determination of the pair distribution function (pdf). Scattering-measured pdf is centered on an "average" atom, representative of the investigated phase.

X-ray Absorption Fine Structure (XAFS) investigation is briefly exposed. X-ray Absorption Near Edge Structure (XANES) offers information on oxidation state of the absorbing element and in general on the electronic structure of the target element's bonds. Furthermore, Extended X-ray Absorption Fine Structure (EXAFS) focuses on the determination of a few short-range structural characteristics invisible for the averaging eyes of diffraction techniques, like interatomic distances, coordination numbers and static and thermal disorder. In some cases it is capable of inter-bonds angle determination as well. Some recent applications of the technique to ferroic oxides are given.