

ICAM 2009 Rio de Janeiro Brazil September 20 - 25

Electrochemical performances of nanostructured La-perovskites layers deposited by pulsed laser technique for IT-SOFC cathode applications

V. Esposito¹, S. Sanna^{1, 2}, A. Orsini¹, D. Pergolesi², E. Di Bartolomeo¹, A. Tebano², G. Balestrino², S. Licoccia¹ and E. Traversa¹

Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata" Viale della ricerca scientifica, 00133, Rome, Italy

².INFM – CNR Coherentia and Dipartimento di Ingegneria Meccanica, Università di Roma "Tor Vergata", Viale del Politecnico, 00133, Rome, Italy

Abstract

Reduction of SOFC operating temperatures is a prerequisite for their use in portable devices. This can be achieved reducing the electrolyte thickness thus reducing its ohmic resistance and indeed micro-scaled solid oxide fuel cells (μ-SOFCs) can be fabricated using materials in thin film form. The development of μ-SOFCs opens new scenarios about power generation technology. However, lowering the SOFC operating temperature makes slow the kinetics of charge transfer reactions at the electrolyte-electrode interfaces, mainly at the cathode. To overcome this shortcoming, materials with a high chemical thermal and chemical stability as well as high electrocatalytic activity towards oxygen reduction reaction, are usually required for IT-SOFC applications. Furthermore, to ensure the required performance, cathodes must possess a large active surface area with low area specific resistance (ASR) and large triple phase boundary (TPB) at the electrode/electrolyte interface.

In this paper, we investigated the microstructural features and the electrochemical properties of dense and nano-porous La_{0.8}Sr_{0.2}Fe_{0.8}Co_{0.2}O_{3-d} electrodes, deposited by pulsed laser deposition (PLD) onto yttria-stabilized zirconia (YSZ) polycrystalline substrates. Dense and nanoporous morphologies were tuned varying the laser ablation conditions and by low temperature post-annealing treatments. A further comparative analysis of dense La_{0.6}Sr_{0.4}MnO₃ and La_{0.8}Sr_{0.2}Fe_{0.8}Co_{0.2}O_{3-d} electrodes onto polycrystalline YSZ and samaria-doped ceria (SDC) was carried out to evaluate the electrodes overpotential due to the electrode/electrolyte interface.