

11th International Conference on Advanced Materials Ris de Janeiro Brozil Sustamber 20 - 25

Sono-Electrolessplating of Tin from Acid Bath

A.Chiba^{$(1)^*$}, N. Hirano⁽¹⁾ and W.C.Wu⁽²⁾

(1) Department of Materials Chemistry, Yokohama National University, Yokohama 240-8501, Japan,

(2) Department of Chemical and Material Engineering, Tainan University of Technology, Yung-Kang City,

- 710 R.O.China
- * Corresponding author:

Abstract - Sonication is powerful agitation. The bath was $0.095 \text{ mol/dm}^3 \text{NiSO}_46\text{H}_2\text{O}$, $0.3 \text{ mol/dm}^3 \text{NaH}_2\text{PO}_2$, $0.06 \text{ mol/dm}^3 \text{Na}_3\text{C}_6\text{H}_5\text{O}_72\text{H}_2\text{O}$, and pH 8.5. The temperature was 353 ± 3 K. The plating rate in sonication had a little faster compared with that in stationary state with micro-jet effects. The thickness of plated film was affected with bath temperature and bath composite. When the concentration ratio of Ni and Mo increased and ratio of Mo was decreased, thickness was thicker. The plated film was an amorphous. Plating rate was faster with micro-jet. The surface was smoothed with shock wave pressures.

The substrate was Cu sheet (99.9 % and 0.3 mm thick), with an active area of 1 cm x 2 cm. The counter electrode was Pt plate, with an active area of 2.5 cm x 4 cm, placed 3 cm from the working electrode. The electrodes were polished with # 2000 emery paper and immersed in 6 mol/dm³ nitric acid solution for several seconds, then rinsed with distilled water and air-dried before the experiments. The composition of Sn bath was 0.35 g/dm³ SnSO₄, 35 g /dm³ NaPH₂O₂ \cdot H₂O, 40 g/dm³ Na₃C₆H₅O₇ \cdot 2H₂O and 20 g/dm³ CH₄N₂S. pH was 3.

 β -Sn and Sn - Ni alloy plated film were obtained. The thickness of film increased with increasing of plating time and increased with sonication compared with that of sonication. The thickness of Sn films were obtained 0.13 ~ 19.3 µm. The composition of Sn-Ni bath was 0.35 g/dm³ SnSO₄, 5 g/dm³ NiSO₄ \cdot 6H₂O, 35 g/dm³ NaPH₂O₂ \cdot H₂O, 40 g/dm³ Na₃C₆H₅O₇ \cdot 2H₂O and 20 g/dm³ CH₄N₂S. pH was 3. Sn and Sn - Ni alloy plated film were obtained. The composition of this plated film was 74.1 wt %Sn - 25.9 wt %Ni. The conditions that Sn - Ni alloys of an arbitrary ratio were get reports on the next time. The surface was smooth, dense and homogeneity with sonication.

References

[1] Y.Kong, J.Shao, W Wang, q.Liu and Z. Chen.J. Alloy and Compounds, in press, (2008).

[2] W.X.Zhang, Z.H.Jiang, G.Y.Li, Q.Jiang and J.S.Lian, Surf. and Coat. Technol., 202 (2008) 5270-2576.

[3] E.Huttunen-Saarivirta and T.Tiainen, J.Mat.Process. Technol., 170 (2002) 211-

219.

Figure 1: Effect of plating time SnSO₄: 35 g/dm³, NaH₂PO₄ \cdot H₂O: 35 g/dm³, Na₃(C₃H₅O(COO)₃) \cdot 2H₂O: 40 g/dm³, CH₄N₂S: 20 g/dm³, pH: 3, Bath temperature: 343 K, Sonication: \bigcirc, \triangle , \square ; Stationary state, \spadesuit , \blacktriangle , \blacksquare ; 28 kHz

Figure 2: Surface morphology SnSO₄: 0.35 g/dm³, NaH₂PO₄ • H₂O: 35 g/dm³, Na₃(C₃H₅O(COO)₃) • 2H₂O: 40 g/dm³, CH₄N₂S: 20 g/dm³, pH: 3, Bath temperature: 343 K, Plating time: 30 min

10 µ m

Figure 3: X-ray diffraction patterns A:Sn-Ni(74.1:25.9)film, B;Sn film(28kHz), C:Sn film (Stationary state) NiSO₄: 0.35 g/dm³, NaH₂PO₄ H₂O: 35 a/dm³ Na₃(C₃H₅O(COO)₃) g/dm³. • 2H₂O: 40 CH₄N₂S: 20 g/dm³, pH: 3, Bath temperature: 343 K, Plating time: 30 min Crystal plane: ο;β-Sn(200), ; β-Sn(420), β-Sn(501), ●; (Ni₃Sn₂)5H(002), ▲;(Ni₃Sn₂)5H(112)

11th International Conference on Advanced Materials Rie de Janeiro Brazil September 20 - 25